(FBG).7 (OADM)

Similar documents
untitled

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

i


m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

Part () () Γ Part ,

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =



光ネットワーク用デバイス

LLG-R8.Nisus.pdf

Gmech08.dvi

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

Onsager SOLUTION OF THE EIGENWERT PROBLEM (O-29) V = e H A e H B λ max Z 2 Onsager (O-77) (O-82) (O-83) Kramers-Wannier 1 1 Ons

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

1 1 LD [1] 2 3dB Er 2 [2] 1 P 1330cm 1 P 2 O 5 500cm 1 SiO 2 Ge,Si P Er 1480nm Yb 1289nm nm nm 3 1: P [3] 1330cm 1 510cm 1 [5

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y


2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

Microsoft Word - 学士論文(表紙).doc

Note.tex 2008/09/19( )

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

meiji_resume_1.PDF

吸収分光.PDF


さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

pdf

30

液晶の物理1:連続体理論(弾性,粘性)

(interferometer) 1 N *3 2 ω λ k = ω/c = 2π/λ ( ) r E = A 1 e iφ1(r) e iωt + A 2 e iφ2(r) e iωt (1) φ 1 (r), φ 2 (r) r λ 2π 2 I = E 2 = A A 2 2 +

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1


³ÎΨÏÀ

基礎数学I

スライド 1

Undulator.dvi

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

I


The Physics of Atmospheres CAPTER :

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =


c 2009 i

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

untitled

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

untitled

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

数学の基礎訓練I

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

飽和分光

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

光産業の将来ビジョン―ボーダレス化の中での進化と展開―(1BIZYON)

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google


( )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

sikepuri.dvi

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

2011de.dvi

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

µµ InGaAs/GaAs PIN InGaAs PbS/PbSe InSb InAs/InSb MCT (HgCdTe)

( ) ( )

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

Chap9.dvi

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

SO(2)

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

chap1.dvi

Microsoft PowerPoint - 山形大高野send ppt [互換モード]

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

201711grade1ouyou.pdf


1

OHO.dvi

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

2 Part A B C A > B > C (0) 90, 69, 61, 68, 6, 77, 75, 20, 41, 34 (1) 8, 56, 16, 50, 43, 66, 44, 77, 55, 48 (2) 92, 74, 56, 81, 84, 86, 1, 27,

AC Modeling and Control of AC Motors Seiji Kondo, Member 1. q q (1) PM (a) N d q Dept. of E&E, Nagaoka Unive



Transcription:

... 1...... 3... 5... 9... 10... 10... 10 1... 1 1.1... 1 1. 13 13.1 13. 13.3 16.4 17.5 19.6 (FBG).7 (OADM) 5.8 7 3 7 3.1 7 3. 7 3.3 8 3.3.1 8 3.3. 8 3.4 30 3.4.1 30 3.4. 30 3.5 36

3.5.1 36 3.5. 36 3.6 37 4 FBG 38 4.1 38 4. 38 4..1 38 4.. 38 4.3 39 4.4 4 4.4.1 B R 4 4.4. 4 4.5 4 4.5.1 B R 4 4.5. 43 4.6 50 4.6.1 B R 50 4.6. 51 4.7 51 5 OADM 51 5.1 51 5. 5 5.3 53 5.3.1AddDrop 53 5.3. 56 5.4 56 5.4.1AddDrop 56 5.4. 56 5.5 67 5.5.1AddDrop 67 5.5. 68 5.6 68 6 69 70

PMD 1 71 1.1 71 1. 7 73.1 73. 73.3 75.4 75.5 77.6 78.7 79 3 PMD 79 3.1 79 3. PMD 80 3.3 80 3.4 8 3.5 84 3.6 84 4 85 4.1 85 4. 85 4.3 87 4.4 88 5 PMD 88 5.1 88 5. 5.3 PMD 88 PMD 89 5.4 90 5.5 91 10 103 4.1 103 4. 104

1

3

4

5

6

7

8

9

10

11

1 1.1 WDMWavelength Division Multiplexing [1] WDM [] OADM(Optical Add Drop Multiplexer) OADM AddDrop [3] OADM AWG(Arrayed Waveguide Grating) OADM (FBG) OADM FBG OADM [4] (FBG) [5] FBG FBG [] 1

