. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

Similar documents
1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

TOP URL 1

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

30

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

PDF

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

TOP URL 1


II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

振動と波動


ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

phs.dvi

液晶の物理1:連続体理論(弾性,粘性)

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

0 0. 0

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

Untitled

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

master.dvi

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

i


meiji_resume_1.PDF

( ) ,

( )

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

pdf

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

Part () () Γ Part ,

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

Gmech08.dvi

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x


201711grade1ouyou.pdf

Gmech08.dvi

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

untitled

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

TOP URL 1

Maxwell

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE

eto-vol2.prepri.dvi

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

gr09.dvi

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

総研大恒星進化概要.dvi

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C602E646F63>

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

Contents 1 Jeans (

量子力学 問題

IA

I ( ) 2019

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

Microsoft Word - 11問題表紙(選択).docx

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

2000年度『数学展望 I』講義録

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

/Volumes/NO NAME/gakujututosho/chap1.tex i

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

II 2 II

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

2011de.dvi

Report10.dvi

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4


(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

I 1

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T


x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r


/Volumes/NO NAME/gakujututosho/chap1.tex i


,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.


The Physics of Atmospheres CAPTER :

Transcription:

003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4......... 5 3.4............ 5 3.4.............. 5 3.4.3.......... 5 3.4.4............. 5 3.4.5............ 6 4 6 4.................... 6 4.................... 6 4.3 random walk......... 7 4.4.......... 7 5 8 5................ 8 5. MHD................ 9 5.3................. 9 5.4 MHD MHD........... 9 6 0 6............. 0 6................ 0 6.3.......... 6.4... 7 7.................. 7........... 7..... 7.................. 7..3........ 3 7.3... 3 7.4.............. 4 7.5.......... 4 7.6 R L O X............ 4 8 5 8. Landau................. 5 8. Cyclotron............... 6

. ev=,604k.5 0 5 m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H 0 +3.6 ev Saha x x = 3/ πme kt g i g e n h exp eɛ i /kt 3 g 0 x n i /n = n i /n 0 + n i ɛ i n e 0 7 m 3, T e ev Ar Hg Ar Hg Hg 53nm, 85nm Hg + e Hg +e Hg Hg + hν 0% 5% Si SiO n e =0 7 0 0 m 3, T e = 0eV CVD Si SiC D+T He 4 3.5MeV+n4MeV T 0keV, n 0 0 m 3 E mc e Π e 4 Π e = ne /m e ɛ 0 E 0 V/m. Γ= Ze /a 4πɛ 0 kt 5 Γ > Γ < N D N D 4π 3 nλ3 D 6 Γ= 7 3N /3 D Fermi ɛ F h /m e 3π n /3 8 ɛ F >kt

Fermi Maxwell Fermi 3/4πn /3 4πɛ 0 h /m e e 4σ/3ckT 4 nkt T =.5keV, n =0 3 m 3 T e 0.eV, n =0 0 m 3 HF 3-30MHz HI, HII HII HI HII Saha 50% HI T kev, n 0 3 m 3.3 Debye Ze φ Maxwell eφ n = n 0 exp kt e n 0 + eφ kt e 9 n 0 Poisson φ = ρ = Ze δ r+ n 0e eφ ɛ 0 ɛ 0 ɛ 0 kt = Ze δ r+ φ ɛ 0 λ D φr = Ze exp r/λ D 4πɛ 0 r λ D.4 0 n Poisson E = en ɛ 0, m e v t = e E, n t + n 0 v n exp ikx ωt ω = n 0e Π e 3 m e ɛ 0 3 Larmor Larmor Guidinig Center 3. Larmor Cyclotron m d v dt = q E + v B 4 E =0,B: v x = v sin Ωt + δ v y = v cos Ωt + δ v z = v z0 5 ρ Ω= qb m, ρ = mv 6 qb 3

Ω 3. E B B E v = u E + u, Eq.4 u E E B B 7 m d u dt = q u B 8 E B u E m g u g = m g B qb = g B ΩB 9 R v mv R B u curv = v R n ΩB n 0 B B B Larmor B B 0 + ρ B v ρ B v, ρ B 0 B z 0, ρ = ρ cos Ωt, ρ sin Ωt, 0 v = ρω sin Ωt, ρω cos Ωt, 0 B z x 0 v ρ B = ρ Ω B z x e x B u B = = v Ω B 3 v B B ΩB 4 j 0 B b B = b b B + B b b = B l b B R n 5 b = B/B B B u B = v ΩB / R B v /+v R n ΩB 3.3 n 6 7 3.3. pdq µ µ = IS = qω π πρ = mv / B q = pdq = const. 8 4πm 3.3. 0 v + v = const. 9, B v 0, v 0, v, v, 8,9 0 < v = v 0 + v 0 v = v 0 + v 0 B v 0 v 0 > B 30 v 0 v 0 < B 3 4

