2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

Similar documents
第5章 偏微分方程式の境界値問題

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25

takei.dvi


医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

xia2.dvi

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

Gelfand 3 L 2 () ix M : ϕ(x) ixϕ(x) M : σ(m) = i (λ M) λ (L 2 () ) ( 0 ) L 2 () ϕ, ψ L 2 () ((λ M) ϕ, ψ) ((λ M) ϕ, ψ) = λ ix ϕ(x)ψ(x)dx. λ /(λ ix) ϕ,

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

newmain.dvi

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

Shunsuke Kobayashi 1 [6] [11] [7] u t = D 2 u 1 x 2 + f(u, v) + s L u(t, x)dx, L x (0.L), t > 0, Neumann 0 v t = D 2 v 2 + g(u, v), x (0, L), t > 0. x

Anderson ( ) Anderson / 14

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

ver.1 / c /(13)

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

all.dvi

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

i 18 2H 2 + O 2 2H 2 + ( ) 3K

1 : ( ) ( ) ( ) ( ) ( ) etc (SCA)

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

Part () () Γ Part ,

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2

I , : ~/math/functional-analysis/functional-analysis-1.tex

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

Gauss Fuchs rigid rigid rigid Nicholas Katz Rigid local systems [6] Fuchs Katz Crawley- Boevey[1] [7] Katz rigid rigid Katz middle convolu

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

KENZOU Karman) x

201711grade1ouyou.pdf

( ) Loewner SLE 13 February

³ÎΨÏÀ

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

gr09.dvi

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

Microsoft Word - 11問題表紙(選択).docx

第8章 位相最適化問題

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X


変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

DVIOUT-fujin

数学概論I

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

chap9.dvi

総研大恒星進化概要.dvi

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha

Note.tex 2008/09/19( )

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a


量子力学 問題

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

数学の基礎訓練I

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

QMI_09.dvi

QMI_10.dvi

I

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

,.,, L p L p loc,, 3., L p L p loc, Lp L p loc.,.,,.,.,.,, L p, 1 p, L p,. d 1, R d d. E R d. (E, M E, µ)., L p = L p (E). 1 p, E f(x), f(x) p d

ADM-Hamiltonian Cheeger-Gromov 3. Penrose

I II III IV V

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

プログラム

TOP URL 1


Z: Q: R: C: sin 6 5 ζ a, b

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

untitled

IV (2)


Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x

pdf

MS#sugaku(ver.2).dvi

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

meiji_resume_1.PDF

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

第1章 微分方程式と近似解法


Transcription:

1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x, t), h = h(x, t) D a, D h, µ, ν, c, c, ρ 0 ρ(x) ρ (x) Gierer Meinhardt ρ ρ (GM) Ω N Euclid R N Ω (d (a) i,j (x)) (d (h) i,j (x)) N N d a, d h ξ 2 N i,j=1 d (a) i,j ξ iξ j d a ξ 2, ξ 2 N i,j=1 d (h) i,j ξ iξ j d h ξ 2 ξ R N x Ω d (a) i,j (x) d(h) i,j (x) d (a) i,j (x) Ω Hölder (x), d(h) i,j

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i d (h) ν = (ν 1,..., ν N ) Ω Gierer Meinhardt (1.1) i,j=1 x j A t = ε2 Λ a A µ a (x)a + ρ a (A, H, x) Ap H q + σ a(x) (x Ω, t > 0), τ H t = DΛ hh µ h (x)h + ρ h (A, H, x) Ar H s + σ h(x) (x Ω, t > 0). (1.2) (1.3) B a A = 0 B h H = 0 (x Ω, t > 0), A(x, 0) = A 0 (x), H(x, 0) = H 0 (x) (x Ω), ε, D τ µ a (x), µ h (x) Ω Hölder (1.4) 0 < k (a) 1 µ a (x) k (h) 2, 0 < k(h) 1 µ h (x) k (h) 2 (x Ω); ρ a (A, H, x) ρ h (A, H, x) < A < +, < H < +, x Ω (A, H) x Ω Hölder c a, C a, c h, C h 0 < c a ρ a (A, H, x) C a, ρ a (A, H, x) A + ρ a (1.5) (A, H, x) H C a 0 < c h ρ h (A, H, x) C h, ρ h (A, H, x) A + ρ h (1.6) (A, H, x) H C h A 0, H 0, x Ω σ a ρ h (1.7) σ a, σ h C γ (Ω) σ a (x) 0, σ h (x) 0 (x Ω)

(A) 3 (1.8) A 0, H 0 C 2+γ (Ω), B a A 0 Ω = B h H 0 Ω = 0 A 0 (x) > 0, H 0 (x) > 0 (x Ω) 0 < γ < 1 p > 0, q > 0, r > 0, s 0 (1.9) 0 < p 1 r < q s + 1 µ a, µ h, ρ a, ρ h Koch-Meinhardt [3]