FBG OADM 1. 3 4 (FBG) 5 OADM 6 3 4 5 7 3 4 5.1 (FBG) OADM. [6,7] Z Z=Zo 13

E E x y = A cos( ωt φx).1 A x cos( ωt φy) = y. x y Z=Zo Z=Zo y ExE x y E A x E + A y A x A y cos φ = sin φ.3 x y AxAy tan =-Ay/Ax Ax=Ay=A Ex +Ey =A A Ax Ay=A 0 14

15

.3 [4,6,9] X X Y Y X X Y X Y X x Y y PANDA(Polarization maintaining AND Absorption reducing Fiber).1.PANDA BO3 16

.4. WDM PBS(Polarization Beam Splitter) WDM PBS X Y PANDA.3 PANDA.3PANDA 17

18.4

.5 [6,11,1] Z Z X Y X E E x y cosθ 1/ =, sin θ j / 1/, j / (.4) E x + E y = 1 (.5).5 0.5 X0 Y0 0 X0 (Circular rotation) (Retardation) R( ) T( ) R( ) 19

0 + + = = = ) sin( ) cos( sin cos sin sin cos sin ) sin( ) cos( cos sin sin cos 0 0 cos sin sin cos ) (,0) ( ) ( ), ( j j j j j j e e j j e e e e T R T R φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ (.6) Ω Ω Ω Ω Ω = cos sin sin cos ) ( T (.7) J = Ω = * * ), ( ) ( A B B A R T J φ (.8) ) ) cos( / sin( )cos / cos( Ω + Ω + = φ j A (.9) ) )sin( / sin( )sin / cos( Ω + Ω + = φ j B (.10) = 0 0 y x y x E E J E E (.11).5 X0 0

E x e jωt 0 = cosθ 0 (.1) E y e jωt 0 = sinθ0 (.13) t (.11) ExEy t a a E a x 1 E + a y ExEy + cosδ 0 = sinδ 0 a a 1 (.14) { cos ( / ) cos ( θ + Ω) + sin ( / ) cos (φ + Ω θ } 1/ 1 = 0 0 ) { cos ( / ) sin ( θ + Ω) + sin ( / ) sin (φ + Ω θ } 1/ = 0 0 ) cosδ = 0 cos ( / )sin (.15) (.16) { ( θ + Ω) } + sin ( / )sin{ (φ + Ω θ )} 0 a a 1 (.17) (.14) XY (b/a) X ± b a = sin { Ψ (φ + Ω θ )} tan { Ψ ( θ + Ω) } cos 0 0 (.18) 0 tan Ψ = sin cos { ( θ0 + Ω) } + tan ( / )sin{ (φ + Ω θ0) } { ( θ + Ω) } + tan ( / ) cos{ (φ + Ω θ )} 0 0 (.19) 1 Ψ = φ + Ω + ( 1/ ) tan 0 Ps [ tan{ ( θ φ) } ] cos (.0) 1

Ps = I I max max I + I min min 1 ( b / a) = 1+ ( b / a) = [ 1 sin sin { ( θ φ) }] 0 (.1) (.0) (.1).5.6 (FBG) [,3,5] (FBG) FBG (GeO) FBG

FBG 4 FBG B λ B N = eff Λ (.) Neff.6FBG FBG A B da dz db dz jωexp[ j βz]b = (.3) jω exp[ j βz]a = (.4) z β = β ( π / Λ) (.5) L (.5) A(0)=1B(L)=0 A(z)B(z) 0 { β sinh[ S( z L) ] + js cosh[ S( z L) ]} A( z) exp( j βz) β sinh( SL) js cosh( SL) = (.6) 3

