m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2

Similar documents
i 18 2H 2 + O 2 2H 2 + ( ) 3K

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

2 p T, Q

September 25, ( ) pv = nrt (T = t( )) T: ( : (K)) : : ( ) e.g. ( ) ( ): 1


mugensho.dvi

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

KENZOU

pdf

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -


x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

I ( ) 2019

I 1

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2

1.1 ft t 2 ft = t 2 ft+ t = t+ t d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

meiji_resume_1.PDF

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

現代物理化学 2-1(9)16.ppt

i

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,


1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

C:/KENAR/0p1.dvi

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

応力とひずみ.ppt

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

Untitled

0 (Preliminary) T S pv

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

Gmech08.dvi

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

i

プログラム

Note.tex 2008/09/19( )

曲面のパラメタ表示と接線ベクトル


r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

Quiz x y i, j, k 3 A A i A j A k x y z A x A y A z x y z A A A A A A x y z P (x, y,z) r x i y j zk P r r r r r r x y z P ( x 1, y 1, z 1 )

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0


n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

0 (Preliminary) F G T S pv (1)

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

1.5.1 SI kg, m, s ,,

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

(A2) , 0,

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

dynamics-solution2.dvi

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

B ver B

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b)

nm (T = K, p = kP a (1atm( )), 1bar = 10 5 P a = atm) 1 ( ) m / m


No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

( ) ,

3.2 [ ]< 86, 87 > ( ) T = U V,N,, du = TdS PdV + µdn +, (3) P = U V S,N,, µ = U N. (4) S,V,, ( ) ds = 1 T du + P T dv µ dn +, (5) T 1 T = P U V,N,, T

( ) Loewner SLE 13 February

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

untitled

Gmech08.dvi

TOP URL 1

Acrobat Distiller, Job 128

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin. sin. sin + π si

29



(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

30

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

sin cos No. sine, cosine : trigonometric function π : π = 3.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even.

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even.

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3)

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

( ) ( )

Part () () Γ Part ,

II 2 II

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

2011de.dvi

Transcription:

3 3.1 ( 1 m d2 x(t dt 2 = kx(t k = (3.1 d 2 x dt 2 = ω2 x, ω = x(t = 0, ẋ(0 = v 0 k m (3.2 x = v 0 ω sin ωt (ẋ = v 0 cos ωt (3.3 E = 1 2 mẋ2 + 1 2 kx2 = 1 2 mv2 0 cos 2 ωt + 1 2 k v2 0 ω 2 sin2 ωt = 1 2 mv2 0(cos 2 ωt + sin 2 ωt = 1 2 mv2 0 = (3.4 3-1

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ2 + 1 2 kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2

3.2 3.2.1 U O U O O (adiabatic ( W A A A U A U O + ( W A (3.7 U B U O + ( W B (3.8 W A = = ad A B A ad B U = U B U A = W }{{} = (W B W A (3.9 3-3

3.2.2 (, U + W 0 U + W = Q = (3.10 or U = W + Q = (3.11 U = W = ( W > 0 U < 0 U + W = 0 3.2.3 Calorimetric 1 14.5 C 1g 15.5 C 1 calorie 1 Joule 1 calorie = 4.185 10 7 erg = 4.185 Joule (3.12 3-4

4.185 J 1 Kg 40cm ( mgh ( Joule 3.2.4 ( e e e = dw = e d = d, d = (3.13 du + }{{ d} = d Q = (3.14 dw d 3-5

3.2.5 (partial derivative or partial differentiation 2 x, y f(x, y f x f (x, y lim y y 0 f(x + x, y f(x, y (x, y lim x 0 x f(x, y + y f(x, y y (3.15 (3.16 3 ( ( f f, (3.17 x y y x f(x, y = x m y n { f x = mxm 1 y n f y = nxm y n 1 (3.18 (total differential f(x, y x, y f(x + dx, y + dy f(x, y 2 f(x + dx, y + dy f(x, y = [f(x + dx, y + dy f(x, y + dy] + [f(x, y + dy f(x, y] (3.19 1 f(x + dx, y + dy f(x, y + dy = f (x, y + dydx x f (x, ydx (3.20 x f(x, y + dy f(x, y = f (x, ydy (3.21 y 3-6

df(x, y f f (x, ydx + (x, ydy (3.22 x y f(x, y du U,, ( f(,, = 0 du 2, U(, ( ( U U du = d + d (3.23 /N 1 = R 1 d Q 2 2 x, y ( u(x, ydx + v(x, ydy (3.24 f(x, y f x = u, f y = v (3.25 u y = f y x = 2 f y x = 2 f x y = f x y = v x 3-7 (3.26

u y = v x (3.27 ( ( d 0 Q U (, du + d = U U U d + d + d = d + ( U + d (3.28 x =, y = (3.27 = U (3.27 = 2 U = ( U + = 2 U + (3.29 (3.30 d 0 Q Q = Q(, 1 dq d Q 3.1 (, (, d Q 1 3-8

du + d = U ( U d d + d + d d + d ( U = + ( U d + + d d d (3.31 LHS = RHS = ( U + ( U + = 2 U + + 2 = 2 U + 2 (3.32 (3.33 LHS RHS // df(x, y r 0 = (x 0, y 0 r 1 = (x 1, y 1 1 s r = r(s r 0 = r(s 0 r 1 = r(s 1 Γ r(s r(s 1 r(s 0 f( r = f(x, y Γ ( f f df( r(s = dx + Γ Γ x y dy s1 ( f dx = s 0 x ds + f dy s1 df( r(s ds = ds y ds s 0 ds = f( r(s 1 f( r(s 0 = f( r 1 f( r 0 = r 0, r 1 (3.34 Γ 3-9