4 (March 13, 2010) 1.2. (1.1) (1.3) Λ a Λ h Laplace = N j=1 2 / x 2 j µ a, µ h [14], [6], [20], [4], [2] min σ a (x) > 0, σ h (x) 0 (p 1)/r < 2/(N + 2) [6] t > 0 t + {(A(x, t), H(x, t)) R 2 x Ω} ρ a (A, H, x) ρ h (A, H, x) 1, ρ h (x) 0 Li, Chen, Qin[4] p 1 < r min σ a (x) > 0 t > 0 Jiang[2] [15] min σ a (x) = 0 (1.10) p 1 < r A C [6], [4], [2], [15] (1.1) (1.3) A. (1.9) (1.10) (1.7) max σ a (x) > 0 (1.1) (1.3) t > 0 (A 0 (x), H 0 (x)) r a, r h, R a, R h r a lim inf min t + r h lim inf min t + A(x, t) lim sup t + max A(x, t) R a, H(x, t) lim sup max R h. t +

(A) 5 B. (1.9) (1.10) σ a (x) 0 max σ h (x) > 0 (1.1) (1.3) t > 0 (A 0 (x), H 0 (x)) r h, R a, R h e k(a) 2 t min r h lim inf min t + A 0 (x) A(x, t) (x Ω, t > 0), lim sup t + H(x, t) lim sup t + max H(x, t) R h max A(x, t) R a C. (1.9) (1.10) σ a (x) 0 σ h (x) 0 (1.1) (1.3) t > 0 p, q, r, s, τ, k (a) 1, k(h) 1, C a c h λ µ (A 0 (x), H 0 (x)) C e k(a) 2 t min A 0 (x) A(x, t) Ce λt, e k(h) 2 t min H 0 (x) H(x, t) Ce µt t > 0 x Ω A C p 1 < r d (a) ij = d (h) ij = δ ij, µ a µ h 1, ρ a ρ h 1, σ a, σ h (1.1) (1.2) [4] [7] p 1 > r (1.1) (1.3) p 1 r, q s + 1 s + 1 < (p 1)τ q (1.1) (1.3) σ a (x) σ h (x) 0 (1.1) (1.3) t > 0

6 (March 13, 2010) ([7]) A σ a

(A) 7 3. σ a (x) σ h (x) 0 : 0 http://morpho.sci.tohoku.ac.jp/ morpho/activities/results.html (1.1) (1.3) Σ a,ε (x), Σ h,d (x) : { ε 2 Λ a Σ a,ε µ a (x)σ a,ε + σ a (x) = 0 (x Ω), (1.11) B a Σ a,ε = 0 (x Ω), { ε 2 Λ h Σ h,d µ h (x)σ h,d + σ h (x) = 0 (x Ω), (1.12) B h Σ h,d = 0 (x Ω). : I: σ a (x) 0 σ h (x) 0; II: σ a (x) 0 σ h (x) 0; III: σ a (x) 0 σ h (x) 0; IV: σ a (x) 0 σ h (x) 0; Wu-Li [20] 1. (, I II) τ > qk (h) 2 /[(p 1)k(a) 1 ] (1.13) ( q min H 0 (x)) > C a (p 1) k (a) 1 (p 1) qk(h) 2 /τ σ a (x) 0 τ ( max A 0 (x) (1.1) (1.3) (A(x, t), H(x, t)) 0 < max A(x, t) Ce k(a) 1 t, max ) p 1 H(x, t) Σ h,d (x) Ce k(h) 1 t/τ C (A 0 (x), H 0 (x)) Σ h,d (x) (1.12)

8 (March 13, 2010) (A 0 (x), H 0 (x)) (0, Σ h,d (x)) 1 II 2. ( II) σ a (x) 0 max (x) > 0 S m = min Σ h,d (x), S M = max Σ h,d (x) (A 0 (x), H 0 (x)) (1.14) min {( (S m /S M ) k(h) 2 /k (h) 1 min 0 < max A(x, t) Ce k(a) q ( ) } q H 0 (x)), S m k (h) 1 /k(h) 2 1 t, max > C ( a k (a) 1 max A 0 (x) H(x, t) Σ h,d (x) Ce k(h) 1 t/τ ) p 1 C (A 0 (x), H 0 (x)) Σ h,d (x) (1.12) I τ 3. σ a (x) σ h (x) 0 (1.1) (1.3) (A(x, t), H(x, t)) (i) x Ω t > 0 H(x, t) q > ρ a (A(x, t), H(x, t), x)a(x, t) p 1 /µ a (x) (ii) t + (A(x, t), H(x, t)) (0, 0) τ qk (h) 1 /[k(a) 2 (p 1)] III, IV 4. (1.1) (1.3) (A(x), H(x)) x Ω ρ a (A(x), H(x), x) A(x)p 1 H(x) q < µ a (x) ρ h (A(x), H(x), x) A(x)r H(x) s+1 < µ h(x) :