[ S( z L) ] Ωsinh B( z) exp( j βz) β sinh( SL) js cosh( SL) = (.7) S = Ω ) ( β 1/ (.8) 0 { β sinh[ Q( z L) ] + jq cosh[ Q( z L) ]} A( z) exp( j βz) β sinh( QL) jq cosh( QL) = (.9) [ S( z L) ] Ωsinh B( z) exp( j βz) β sinh( QL) jq cosh( QL) = (.30) Q = ( β Ω) 1/ = js (.31) R R = B(0) A(0) (.3) R(L, ) (.6)(.31) Ω sinh ( SL) β sinh ( SL) + S cosh R( L, λ) = Ω sinh ( SL) β Ω cos ( SL) ( SL) ( Ω ( Ω β β < 0) 0) (.33) (.36) B B RB { λ πn L) } π ( π nl / λ ) λb B /( eff + B = (.34) 4

R B tanh ( πl nη / λ ) = B (.35) n (.37) FBG L n L cm 100% FBG.7OADM [,13] OADM( ) WDM OADM AWG AWG PLC Planer Lightwave Circuit L AWG AWG.7AWG 5

AWG OADM FBG FBG.8 FBG OADM FBG B IN Drop Add B FBG OUT OADM PANDA OADM.9 5050 FBG IN FBG FBG B Drop Add B FBG OUT.8 FBG OADM 6

.9 OADM.8 FBG FBG OADM 3 3.1 FBG OADM OADM 3. [8,10] 3.3 3.1 100W Ge- 7

3.3 [8,10] 3.3.1 CR PtPc CR CR = Pc 100 Pt + Pc [%] (3.1) 3dB 10dB = 10log( Pi / Po) [db] (3.) Pi Po db 5050 10dB 9010 3.3. Ps Ps=0 Ps = 1 0 < Ps < 1 3. Ps = 45 0 45 90 8

X Ps = { I (0 ) I (90 )} + { I (45 ) I ( 45) } I (0 ) + I (90 ) (3.3) 3.1 Ps X Y (3.3) Ps 1 1 Ψ = tan { I (45 ) I ( 45 )} { I (0 ) I (90 )} (3.4) 3. X slow X [Pxx] 9

X fast Y [Pxy] Y slow X [Pyx] Y fast Y [Pyy] Cxy Cyx P xy = 10 log [db] (3.5) Pxx P yx = 10 log [db] (3.6) Pyy 3.4 3.4.1 (1) 3.4 () 3.5 3.4. (1) (3.6) (3.7) () (3.8) (3.9) (3.10) 3[dB] 1310[nm] 10[dB] 1550[nm] 30

31 3.3

3.1 3

33

34

35

3.5 3.5.1 CRxCRy X Y 3.4 CRxCRy 1310[nm] 50[%] 3[dB] CRxCRy 1550[nm] 10[%] 10[dB] 3.5. 3.6 Ps Ps = 1 Ps = 1 36

3.7 0 45 3.7 (3.4) tan 1/ -45< < 45 3.6 3.8 CxytCxyc t c 1550[nm] CxyCyx 0[dB] Cxy Cyx 15[dB] 0[dB]100 1 3.9 Ps PANDA (X ) 0 180 (Y )90 Ps = 1 45 135 Ps = 0 X Y X 0 180 Y 90 3.10 45 135 3.6 =1310nm 5050 =1550nm 1090 37

4 (FBG) 4.1 FBG FBG FBG 4. [5] 4..1 FBG FBG 4.1 48nm KrF 1 MASKFBG FBG [5] ΛMASK = Λ FBG (4.1) 4.1 4. 4.. FBG FBG 38

Λ = λuv sinθ (4.) uv (44nm) 4.3 FBG 4.3 4.1 4. 44nm (SMF) B=1550nmFBG (.) Neff=1.45 B=1550nm (4.) uv=44nm =13.19 6 39

4.3 FBG 40

4.1 4. 41

4.4 4.4.1 B R 4.3 FBG (FBG1FBG) (S-FBG1S-FBG7) SMF FBG 4.5 ASE FBG 4.5 B 1/ R R = 100 [%] (4.3) ASE FBG 4.4 4.5FBG 6 4.4. 4.5 FBG S-FBG1 B R 4.5 4.5.1 B R FBG B R 4.1 4.6 4.14 FBG 4

