7-12.dvi

Similar documents
F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

12 2 E ds = 1 ρdv ε 1 µ D D S S D B d S = 36 E d B l = S d S B d l = S ε E + J d S 4 4 div E = 1 ε ρ div B = rot E = B 1 rot µ E B = ε + J

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

応力とひずみ.ppt

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

II 2 II

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

Gmech08.dvi

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0


2011de.dvi

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

pdf

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

Untitled

untitled


1

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

DVIOUT

sec13.dvi

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

40 6 y mx x, y 0, 0 x 0. x,y 0,0 y x + y x 0 mx x + mx m + m m 7 sin y x, x x sin y x x. x sin y x,y 0,0 x 0. 8 x r cos θ y r sin θ x, y 0, 0, r 0. x,

v er.1/ c /(21)

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

. p.1/14

( ) ( )

Note.tex 2008/09/19( )

B line of mgnetic induction AB MN ds df (7.1) (7.3) (8.1) df = µ 0 ds, df = ds B = B ds 2π A B P P O s s Q PQ R QP AB θ 0 <θ<π


M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v


微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

dvipsj.8449.dvi

all.dvi

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

K E N Z OU


i

Gmech08.dvi

II 2 ( )

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

A

Fubini

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

46 4 E E E E E 0 0 E E = E E E = ) E =0 2) φ = 3) ρ =0 1) 0 2) E φ E = grad φ E =0 P P φ = E ds 0

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

(MRI) 10. (MRI) (MRI) : (NMR) ( 1 H) MRI ρ H (x,y,z) NMR (Nuclear Magnetic Resonance) spectrometry: NMR NMR s( B ) m m = µ 0 IA = γ J (1) γ: :Planck c

(1) (2) (3) (4) 1

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

入試の軌跡


,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

Chap11.dvi


f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

[1] 1.1 x(t) t x(t + n ) = x(t) (n = 1,, 3, ) { x(t) : : 1 [ /, /] 1 x(t) = a + a 1 cos πt + a cos 4πt + + a n cos nπt + + b 1 sin πt + b sin 4πt = a

CG38.PDF

Fr

[] x < T f(x), x < T f(x), < x < f(x) f(x) f(x) f(x + nt ) = f(x) x < T, n =, 1,, 1, (1.3) f(x) T x 2 f(x) T 2T x 3 f(x), f() = f(t ), f(x), f() f(t )

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1.2 R A 1.3 X : (1)X (2)X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,


S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b.

液晶の物理1:連続体理論(弾性,粘性)

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) (

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

phs.dvi

Transcription:

26 12 1 23. xyz ϕ f(x, y, z) Φ F (x, y, z) = F (x, y, z) G(x, y, z) rot(grad ϕ) rot(grad f) H(x, y, z) div(rot Φ) div(rot F ) (x, y, z) rot(grad f) = rot f x f y f z = (f z ) y (f y ) z (f x ) z (f z ) x (f y ) x (f x ) y = f zy f yz f xz f zx f yx f xy f xy = f yx 1 f zy f yz f xz f zx f yx f xy = ϕ rot(grad ϕ) div(rot F ) = div H y G z F z H x G x F y =(H y G z ) x +(F z H x ) y +(G x F y ) z = H yx G zx + F zy H xy + G xz F yz = 2 Φ div(rot Φ) 1 f xy f 2 f xy = f yx f 2 f xy = f yx 2

12 2 grad rot rot grad rot div div rot grad ϕ = Φ ϕ Φ rot(grad ϕ) = Φ = rot Φ =? rot Φ = Φ?. xyz grad f = f, rot F = F, div F = F, = x y z ( f) =, ( F ) = (1) f F F f a (ra) =, a (a b) = a (ra) =r(a a) a b a a (b c) =(a b) c a (a b) =(a a) b

12 3 (1) a a a a a = a a = D = x x x y x z D x xf x (xf z ) y (xf y ) z xf zy xf yz D (Df) =D xf y = (xf x ) z (xf z ) x = xf xz f z xf zx xf z (xf y ) x (xf x ) y f y + xf yx xf xy = f z f y (xf y ) x (xf y ) x = ( x f ) = x f x y x y + x f x y = f y + x 2 f x y = f y + xf yx x y D D x x y 3.6 3.6.1 Φ C C

12 4 C rot Φ d = Φ dl C Φ rot Φd = rot Φ rot Φ Φ Φ C Φ C C Φ

12 5 rot 3.6.2 C C C C I =[, 1] [, 1] = 1 2 1 2 1 C 1 + C C 2 2 C 2 C C

12 6 C C 1 + C 2 1 2 rot Φ d = rot Φ d + rot Φ d 1 2 Φ dl = Φ dl + Φ dl C 1 +C 2 C 1 C 2 = Φ dl + Φ dl + Φ dl Φ dl C 1 C C 2 C = Φ dl + Φ dl C 1 +C C 2 C 1 2 rot Φ d = Φ dl, rot Φ d = Φ dl 1 C 1 +C 2 C 2 C 2 rot Φd = Φ dl C 1 +C 2 I 3.6.3 xyz x ξ(s, t) y = T (s, t) = η(s, t), s 1, t 1 z ζ(s, t) C 4 C 1 = {T (s, ) s 1}, C 2 = {T (1,t) t 1}, C 3 = {T (s, 1) s 1}, C 4 = {T (,t) t 1}

