notekiso1_09.dvi

Similar documents
δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b


II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

II 2 II

Acrobat Distiller, Job 128

v er.1/ c /(21)

Chap11.dvi

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

i


Gmech08.dvi

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b.

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30


1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

DVIOUT

2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

i 18 2H 2 + O 2 2H 2 + ( ) 3K

mugensho.dvi

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {


II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

sin.eps

untitled

Gmech08.dvi

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

1 1. x 1 (1) x 2 + 2x + 5 dx d dx (x2 + 2x + 5) = 2(x + 1) x 1 x 2 + 2x + 5 = x + 1 x 2 + 2x x 2 + 2x + 5 y = x 2 + 2x + 5 dy = 2(x + 1)dx x + 1

2014 S hara/lectures/lectures-j.html r 1 S phone: ,

3 filename=quantum-3dim110705a.tex ,2 [1],[2],[3] [3] U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

i

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

sec13.dvi

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)


Fubini

1 2 1 No p. 111 p , 4, 2, f (x, y) = x2 y x 4 + y. 2 (1) y = mx (x, y) (0, 0) f (x, y). m. (2) y = ax 2 (x, y) (0, 0) f (x,

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(


2.5 (Gauss) (flux) v(r)( ) S n S v n v n (1) v n S = v n S = v S, n S S. n n S v S v Minoru TANAKA (Osaka Univ.) I(2012), Sec p. 1/30

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

( ) ( )

TOP URL 1

Part () () Γ Part ,

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 +

K E N Z OU

untitled

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

Microsoft Word - 表紙.docx

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0


Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

Z: Q: R: C: 3. Green Cauchy

III No (i) (ii) (iii) (iv) (v) (vi) x 2 3xy + 2 lim. (x,y) (1,0) x 2 + y 2 lim (x,y) (0,0) lim (x,y) (0,0) lim (x,y) (0,0) 5x 2 y x 2 + y 2. xy x2 + y

微分積分学2

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

応用数学A

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

応力とひずみ.ppt

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y



2011de.dvi

Untitled

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%


W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

Transcription:

39 3 3.1 2 Ax 1,y 1 Bx 2,y 2 x y fx, y z fx, y x 1,y 1, 0 x 1,y 1,fx 1,y 1 x 2,y 2, 0 x 2,y 2,fx 2,y 2 A s I fx, yds lim fx i,y i Δs. 3.1.1 Δs 0 x i,y i N Δs 1 I lim Δx 2 +Δy 2 0 x 1 fx i,y i Δx i 2 +Δy i 2 2 Δyi lim fx i,y i 1+ Δx i Δx 0 Δx i x2 fx, yx 1+y x 2 dx. 3.1.2 y x A B yx 3 4 4 1

: frds frds A B B A r B frds r A frds. 3.1.3 : frds frds. 3.1.4 A B B A : frds + A 1 A 2 frds A 2 A 3 frds. A 1 A 3 3.1.5 : frds A 1 A 2 A 3 A 4 A 1 frds A 1 A 2 A 3 frds. A 1 A 4 A 3 3.1.6 s t frds t rt t fr ds dt. 3.1.7 dt ds 2 dx 2 +dy 2 +dz 2, 3.1.8 ds 2 dx 2 dy 2 dz 2 + + v 2. 3.1.9 dt dt dt dt ds/dt v frds frvtdt. 3.1.10 U fr dr U lim fx i,y i,z i Δr i Δr 0 lim f x x i,y i,z i Δx i + f y x i,y i,z i Δy i + f z x i,y i,z i Δz i Δr 0 fr dr. 3.1.11

: fr dr f x x, y, zdx + f y x, y, zdy + f z x, y, zdz fr ˆtds frt dr dt. dt 3.1.12 r t zx, y z z dr z z dx + dy dz 3.1.13 zr dr dz zr B zr A 3.1.14 φr φr : φ φ φ φr dr dx + dy + z dz dφ φr B φr A. 3.1.15 3.2 2 y fx y 0 : b fxdx lim fx i Δx. 3.2.1 a Δx 0 2 z fx, y z 0 4 : fx, ydxdy lim ΔxΔy 0 fx i,y i ΔxΔy. 3.2.2