4.5. (S-FBG1) 4. S-FBG1 B R 4.15 4.16 4.1 B R 4.1 FBG FBG1 1551.456 9.15 1.087 FBG 1539.0 76.34 0.67 S-FBG1 155.810 80.58 0.589 S-FBG 1553.1 69.96 0.545 S-FBG3 1553.35 70.81 0.574 S-FBG4 1553.337 71.4 0.564 S-FBG5 1549.175 68.33 0.581 S-FBG6 1549.76 76.44 0.644 S-FBG7 1549.39 7.44 0.686 43

B = 1551.456[nm] 4.6FBG1 4.7FBG B = 1539.0[nm] 44

B = 155.810[nm] 4.8S-FBG1 4.9S-FBG B = 1553.1[nm] 45

B = 1553.35[nm] 4.10S-FBG3 B = 1553.337[nm] 4.11S-FBG4 46

B = 1549.175[nm] 4.1S-FBG5 4.13S-FBG6 B = 1549.76[nm] 47

B = 1549.39[nm] 4.14S-FBG7 4.S-FBG1 B R 1.33 155.30 7.948 0.580 10.33 155.434 85.317 0.580 0.04 155.549 80.581 0.581 31.11 155.879 87.73 0.589 40.04 155.969 87.109 0.581 50.11 1553.090 81.47 0.581 60.30 1553.06 8.59 0,581 48

4.15 B 4.16 R 49

4.17 4.6 4.6.1 B R FBG1 4.1 B=1551.456nm 1550nm R=9.15% =1.087nm 4.6 FBG FBG1 =13.19 4.7 FBG 4.6 4.1 R=76.34% =0.67nm FBG B=1539.0 1550nm B=1539.0nm (.) (4.) =13.9 0.1 10nm S-FBG1S-FBG7 S-FBG1 80% 50

70% 0.50.7nm S-FBGS-FBG4 B 1549nmS-FBG5S-FBG7 1553nm S-FBGS-FBG4 S-FBG5 S-FBG7 FBG 4.6. (S-FBG1) 4. 4.15 B B FBG FBG 4. 4.16 4.17 R 4.7 FBG1 FBG S-FBG1S-FBG7 S-FBGS-FBG4S-FBG5S-FBG7 S-FBG1 B R 5 OADM 5.1 FBG PANDA OADM OADM AddDrop AddDrop OADM 51

5. (SMF) (PMF) 1550nm SMF FBG PMF FBG SMF PMF 1FBG 5.1 5. OADM 5.11FBG 5. PANDA FBG 5.3 PANDA 5.3PANDA OADM FBG (1) SMF-1 FBG 5050 FBGS-FBG5 4 FBG () SMF- 5050 FBGS-FBG3 S-FBG4 4 FBG 5

(3) PMF-1 FBG (PANDA ) 5050 FBGPANDA FBG B=1550.04nm R=99.9% =0.47 (4) PMF- (PANDA ) 5050 FBGPANDA FBG B=1550.04nm R=99.9% =0.47 PANDA FBG B=1550.08nm R=99.51% =0.7 5.3 5.3.1AddDrop 5.4 FBG IN Add OADM AddDrop 5.1 OADM 5. OADM (1) ASE () Drop IN ASE Drop Drop (3) OUT (4) Add Add 1550nm OUT Add (5) RD Drop Drop RD 53

R D = Drop 100 [%] (5.1) 5.4OADM AddDrop.9 OADM 54

5.1 OADM 5. OADM 55

5.3. PMF 1FBG OADM IN Analyzer1Drop (3.3) (3.4) 5.4 5.4.1AddDrop 5.1 OADM RD 5. OADM Drop D TAdd A 5.5 5.7 SMF-1 FBG 5.8 5.10 SMF- 5.11 5.13 PMF-1 FBG 5.14 5.16 PMF- 5.4. 5.17 5.19 PMF-1 FBG 5.0 5. PMF- 5.3 PMF-1 FBG PMF- 5.1 OADM RD [mw] mw R D [%] SMF-1FBG 3.43E-07 8.5E-08 4.04 SMF- 4.66E-07 1.70E-07 36.59 PMF-1FBG 1.06E-05 1.89E-06 17.93 PMF- 4.93E-06 1.3E-06 6.80 56