(A) 9 5. ( ) max σ a (x) > 0 max σ h (x) > 0 0 < r < 1 min σ a (x) γ a (max σ a (x)) p γ a σ a (x) m 0 max σ a (x) m 0 (1.1) (1.3) (A (x), H (x)) ( p ( (1.15) A Σ a,ε L C max σ a (x)), H Σ h,d L C max σ a (x) C Σ a,ε, Σ h,d (1.11), (1.12) ) r III κ a, K a S m = min Σ h,d (x) 0 < κ a < K a k (a) 1 ξ + C a S q m ξ p + max σ a (x) = 0 max σ a (x) m 0 m 0 1.5, max σ a (x) 0 κ a = 1 ( (1.16) max σ a (x) + O (1.17) K a = k (a) 1 ( k (a) 1 Sq m C a ) 1/(p 1) k(a) 1 ) (max σ a (x)) p, p 1 max σ a (x) + o(max σ a (x)) 1.6. ( III) (A 0 (x), H 0 (x)) 1.5 max < K a, H 0 (x) max Σ h,d (x) (A 0, H 0 ) C γ A(x, t) A (x) + H(x, t) H (x) Ce γt x Ω t > 0 (A, H ) 1.5

10 (March 13, 2010) 1.7. i) 1.3 I t + (0, 0) (1.1) (1.3) τ k (h) 1 /k(h) 2 1 k (a) 2 /k(a) 1 1.1 τ ii) III 1.1 1.2 τ min H 0 (x) 1.1 iii) σ h (x) 0. 0 = Ω { A DΛ h H (µ r ) } h ρ h H s 1 H dx = Ω A (µ r ) h ρ h H s 1 H dx µ h + ρ h A r /H s 1 < 0 iv) σ a (x) 0 σ h (x) 0 v) 30 [21] ρ 0 = 0 (GM) t + (a(x, t), h(x, t)) (0, 0)

4. (A) 11 σ a (x) σ h (x) 0 σ a (1.1) (1.3) ( [17, 5, 8, 9, 10, 19, 12] ). σ a (x) x 1 Λ a = Λ h = d 2 /dx 2, µ a (x) µ h (x) 1 ρ a (A, H, x) ρ h (A, H, x) 1 B a = B h = d/dx D + (1.1) (1.3) (1.1) D D + 2 H/ x 2 0 H x. (1.1) Ω τ d l dt 0 H dx = l 0 H dx + l 0 Ar /H s dx + l 0 σ h(x) dx. H(x, t) ξ(t), ξ(t). σ h (x) 0, : (1.18) (1.19) (1.20) A t = ε2 2 A x 2 A + Ap ξ q + σ a(x) (0 < x < l, t > 0), l τ dξ dt = ξ + 1 lξ s A r dx (t > 0), 0 A A (0, t) = (l, t) = 0 (t > 0). x x w : w w + w p = 0, w > 0 (0 < y < + ), (1.21) w (0) = 0, lim w(y) = 0. y + w y + : sup 0<y< e y w(y) < +. Φ(y) (1.22) Φ Φ + pw p 1 Φ + pw p 1 = 0, Φ (0) = 0, lim Φ(y) = 0. y + (0 < y < + ), (, [pp. 330 331, 10] ). σ a [17] Theorem 1 σ a (x)

12 (March 13, 2010) 1.8. max 0 x l σ a (x) > 0. 0 < r < 1 min 0 x l σ a (x) > 0. ε 0 ε (0, ε 0 ) (A 1,ε (x), ξ 1,ε ), (A 2,ε (x), ξ 2,ε ) ε 0 (1.23) (1.24) (1.25) (1.26) A 1,ε (x) = ξ q/(p 1) 1,ε ξ 1,ε = { ε ( 1 l A 2,ε (x) = ξ q/(p 1) 2,ε ξ 2,ε = { ( x ) } ( x ) w + o(1) + σ a (x) + σ a (0)Φ + o(1), ε ε (p 1)/[qr (p 1)(s+1)] w(z) r dz + o(1))}, 0 { ( ) } ( ) l x l x w + o(1) + σ a (x) + σ a (l)φ + o(1), ε ε { ( 1 (p 1)/[qr (p 1)(s+1)] ε w(z) r dz + o(1))}, l 0, (1.23) (1.25) o(1) x [0, l] (1.23) (1.25) σ a (x) Λ a = d 2 /dx 2, µ a (x) 1 (1.11) Ω = (0, l) Σ ε (x) : (1.27) ε 2 Σ ε Σ ε + σ a (x) = 0 (0 < x < l), Σ ε(0) = Σ a(l) = 0. 1.9. r = 2 1 < p < 5. α 0 α (0, α 0 ) ε 1 > 0 0 < ε < ε 1 τ 1 > 0 τ 2 > 0 (i) 0 < τ < τ 1 (A 1,ε (x), ξ 1,ε ) ; 0 < τ < τ 2 (A 2,ε (x), ξ 1,ε ) ; (ii) τ > τ 1 (A 1,ε (x), ξ 1,ε ). τ > τ 2 (A 2,ε (x), ξ 1,ε ).