B B q v ρ B = µ B l 3 3.3.3 mv dl mv l 33 v 3.4 3 E Penning Trap λ D 3.4. dx, dy, dz dx B x = dy B y = dz B z 34 Ψ r Ψ B =0 Ψ=const. Ψ B = A B r = r A z θ A θ z B θ = A r z A z r B z = r r ra θ r A r θ 35 z A z r, θ =const. θ ra θ r, z =const. 3.4. I r A, B A z = µ 0I ln r, π B θ = µ 0I πr r = const. 3.4.3 36 I B d s = µ0 I B = µ 0 In 37 n R B φ = µ 0I πr 38 I /R u B, u curv E B 3.4.4 I a r, z A A θ = µ 0 a πk I k /Kk Ek r k 4ar a + r + z 39 Kk, Ek ra θ = const. 5

r a + z = const. k Iπa ra θ µ 0Ia r 40 4 r + z 3/ r 3 z 3 u B, u curv 3.4.5 ra θ tokamak θ B Φ, B p B φ,b p B φ /R u B, u curv ω dr dt = ωz dz dt = ωr + v d v d = m q R v + v 4 R, v d = const., ω = const. r + v d /ω + z = const. 4 ω a B/ a/r 3 v v < a R 43 4 4. r 0 m eve Ze 4πɛ 0 r 0 r 0 Ze ɛ 0 m e v e σ = πr 0 Z e 4 ɛ 0 m e v4 e 44 45 τ ei τ ei = ɛ 0 m e v3 e nσv e nz e 4 ɛ 0 me kt e 3/ nz e 4 46 - τ ii = ɛ 0m i v3 i nz 4 e 4 ɛ 0 mi kt i 3/ nz 4 e 4 47 - τ ie τ ei m i m e 48 mi τ ei : τ ii : τ ie =: : m i 49 m e m e 4. τ ei E m e v e = eeτ ei v e = ee m e τ ei 50 6

E = ηj = ηenv e 46 η m e ne τ ei 5 η Z e 3 ɛ 0 m ev 3 e Ze ln Λ η 5.6 πɛ 0 m eve 3 4.3 random walk Γ n D 5 53 Γ= D n 54 nx, tdx t x x + dx nx, t = n t = D n x 55 exp x 4πDt 4Dt 56 item W l, n n l n W l, n = n C n+l 57 n! = 58 n + l/! n l/! πn exp l n l 59 n W l, n x = x = la, t = nτ 60 exp x x 6 4πDt 4Dt D = a τ = [L] [T ] 6 4.4 a τ p Sec.4.3 D x t D = x t Random Walk a a Dτ p τ p a D a t 63 x / Q-machine T i =0.eV, n i = 0 7 m 3 λ ii = 0 4 Ti /n i 4[mm] /ν ii = 0. 0 9 Z 4 / AT /3 i n i 0.5[µs] a =m τ p a t 30[ms] 64 x τ p n i T 5/ i - - - - ρ e D = ρ e n τ ei B 65 kt 7

65 ρ e factor 4 v d ω mv ebr ω 66 a ω a πrq q ω v 67 Rq mv Rq ebr v m vq ρq 68 eb q 5 N 6N Boltzmann f x, v, t f t + v f + q m E + v B δf v f = 69 δt c Boltzmann n x = fd v nm v = m vd v 3 nkt = mv /d v 5. ve n e m e t + v e v e n e t + n ev e =0 n i t + n iv i = 0 70 = p e en e E + v e B+ R 7 vi n i m i t + v i v i = p i + Zen i E + v i B R 7 R = en e η j - ρ m = n e m e + n i m i v = ρ m n e m e v e + n i m i v i 73 ρ = en e + Zen i j = en e v e + Zen i v i 74 70, 7,7 ρ m + ρ m v =0 t ρ t + j =0 v ρ m t + n em e v e v e + n i m i v i v i = p + ρe + j B 75 v v i en e Zen i j en e v e v i en e v e v v e = v j/en e 7 E + v B j B en + p e R = 0 76 e en e en e 8