5. OADM Drop D TAdd A SMF-1FBG Drop Add [nm] nm [nm 1549.416 1549.445 1549.337 1553.609 SMF- 1553.544 1553.530 PMF-1FBG 1550.006 1549.773 1550.004 1549.996 PMF- 1549.996 1549.949 57

D = 1549.416[nm] 5.5SMF-1 FBG Drop T = 1549.445[nm] 5.6SMF-1 FBG 58

A = 1549.337[nm] 5.7SMF-1 FBG Add+ D = 1553.609[nm] 5.8SMF- Drop 59

T = 1553.544[nm] 5.9SMF- A = 1553.530[nm] 5.10SMF- Add+ 60

D = 1550.004[nm] 5.11PMF-1FBG Drop T = 1549.773[nm] 5.1PMF-1 FBG 61

A = 1550.004[nm] 5.13PMF-1 FBG Add+ D = 1549.996[nm] 5.14PMF- Drop 6

T = 1549.996[nm] 5.15PMF- A = 1549.949[nm] 5.16PMF- Add+ 63

5.3PMF-1 FBG PMF- =1548nm PMF-1FBG Cxy [db] 0.67 Cyx [db].7 19.18 PMF- 16.0 = 1548[nm] 5.17PMF-1FBG PxxPxy 64

= 1548[nm] 5.18PMF-1FBG PyyPyx = 1548[nm] 5.19PMF-1FBG 65

= 1548[nm] 5.0PMF- PxxPxy = 1548[nm] 5.1PMF- PyyPyx 66

= 1548[nm] 5.PMF- 5.5 5.5.1AddDrop 5.5 SMF-1 FBG Drop FBG 1553nm Drop 5.6 Add 5.7 Add+ Drop FBG Add SMF- PMF-1 FBG PMF- AddDrop OADM AddDrop 5.1 OADM RD SMF PMF 1 FBG 5.1 1 FBG IN 5050 50%FBG 5050 Drop 5% 5. 67

FBG 5050 FBG Drop 50% 1 FBG FBG FBG Drop =1550nm 75nm FBG 1 FBG 5.5. 5.17 PMF-1FBG Pxx Pyy =1548nm Pxx Pxy 5.18 =1548nm Pyy Pyx PxxPyy FBG Pxy Pyx CxyCyx 0dB PMF-1FBG PMF- PMF-1FBG CxyCyx 15dB PMF OADM PANDA FBG 1550nm =1548nm 1nm 5.6 OADM FBG AddDrop 68

1 FBG 1 FBG PANDA OADM OADM 3 5050 1090 4 FBG B=1550nm FBG FBG1 R FBG R FBG B FBG R FBG OADM PANDA 1 FBG OADM OADM FBG AddDrop 1 FBG 1 FBG 4 FBG FBG AddDrop 69

[1] WDM 00 [] 00 [3] OADM 111 003 [4] 00 [5] 1996 [6] 00 [7] 1998 [8]Y. Namihira, et al.,"incident polarization angle and temperature dependence of polarization and spectral response characteristics in optical fiber couplers," Applied Optics, Vol.30, No.9, pp.106-1069,1991 [9] IECE'77,Vol.60-C, No.7,pp.391-398,1977 [10] OFT00-103 [11] 1987 [1] 1998 [13] WDM 104 1999 70

PMD 1 1.1 3 TPC3 4 TPC4 5 TCN5CN 3 TPC3 4 TPC4 [1] 000 5 Er EDFA : ErDoped Fiber Amplifier CD : Chromatic Dispersion PDL : Polarization Dependent Loss NL : Nonlinear Effects PMD : Polarization Mode Dispersion DSF : Dispersion Shifted Fiber SMF : Single Mode optical Fiber PMF : Polarization Maintaining optical Fiber PMF PMD PMD 71