12 7 C = C 1 + C 2 C 3 C 4 C 3 C 3 Φ F (x, y, z) = F (x, y, z) G(x, y, z) H(x, y, z) I st [, 1] [, 1] rot Φ d = ( F)(T (s, t)) (T s (s, t) T t (s, t) ) dsdt I = I = I H y (T (s, t)) G z (T (s, t)) F z (T (s, t)) H x (T (s, t)) G x (T (s, t)) F y (T (s, t)) η s (s, t)ζ t (s, t) ζ s (s, t)η t (s, t) ζ s (s, t)ξ t (s, t) ξ s (s, t)ζ t (s, t) ξ s (s, t)η t (s, t) η s (s, t)ξ t (s, t) { H y (T (s, t))η s (s, t)ζ t (s, t) H y (T (s, t))ζ s (s, t)η t (s, t) dsdt G z (T (s, t))η s (s, t)ζ t (s, t)+g z (T (s, t))ζ s (s, t)η t (s, t) + F z (T (s, t))ζ s (s, t)ξ t (s, t) F z (T (s, t))ξ s (s, t)ζ t (s, t) H x (T (s, t))ζ s (s, t)ξ t (s, t)+h x (T (s, t))ξ s (s, t)ζ t (s, t) + G x (T (s, t))ξ s (s, t)η t (s, t) G x (T (s, t))η s (s, t)ξ t (s, t) } F y (T (s, t))ξ s (s, t)η t (s, t)+f y (T (s, t))η s (s, t)ξ t (s, t) dsdt F x (T (s, t))ξ s (s, t)ξ t (s, t) F x (T (s, t))ξ t (s, t)ξ s (s, t)

12 8 { Fx (T (s, t))ξ s + F y (T (s, t))η s + F z (T (s, t))ζ s } ξt + { G x (T (s, t))ξ s + G y (T (s, t))η s + G z (T (s, t))ζ s } ηt + { H x (T (s, t))ξ s + H y (T (s, t))η s + H z (T (s, t))ζ s } ζt { F x (T (s, t))ξ t + F y (T (s, t))η t + F z (T (s, t))ζ t } ξs (2) { G x (T (s, t))ξ t + G y (T (s, t))η t + G z (T (s, t))ζ t } ηs { H x (T (s, t))ξ t + H y (T (s, t))η t + H z (T (s, t))ζ t } ζs F x (T (s, t))ξ s + F y (T (s, t))η s + F z (T (s, t))ζ s =(F T ) s (2) (F T ) s ξ t +(G T ) s η t +(H T ) s ζ t (F T ) t ξ s (G T ) t η s (H T ) t ζ s (F T ) s ξ t (F T ) t ξ s = (G T ) s η t (G T ) t η s (3) (H T ) s ζ t (H T ) t ζ s s, t 2 f(s, t) g(s, t) F (T (s, t)) ξ s (s, t) f(s, t) = G(T (s, t)) η s (s, t) H(T (s, t)) ζ s (s, t) g(s, t) = F (T (s, t)) G(T (s, t)) H(T (s, t)) ξ t (s, t) η t (s, t) ζ t (s, t), ξ st = ξ ts (F T ) t ξ s F T f t g s = (G T ) t η s + G T (H T ) t ζ s H T (F T ) s ξ s F T (G T ) s η s + G T (H T ) s ζ s H T (F T ) t ξ s (F T ) s = (G T ) t η s (G T ) s (H T ) t ζ s (H T ) s ξ st η st ζ st ξ s η s ζ s ξ ts η ts ζ ts

12 9 (3) rot Φ d = (f t (s, t) g s (s, t))dsdt (4) I (4) f t (s, t) f(s, t) s t 1 f t (s, t)dsdt = I g t (s, t)dsdt = I 1 1 1 ( 1 f t (s, t)dt = f(s, 1) f(s, ) ( 1 ) f t (s, t)dt ds = ) g s (s, t)ds dt = 1 (4) 1 1 rot Φ d = g(,t)dt + f(s, 1)ds 1 f(s, 1)ds 1 g(1,t)dt g(1,t)dt 1 1 1 f(s, )ds g(,t)dt f(s, )ds f(s, t) g(s, t) 1 1 F (T (,t)) ξ t (,t) g(,t)dt = G(T (,t)) η t (,t) dt H(T (,t)) ζ t (,t) 1 = F (T (,t)) T t (,t)dt = Φ dl C 1 1 1 1 f(s, 1)ds = Φ dl C 2 g(1,t)dt = Φ dl C 3 f(s, )ds = Φ dl C 4 rot Φ d = Φ dl + Φ dl Φ dl Φ dl C 1 C 2 C 3 C 4 = Φ dl = Φ dl C 1 +C 2 C 3 C 4 C