ρ en e j en e B p e en e = ρ m Dv Dt + p i en e ρ E v B 76 E + v B = η j 77 Ohm v B 5. MHD Magnetohydrodynami Equation E + v B = η j 78 D v ρ m Dt = p + j B 79 B = µ 0 j 80 E = B t 8 B = 0 8 ρ m + ρ m v t 83 MHD 79,80 v A = B µ0 ρ m 84 5.3 78,79 B t = v B+ η µ 0 B 85 η µ 0 a τ η = a µ 0 η 86 Navier-Stockes D v Dt = ρ p + ν v 87 η µ 0 Reynolds R v B η/µ 0 B vb/a η/µ 0 B/a µ 0va R 88 η 85 R = µ 0va = µ 0a v η η a = τ η 89 a/v A ds Φ η 0 dφ B dt = t ds + B v d s 90 78 dφ = E + v B ds dt η = η j ds = B ds 9 µ 0 η 0 Φ=const. 5.4 MHD MHD Ohm MHD 400 C Ohm v B MHD j j B v MHD 79 j B 9

j r B θ [ B z + Bθ ] µ 0 r=a B = p + z 98 µ 0 6 β p [ B z +B θ µ 0 ]r=a, β p p [ B θ µ 0 ]r=a 99 MHD 79 p = v B 9 B p =0, j p =0 Maxwell B = µ 0 j p = B µ B = B 0 µ B B 93 0 p + B µ 0 = B µ B = B B 0 µ 0 l B R n 94 p + B µ 0 const. 95 6. a z θ 94 p + B z + B θ = B θ 96 r µ 0 rµ 0 r /a [ p + B z + ] B θ p + B z + B θ B = θ 97 µ 0 r=a µ 0 µ 0 B z Bz >B z r=a β p < Bz <B z r=a β p > 6. MHD MHD MHD 0

6.3 g g E B g E B g B θ B θ B z B z B z B θ z B θ 6.4 x<0 x>0 g x z z / t =0, v 0, n 0 x v, E e iky ωt 7 0=en 0 v 0 +m i n 0 g 00 y v 0 = m i g B e B = g e y, Ω i Ω i = eb 0 < 0 m i 0 z ω kv 0 v = ie E m + v B 0 0 i E x =0, Ω i ω kv 0 v v ix, v iy v ix = E y v ix = i ω kv 0 Ω i E y 03 iωn + ikn 0 v ix + ikv 0 n + v ix n 0 x = 0 04 Eq.03 ω kv 0 n + i E y n 0 x ikn ω kv 0 E y 0 05 Ω i Ω e Ω i v e0 v 0, v ey v ex v e0 0, v ey 0 05 E y = iωn n0 06 x 05 0 ω kv 0 ω g n 0 n 0 x = 0 07 ω = kv 0 ± k v0 + g n 0 4 n 0 x g n 0 n 0 x > k v0 4 08

g n 0 Imω g n 0 n 0 x D = ɛ 0E + P = ɛ0 + i j ω = ɛ 0 K E 0 K Maxwell 7 7. Coherent Π Ω kt. E = φ = i kφ E k, B =0 B 0. kt 3. R L 4. O X 5. Fast Wave Slow Wave 3, 4, 5 7. 7.. B, E, v k e i k r ωt k E = ω B k H = ωɛ 0 K E k k E+ ω K E =0 c N N E+ K E = 0 N = kc ω E 0 ω, k K K 7.. B, E, v k e i k r ωt k z d v k m k dt = q k E + v k B iωm k v k = q k E + v k B 0 3 v kx = i E x v ky = E x Ω k ω ω Ω k Ω k ω Ω k v kz = i E z Ω k ω E y i E y Ω k = q k m k K ik 0 K E = ik K 0 0 0 K Ω k ω Ω k Ω k ω ω Ω k 4 09, 0 E x E y E z 5 j = k n k q k v k 09 K Π e ω Ω e Π i ω Ω i 6

K Π e Ω e ω Ω e ω Π i ω Ω i K Π e +Π i Π e Π e R L ω n e e ɛ 0 m e, Π i Ω i ω 7 ω 8 n e q ɛ 0 m i 9 Π e ωω Ω e Π i ωω Ω i = K + K 0 Π e ωω +Ω e Π i ωω +Ω i = K K k, N xz z z θ K N cos θ ik N sin θ cos θ ik K N 0 N sin θ cos θ 0 K N sin θ Ex E y E z E 0 0 AN 4 BN + C = 0 3 N = B ± B 4AC 4 A A K sin θ + K cos θ B K K sin θ + K K + cos θ C K K K =K RL 5 7..3 θ =0,π/ 0 <θ=0<π/ θ =0 3 K N 4 K N + K K 6 K = 0 7 N = K + K = R 8 N = K K = L 9 K =0 ω =Π k z, E z y =0 N = R, N = L ie x E y = ± z E x, E y θ = π/ 3 K N 4 K K + K K N + K K K 3 N = K K = RL 3 K K N = K 33 N = K E x = E y =0,E z 0 N = RL K E x = ikx K E y, E z =0 7.3 WKB WKB v E t = v E x 34 ω E = Exe iωt E + ω v E = E + k 0N E = 0 35 N = c v = kc ω Sch oredinger h m Φ +E V Φ = 0 Φ=e is/ h, S = S 0 + h i S +... Ex =e iφx φ iφ N k0 = 0 36 φ = φ 0 + φ ik E x K N E y =0 ie x E y = N K K 30 φ 0 = N k 0, φ 0 = k = ±Nk 0 φ 0 φ = iφ 0, φ = iφ 0 φ 0 37 3