1. PMD PMD PMF 3 PMD FA : Fixed Analyzer Method PMD FA 4 PMF 1 0 30 60 FA 5 9 19 9 39 49 PMD PMD 6 7 7

PMD.1 PMD : Polarization Mode Dispersion PMD PMF : Polarization Maintaining optical Fiber. [] z x y E E x y = a = a z y cos( ωt βz + θ ) cos( ωt βt + θ ) θ = θ θ ( π < θ π ) x y y x (.1) (a : z : : t : : : ) ExEy ExEy.1 θ = 0 π π π a x = a y θ = -73-

φ : x π π φ χ : π b 0 χ y' tan χ = 4 b x' = 0 = /4.1-74-

.3 1 PMD SMF : Single Mode optical Fiber PMD. PMD DWDM : Dense Wavelength Division Multiplexing PMD.4. PMD 1.3 SMF x y.4 FA.4a.4b -75-

PMF PMF SMF.3 a b.4-76-

.5 PMF [3] PMF PMF.5 [4].5 a b cpanda dbow-tie e.5a.5b.5(b) HE11 x HE11 y.5c d e 1.5(c)(d)(e) x y X x y HE11 x HE11 y PMF PANDA PANDA : Polarization-maintaining AND Absorption-reducing optical Fiber.5c PANDA PANDA SMF PMF 10-4 SMF PMF.1-77-

(a) (b) (c) (d) (e).5.1pmf.6 PMD [1,5] x y FA : Fixed Analyzer Method JME : Jones Matrix Eigenanalysis Method SOP : State of Polarization Method. FA FA 3-78-

..7 PMD PMF FA PMD PMD PMD 3.1 PMD PMD FA : Fixed Analyzer Method PMD FA -79-

3.PMD PMD : Polarization Mode Dispersion PMD OS CPU OS(CPU) (emulate) OS PMD PMD PMD PMD PMD PMF PMD 3. 3.3 [1] 3.1 FA /41/4 /1/ 90 / -80-

τ = 1 f = 1 1 f π π = N 1 f n 3.1 f : 1 f : 1/ fn : N f f = f n f 1 = c = c λ λn = c λ λ 1 λn λ1 1 n 3. 0 90 1/ 1 τ = 1 1 1 λ λ N i i+ 1 = f n cn i= 1 λi+ 1λi 3.3 Nn1 N : n : i : c : FA 4 31 1 3-81-

3.1 FA 3.4 PMF x y x y PMF 3. n PMF n En [6] E n = Dn * Rn 1 * En 1 3.4) -8-

. Dn Rn-1 n n n1.3.4 D n exp = [ jω( τ / ) ] 0 n exp 0 [ jω( τ / ) ] n 3.5 : n : n R n 1 cosθ n = sinθ n 1 1 sinθ cosθ n 1 n 1 3.6 n-1 : n n1 θ θ n 1 n θ θ 1 0 E n E 0 E n = D n * R n-1 * E n-1 D n : R n-1 : 3. -83-

3.5 FA 3.4 3.6 1450[nm]1650[nm]00[nm] Eout Eout ExEy Iout [7] out = Ex cosθ E y sinθ 3.7 I + 45 E0 3.5 1 00 E exp = exp ( jωt) ( ) jωt 0 3.8 3.5 PMD FA PMD FA FA -84-

4.1 3 FA : Fixed Analyzer Method 0.30.7[m] PMF : Polarization Maintaining optical Fiber 0 30 60 0.3[m] 0.4[m] 3 PMF 0 30 60 PMD : Polarization Mode Dispersion 1.34[ps/m] PMF 4. 4.1 4.1 1 0 30 60 1 0.3[m] 0.7[m] 1[m] 3 030 1 0 3 30 1 0.3[m] 0.4[m]3 0.3[m] 1[m] 1 4.1 4.1 4.1-85-

4.1 4.1-86-

4.3 PMF 3 PMD FA : Fixed Analyzer Method 4.1 1 PMF PMF 0 1 30 PMF 1 PANDA PANDA : Polarization-maintaining AND Absorption-reducing PANDA 30 3 PMF PMD 4.1 PMF 3 1 1 4.1 4.1 PMD PMD 60 1 0 0 4.1 0.07[ps] 00.05[ps] [7] PMD PMD -87-