2 : b φ2 x fx, ydxdy fx, ydy dx. 3.2.3 a φ 1 x y φx : b φ2 x dxdy fx, y dx dy fx, y. 3.2.4 a φ 1 x a x-y a V 2 dxdy a 2 x 2 y 2 x 2 +y 2 a 2 a a 2 x 2 2 dx a 2 x 2 y 2. 3.2.5 a a 2 x 2 dy y y a 2 x 2 sin θ a V 2 2 2 a a a a a π/2 dx dx π/2 π/2 π/2 dθ a 2 x 2 cos θ a 2 x 2 1 sin 2 θ dθa 2 x 2 cos 2 θ dxa 2 x 2 π 2 4π 3 a3. 3.2.6 2 dxdy x y 0<x<1,0<y<a 1 a dx 1 dy e y log x dx xa 1 0 0 0 log x a 1 a dy dx x y 1 dy 0 0 0 y +1 loga +1. 3.2.7 1 x y u v 1 fxdx fxu dxu du 3.2.8 du

2.1: z fx, y 2 2 u ux v vy fx, ydxdy u2 u 1 du dxu du v2 v 1 dv dyv fxu,yv 3.2.9 dv u ux, y v vx, y x xu, v y yu, v 3.3.1 ΔxΔy ΔuΔv fdudv 2 2 ΔxΔy rδφδr fx, ydxdy fr, φ rdrdφ 3.2.10 fx, ydxdy x, y fxu, v,yu, v dudv 3.2.11 u, v x, y/u, v Jacobian : x, y J u, v u u. 3.2.12 v v

3 2 : fx, y, zdxdydz lim fx i,y i,z i ΔxΔyΔz. 3.2.13 ΔxΔyΔz 0 3 : b φ2 x ψ2 x,y dxdydzfx, y, z dx dy dzfx, y, z. 3.2.14 a φ 1 x ψ 1 x,y z ψx, y y φx x, y, z fx, y, zdxdydz fxu, v, w,yu, v, w,zu, v, w u, v, w dudvdw. 3.2.15 J x, y, z u, v, w u v w u v w z u z v z w 3.2.16 r x, y, z fr fρ, φ, z fr, θ, φ ΔρρΔφΔz ΔrrΔθrsin θδφ fx, y, zdxdydz fρ, φ, zρ dρdφdz fr, θ, φr 2 sin θ drdθdφ. 3.2.17 [ ] 3.3

1 x 2 xy : fx, y, zd lim fx i,y i,z i Δ Δ 0 lim fx i,y i,z i x i,y i ΔxΔy 1 ΔxΔy 0 ˆn ẑ z 2 fx, y, z 1+ + ˆn 1.3.19 z 2 dxdy 3.3.1 Ar ˆnd lim Ax i,y i,z i ˆnΔ Δ 0 lim Ax i,y i,z i x i,y i ˆn ΔxΔy ΔxΔy 0 ˆn ẑ z, z, 1 A x,a y,a z z 2 1+ z 2 + +1 z A x z A y + A z z 2 + z 2 dxdy dxdy. 3.3.2 vr ˆnd 3.3.3 current ρrvr ˆnd 3.3.4 Er Er ˆnd 3.3.5 Br Br ˆnd 3.3.6

3.4 2.3 jδxδyδz ΔV ΔxΔyΔz V Gauß V A dv A ˆnd 3.4.1 2.3.13 j A Ax, y + 12 Δy, z + 12 Δz ˆxΔyΔz +Ax +Δx, y + 12 Δy, z + 12 Δz ˆxΔyΔz + Ax + 1 2 Δx, y, z + 1 2 Δz ŷδzδx + Ax + 1 2 Δx, y +Δy, z + 1 2 Δz ŷδzδx + Ax + 12 Δx, y + 12 Δy, z ẑδxδy + Ax + 12 Δx, y + 12 Δy, z +Δz ẑδxδy Ax x, y, z + A yx, y, z + A zx, y, z ΔxΔyΔz. 3.4.2 z 3.4.1 Ax + A y + A z dxdydz A x ˆx ˆn + A y ŷ ˆn + A z ẑ ˆn d.3.4.3 z V 3 V z ψ 2 x, y z ψ 1 x, y xy ψ2 x,y dxdy dz A z ψ 1 x,y z dxdy A z x, y, ψ 2 x, y A z x, y, ψ 1 x, y A z ẑ ˆnd. 3.4.4 dxdy ẑ ˆnd dxdy ẑ ˆnd [ ]