= φ 0 φ 0 d dx = d dx k 38 φ 0 φ 0 = ± Nk 0 dx φ = i log φ 0 = i log Nk 0 39 E = e iφ = Nk0 e ±i Nk 0dx 40 WKB WKB 35 7.4 0 N > 0 N < 0 40 N E e ±i Nk 0dx Nk0 N = sine, cosine Cutoff N < 0 E e ± Nk0 x N 0 WKB N Cutoff Airy N > 0 N > 0 Cutoff 0 0 Landau 7.5 7.6 R L O X R L O X Π e Π i,ω e Ω i, Pi eω i + Pi i Ω e =0 K, R, L K Π e ω R ω ω Rω + ω L ω Ω e ω ω i L ω ω Rω + ω L ω +Ω e ω + ω i ω R = Ω e Ω + e ω L = Ω e + 4 4 43 44 4 +Π e Ω eω i 45 Ω e 4 +Π e Ω eω i 46 kck ω ω k ω k θ =0R L R N = R ω c k = R = ω + Ω i ω Ω e ω ω R ω + ω L 47 4

ω>0 ω = ω R 0 ω =Ω e ω L N = L ω c k = L = ω Ω i ω +Ω e ω ω L ω + ω R 48 ω = ω L 0 ω = Ω i ω R L ω c k < 0 evanescent θ = π/ O X O N = ω c k = K = Π e /ω =+ Π e c k 49 ω =Π e ω X N = ω c k = K RL = R + L RL ω4 Π e +Ω eω +Ω eω i Π eω e Ω i ω ωl ω ωr = ω ωlh ω ωuh ω ωl ω ωr 50 ω UH = Ω e +Π e 5 ωlh = Π e Ω eω i Ω e Ω i Π = e +Ω e Ω 5 i +Π i Ω i Ω e ω = ω R, ω = ω L ω = ω UH ω = ω LH 8 Landau cyclotron 8. Landau z z v 0 ω/k v 0 E = E cos kz v 0 t v = v 0 +v +v + 0 v = v 0, z = z 0 + v 0 t v = qe m cos kv 0t + k z 0 ωt = qe m cos αt + φ 0 53 α kv 0 ωt, φ 0 kz 0 v = qe sin αt + φ 0 sin φ 0 m α z = qe cos φ0 cos αt + φ 0 m α sin φ 0 α t 54 + v + v = qe m cos αt + φ 0 + kz qe m cos αt + φ 0 sin αt + φ 0 kz55 v = qe m sin αt + φ 0kz = q E m k sin αt + φ 0 cos φ0 cos αt + φ 0 α sin φ 0 α t 56 d mv dt = vm v = v 0 mv v mv + v 0 mv 0 = v 0 qe cos αt + φ 0 5

+ q E m cos αt + φ 0 sin αt + φ 0 sin φ 0 α q E kv 0 m sin αt + φ 0 cos φ0 cos αt + φ 0 α sin φ 0 α t φ 0 d mv = q E ω sin αt dt m α + kv 0 cos αt α 57 58 sin x/x cos x sin x dx π, cos xdx 0 x x 0 sin x/x > cos x α 0 fv fv 0 + α k f v d mv = πq E ω f dt m k k v 59 8. Cyclotron B 0 R L E x e ikz ωt, Ey ikz ωt B = k E/ω V m v + mv v z = q E + v B0 V B 60 x y v x + ikv v x = qe x m Vk/ω Ωv y v y + ikv v y = qe y m Vk/ω+Ωv x 6 v ± = v x ± iv y, E ± =E x ± ie y e ikz ωt v ± = iqe± ω kv mω iω kv ±Ωt e ω kv ± Ω 63 v = dv v c ± = dvfv kv/ω eiω kv ±Ω ω kv ± Ω v x v y = v ± = iq m c± E ± e ikz ωt = iq c + E + c E 4m ic + E + ic E v + +v v + v i e ikz ωt q Rev x ReE x e ikz ωt + Rev y ReE y e ikz ωt + = q Imc + E + Imc E 64 4m Imc ± Imc ± = ± πω ω k f kv/ω sin ω kv ± Ω dvfv ω kv ± Ω ω ± Ω k 65 E +, E θ =0 L R v ω±ω k Ω R E + =0,E 0 + q πω ω Ω 4m ω k f E k ω/k Ω e > 0 Ω i < 0 L E + =0,E 0 q πω ω +Ω 4m ω k f E + k R v ± =±iω ikv v ± + qω Vk E ± 6 mω 6