4.4 FA FA 1 0 30 60 PMD PMD PMD 5.1 FA : Fixed Analyzer Method 9 19 9 39 49 PMD : Polarization Mode Dispersion PMD PMD 0.61[ps/m] PMD [] PMF : Polarization Maintaining optical Fiber 0.[m] 10 5.PMD 5.15.9 9 19 9 39 49 PMD PMD PMD Maxwell Maxwell 5.1 5.10 5.14 y x exp σ = Ax A : 5.1 : -88-

5.1 PMF10 500 PMD Maxwell 1000 PMD 5. PMD 5. 5.1 000 PMD 5.3 5. PMD 5.1 5. 19 000 PMD 5.4 5.1 5.3 Maxwell 3000 PMD 5.5 5.4 Maxwell 9 39 49 3000 PMD 5.6 5.8 9 39 39 49 PMD Maxwell 49 5000 PMD 5.9 5.8 Maxwell 5.5 5.9 5.1 Maxwell 5.1 A 5.1 5.3 9 PMD 0.9[ps] 5.45.5 19 0.5[ps] 5.6 5.7 9 0.7[ps]39 0.8[ps] 5.85.9 49 1.4[ps] 5.10 5.14 PMD 5.3 PMD PMF PMD 1.1[ps]0.61[ps/m] PMD PMD [m] PMD 1.51[ps/m]PMF PMD FA 5. PMD 5. PMD PMD 1.0[ps] 1.1[ps] 5.16 5.17-89-

5.4 5.1 5.3 500 1000 000 PMD 5.4 5.5 19 5.4 5.5 5.1 5.3 Maxwell 5.5 5.1 Maxwell 5.1 5.3 Maxwell 5.6 5.9 Maxwell 9 39 39 49 Maxwell 5.8 5.9 Maxwell Maxwell PMD Maxwell 1 PMD PMD 5.10 5.14 PMD PMF PMF 5.10 5.14 PMD PMD PMD 5.15. PMD 1.51[ps/m]PMF0.[m]10 1.1[ps]PMD [m]pmd 5.16 5.17 FA 3 3.3 PMD PMD PMD PMD 4 4.3 0.[m]PMF -90-

10 PMF 4 PMF PANDA.4 PMD PMD 5.5 FA 19 9 39 49 PMD 1.1[ps] PMD PMD [m] 1 EDFA EDFA PMD PMD PMF PMD 3 PMD FA PMD PMD 4 PMF 0 30 60 5 9 19 9 39 49 PMD Maxwell 9 PMD 0.91[ps] PMD PMF 10-91-

N = 9 5.19 PMD 500 N = 9 5.9 PMD 1000-9-

N = 9 5.3 9 PMD 000 N = 19 5.4 19 PMD 000-93-

N = 19 5.5 19 PMD 3000 N = 9 5.6 9 PMD 3000-94-

N = 39 5.7 39 PMD 3000 N = 49 5.8 49 PMD 3000-95-

N = 49 5.9 49 PMD 5000-96-

5.10 9 (PMD = 0.91 [ps]) 5.11 19 (PMD = 1.73 [ps]) -97-

5.1 9 (PMD =.41 [ps]) 5.13 39 (PMD =.6 [ps]) -98-

5.14 49 (PMD = 3.11 [ps]) -99-

5.PMD 5.PMD -100-

5.14PMD 5.15PMD -101-

[1] : DWDM 001 URL : www.optronics.co.jp [] : pp8-881998 [3] : pp.0-00 [4] : p108199 [5] : 1994 KDD : [6] Y. Suetsugu Y. Terasawa S. Tanaka : Effect of Fiber Splicing on Polarization Mode DispersionOFMC 93 [7] K. Mochizuki : Degree of Polarization in Jointed Fibers : The Lyot Depolarizer Applied OpticsVol.3No.191984-10-

FTTH(Fiber To The Home) DWDM( ) 80 10 Gbit/s 800 Gbit/s DWDM OTNet DWDM OADM:Optical Add Drop Multiplexer AWG: Arrayed Wavegude Grating OADM H14 WDM B WDM WIC (FBG:Fiber Bragg Grating) H14 FBG FBG FBG 44nm 1550nm 1310nm FBG -103-

OADM OADM -104-