(A) 13 1.10. 1 < p < 5 r = p + 1. α ε > 0 (p, q, s) ε 0 < τ 2,1 < τ 1,1 0 < τ 2,2 < τ 1,2 : (i) τ 2,1 < τ < τ 1,1 (A 1,ε (x), ξ 1,ε ) ; τ 2,2 < τ < τ 1,2 (A 2,ε (x), ξ 1,ε ) ; (ii) τ > τ 1,1 (A 1,ε (x), ξ 1,ε ) τ > τ 1,2 (A 2,ε (x), ξ 1,ε ). 1.9 1.10 r = 2 r = p + 1 ( [11] ) r σ a (x) σ a (x) σ a ρ a (A, H, x) Ren [13]

14 (March 13, 2010) [1] A. Gierer and H. Meinhardt, A theory of biological pattern formation, Kybernetik (Berlin) 12 (1972), 30-39. [2] H. Jiang, Global existence of solutions of an activator-inhibitor system, Discrete Contin. Dyn. Syst., 14 (2006), 737 751. [3] A. J. Koch and H. Meinhardt, Biological pattern formation from basic mechanisms to complex structures, Rev. Modern Physics 66 (1994), 1481 1507. [4] M. Li, S. Chen and Y. Qin, Boundedness and blow up for the general activator-inhibitor model, Acta Math. Appl. Sinica 11 (1995), 59-68. [5] C.-S. Lin, W.-M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations 72 (1988), 1-27. [6] K. Masuda and K. Takahashi, Reaction-diffusion systems in the Gierer-Meinhardt theory of biological pattern formation, Japan J. Appl. Math. 4 (1987), 47-58. [7] W.-M. Ni, K. Suzuki and I. Takagi, The dynamics of a kinetic activator-inhibitor system, J. Differential Equations 299 (2006), 426-465. [8] W.-M. Ni and I. Takagi, On the shape of least energy solution to a semilinear neumann problem, Comm. Pure Appl. Math. 44 (1991), 819 851. [9] W.-M. Ni and I. Takagi, Locating the peaks of least-energy solutions to a semilinear neumann problem, Duke Math. J. 70 (1993), 247 281. [10] W.-M. Ni and I. Takagi, Point condensation generated by a reaction-diffusion system in axially symmetric domains, Japan J. Indust. Appl. Math. 12 (1995), 327 365. [11] W.-M. Ni, I. Takagi and E. Yanagida, Stability analysis of point condensation solutions to a reaction-diffusion system, preprint. [12] W.-M. Ni, I. Takagi and E. Yanagida, Stability of least energy patterns of the shadow system for an activator-inhibitor model, Japan J. Indust. Appl. Math. 18 (2001), 359 272. [13] X. Ren, Least-energy solutions to a non-autonomous semilinear problem with small diffusion coefficient, Electron. J. Differential Equations 1993 (1993), 1-21. [14] F. Rothe, Global Solutions of Reaction-Diffusion Systems, Lecture Notes in Math. 1072, Springer, 1984. [15] K. Suzuki and I. Takagi, On the role of the source terms in an activator-inhibitor system proposed by Gierer and Meinhardt, Adv. Stud. Pure Math. 47-2, Math. Soc. Japan, Tokyo, 2007, 749 766. [16] K. Suzuki and I. Takagi, On the role of basic production terms in an activator-inhibitor system modeling biological pattern formation, preprint, 2010.

(A) 15 [17] I. Takagi, Point-condensation for a reaction-diffusion system, J. Differential Equations, 61 (1986), 208 246. [18] A. M. Turing, The chemical basis of morphogenesis, Philos. Trans. Roy. Soc. London, Ser. B 237 (1952), 37-72. [19] J. Wei, On the boundary spike layer solutions to a singularly perturbed neumann problem, J. Differential Equations, 134 (1997), 104 133. [20] J. Wu and Y. Li, Classical global solutions for the activator-inhibitor model, Acta Math. Appl. Sinica 13 (1990), 501-505. [21] Niro Yanagihara, private communications.