1. ρ R r 0 r 2. a l r a r l 3.5 2.3 A z ΔxΔy Δ ΔxΔy A tokes A ˆnd A ˆtds 3.5.1 2.3 2.3.32 : Ar dr Ar 0 + 1 2 Δx ˆx Δx ˆx + Ar 0 +Δx ˆx + 1 Δy ŷ Δy ŷ 2 small loop +Ar 0 + 1 2 Δx ˆx +Δyŷ Δx ˆx+Ar 0 + 1 Δy ŷ Δy ŷ 2 Ay A x ΔxΔy A ẑδxδy A ˆnΔ. 3.5.2 3.3.2 A A A ˆnd z A x z A y + A z dxdy [ z Az A y z Ax z z A z Ay + A ] x dxdy. 3.5.3

A x z ψx, y 2.1 φ fx, y ψx, y. dx dy A x x, y, z A xx, y, z dx dy A xx, y, ψx, y z b dx [ A x x, φ 2 x,ψx, φ 2 x + A x x, φ 1 x,ψx, φ 1 x]. a 3.5.4 3.5.1 A x b b A x x, y, zdx A x x, φ 1 x,ψx, φ 1 xdx A x x, φ 2 x,ψx, φ 2 xdx a a 3.5.4 A y A z dx dy z A z x, y, z z A z x, y, z dx dy z,a z x, y dz da z 3.5.5 z,a z z A z z A z x y [ ] v 1 v 2 v 3 3 I 1 v ˆnd, I 2 v ˆnd, I 3 v ˆtds 1 2 1 0, 0, 0 a z a 2 x 2 y 2 2 xy 1 2 z x 2 + y 2 δ 2,δ 0 v 1 ωy, ωx, 0 ωy v 2 x 2 + y, ωx 2 x 2 + y, 0 2 v 3 ωy x 2 + y 2, ωx x 2 + y 2, 0

z 0 2 A dxdy A x A y ux, y vx, y vx, y Ay A x dxdy A x dx + A y dy 3.5.6 ux, y dxdy ux, ydx + vx, ydy 3.5.7

1. 2. fx +Δx, y +Δy n0 Δz 2 f Δx Δy 2 2 f λ 1 Δx 1 2 + λ 2 Δx 2 2 1 Δx n! +Δy n fx, y 2 f 2 f 2 Δx Δy 3. 4. ˆn f, 1, f f 2 f + 2 +1 ɛ ijk ɛ lmk ɛ ijk ɛ klm ɛ ijk ɛ mkl δ il δ jm δ im δ jl. 5. Ar ˆx ŷ ẑ z A x A y A z. 6. φψ φψ + φ ψ, φa φ A + φ A, φa φ A + φ A, A B B A A B, A B B A B A A B + A B, A B B A +A B + B A+A B, φ 0, A 0, A A 2 A. 7. f f r ˆr + 1 f r θ ˆθ + 1 f r sin θ φ ˆφ

8. 9. 10. A [ A 1 r sin θ [ 1 r 2 r 2 sin θa r + sin θ r θ r sin θa θ+ ] φ ra φ. θ sin θa φ 1 r sin θ [ 2 1 f r 2 r 2 sin θ f + sin θ r r θ ] A θ ˆr + φ [ 1 A r r sin θ φ 1 ] r r ra φ ˆθ [ 1 + r r ra θ 1 ] A r ˆφ. r θ sin θ f θ + 1 φ sin θ ] f. φ 11. 12. A 1 ρ f f ρ ˆρ + 1 f ρ φ ˆφ + f z ẑ [ ρ ρa ρ+ A φ φ + ] z ρa z. 13. A 1 A z ρ φ A φ Aρ ˆρ + z z A z 1 ˆφ + ρ ρ ρ ρa φ 1 ρ A ρ ẑ φ 14. 15. 16. 17. 2 f 1 ρ f ρ ρ ρ fx, ydxdy x, y u, v V u u A dv + 1 ρ 2 2 f φ 2 + 2 f z 2 x, y fxu, v,yu, v u, v dudv v v A ˆnd. A ˆnd A ˆtds