12 1. xyz (1). Φ (y + 1)(z 2 1) (x + 1)(z 2 +1) (x + 1)(y +1) rot Φ (2). z = {(x, y, z) x 2 + y 2 + z 2 =1,z } (1) Φ rot Φ d 3.6.4 Φ grad ϕ = Φ ϕ rot Φ = rot(grad ϕ) = rot Φ = Φ Φ rot Φ = 9 3.2.3 Φ C Φ dl = C C Φ dl = rot Φ d C

12 11 rot Φ = Φ dl = Φ C C C Φ Φ 1 x 2 + y 2 y x rot Φ = C xy 2π sin θ sin θ 2π Φ dl = cos θ cos θ dθ = 1dθ =2π C Φ Φ z C z Φ 1. X X C C X 3 Φ Φ rot Φ = 3 3

12 12 4 1 4.1 ρ E B J 4 4 xyz t 4 ε µ D D 4 D H D = ε E B = µ H E H

12 13 E d = 1 ρdv ε 1 µ D D D B d = B E dl = t d B dl = ( ) E ε t + J d 4 4 div E = 1 ε ρ div B = rot E = B t 1 E rot B = ε µ t + J 4.2 4.2.1

12 14 E d = 1 ρdv ε D D E E D div EdV = E d D E D div EdV = 1 ρdv ε D E D D D div E(P,t ) > 1 ε ρ(p,t ) P t E ρ 5 P D P div E(P, t ) > 1 ε ρ(p, t ) t div EdV > 1 ρdv D ε D 5 ρ

12 15 div E = 1 ε ρ D D B d = div B = 4.2.2 B E dl = t d E rot E d = E dl E B rot E d = t d

12 16 E t B t = F rot E(P,t ) F (P,t ) P t xyz rot E = R 1 R 2 R 3, F = R 3 (P,t ) >F 3 (P,t ) rot E F 6 P D P R 3 (P, t ) >F 3 (P, t ) D P xy xy z t rot E d > F d rot E = F = B t 6 F 1 F 2 F 3

12 17 ( ) 1 E B dl = ε t + J d µ 1 E rot B = ε µ t + J 4.3 ρ J div E = (5) div B = (6) rot E = B t (7) E rot B = ε µ t (8) (8) t rot B t = ε 2 E µ t 2 (7) rot(rot E) =ε µ 2 E t 2 (9)

12 18 E rot(rot E) rot(rot E) = rot = = x E 3 E 2 y z E 1 E 3 z x E 2 E 1 x y 2 E 2 2 E 1 2 E 1 + 2 E 3 y x y 2 z 2 z x 2 E 3 2 E 2 2 E 2 + 2 E 1 z y z 2 x 2 x y 2 E 1 2 E 3 2 E 3 + 2 E 2 x z x 2 y 2 y z ( ) ( E 1 y z ( E 1 + E 2 + E 3 x y z ( E 1 x + E 2 + E 2 + E 3 x y z = grad(div E) E + E 3 y z ) ( ) ( 2 + 2 + 2 x 2 y 2 2 + 2 x 2 y 2 z 2 ) E 1 + 2 z 2 ) E 2 2 x 2 + 2 y 2 + 2 z 2 ) E 3 2 = 2 x + 2 2 y + 2 z 2 1 (5) rot(rot E) = E (9) E = ε µ 2 E t 2 (1) (7) t (8) (6) B B = ε µ 2 B t 2 (11) 2 / t 2 E B 2 f f(x, y, z, t)=ε µ (x, y, z, t) t2 f(x, y, z, t) 1/ ε µ

12 19 1 ε µ = c 3 x 3 F (x,t) 1 f a k v F (x,t)=f(k x vt)a k F k v E B E(x,t)=f(k x vt)e, B(x,t)=g(l x ut)b k, l, e, b,v,u f g (1) (11) f (k x vt)e = ε µ v 2 f (k x vt)e g (k x ut)b = ε µ u 2 f (l x ut)b k l v = u = 1 ε µ = c 4 f (k x ct)k e = (12) g (l x ct)l b = (13) f (k x ct)k e = cg (l x ct)b (14) cg (l x ct)l b = f (k x ct)e (15)

12 2 f g f g (x,t) (12) (13) k e = l b = k e l b E B (14) (15) b k e e l b e b k, l e, b e b k l l = k l = k (14) l f (k x ct)(k e) l = cg (l x ct)b l (15) 1 f (k x ct)(k e) l = f (k x ct)e f a = k e (16) (k e) l = e (16) k, e, a

12 21 a, l, e l, e, a l k l = k E B E B