(integrable ( 3.2.6 (heat capacity = ( 1 (specific heat = 1g = 1 ( d Q C = d ( d Q C = d ( (3.35 ( (3.36 3-10

(expansion coefficient α = 1 ( (compressibility κ = 1 κ ad = 1 ( (3.37 ( ( (3.38 (3.39 3.3 3.3.1 (, du du = ( [( U U ( d + ( ( U U d + d (3.40 3-11 ] + d = d 0 Q (3.41

(, du d ( U du = ( d = ( U d + ( d + [( ( ] U ( + d [( ( U + + d (3.42 d (3.43 ] d = d 0 Q (3.44 3.3.2 ( = d = 0 ( d 0 ( Q U C = = (3.45 d ( = d = 0 ( d 0 ( ( Q U C = = + (3.46 d ( 3-12

3.3.3 C C (1 U (2 ( (U (2 1 = R (1 U = U( U( Joule A B A B ( A = B Joule Q = 0. 3-13

A + B W = 0 U = 0 ( U/ = U = U( // C C (1, (2 (1 ( U = ( U = du d (3.47 (2 ( = ( R = R (3.48 (3.45 (3.46 Mayer( C ( = C ( + R (3.49 U( C ( C, C C 1 1 R 2 C C γ = C /C 3 1 3 R 5 R 5 2 2 3 5 2 5 = 3 + 2 R 7 R 7 2 2 5 4 6 = 3 + 3 3R 4R 3-14 3

2 (3+ (2 (2 2 (3+ (3 3 C U( C = du d U = C + U 0 (3.50 γ 3.2 an der Waals C C an der Waals 1 = R b a (3.51 2 a 1/r 6 1/ 2 b a, b litter/mol a (atm (litter 2 /(mol 2 b (litter/mol He 0.034 0.024 H 2 0.24 0.027 N 2 1.35 0.039 O 2 1.36 0.033 CO 2 3.96 0.043 H 2 O 5.47 0.031 an der Waals 3-15

C = C ( = ( U ( ( U = a (3.52 2 C C ( ( U U du = d + d = C ( d + a d (3.53 2 ( du + d = C d + + a d = d Q (3.54 2 C (, (, d = Rd R d b ( b + 2ad (3.55 2 2 R/( b = + (a/ 2 d ( d = a + 2ab 1 (Rd ( bd (3.56 2 3 d = 0 ( d 0 Q C = = C ( + d a 2 + a 2 + 2ab 3 R (3.57 C C 1 a 0 (b 0 3.3.4 3-16

,, = R = constant Boyle (3.58 d Q = 0 U = U( C d + d = d Q = 0 (3.59 (, C d + R d = 0 (3.60 C = d = R C d = C C C d = (γ 1d (3.61 ln = (γ 1 ln + const (3.62 `1 = const. (3.63 γ 1 > 0 γ C d = d C,, = const. (3.64 = const. (3.65 `1 3-17

2 ( (, (3.65 log d = γ 1 γ d (3.66 h dh h h + dh h d = gρdh (3.67 ρ ρ = nr (3.68 m =, M = 1 (3.69 = n = m M (3.70 2 3-18

ρ = m = M R (3.71 ρ, (3.67 d = Mg R dh (3.72 (3.66 d d dh = γ 1 γ Mg R = const (3.73 γ = 7 5 (2, g = 9.8m/s2, M = 0.029Kg, R = 8.3J/deg (3.74 d dh = 9.8 deg/km (3.75 3.3 n i f (< i d = 0 d = d Q ( = nr d = nr d (3.76 2 d Q = d = nr d (3.77 Q = nr f i d = nr ln i f > 0 (3.78 3-19

3.4 κ κ ad κ ad = 1 γ κ (3.79 = a = const. = a/ κ = 1 ( = a = 1 2 (3.80 κ ad = 1 γ = b = const. = b 1/γ (3.81 ( ( = 1 ( 1 b (1/γ 1 = 1 ad γ γ (3.82 κ ad = 1κ γ 3.3.5 X, Y, f(x, Y, = 0 (3.83 1. ( ( = 1 (3.84 3-20

X (Y, Y (X, ( d = 0 ( ( dx = dy, dy = dx (3.85 (3.84 // 2. X, Y, W ( W ( W ( = W (3.86 X (Y, W Y (, W W (dw = 0 ( ( ( dx = dy + dw = dy (3.87 dy = ( W W d + W ( W W Y dw = ( ( dx = d // ( W W W d (3.88 d (3.89 3. Chain relation ( ( ( X Y = 1 (3.90 3.5 X = X(Y, Y = Y (X, ( ( dx = dy + d (3.91 Y ( ( dy = dx + d (3.92 X (3.93 3-21

( [( ( ] ( dx = dx + d + d X Y ( ( [( ( ( ] = dx + + d Y X }{{}}{{} 1 0 (3.94 ( 2 (3.84 (3.90 Y // 3.6 1 κ ad = C C κ C, C (3.45 (3.46 κ ( = C ( (3.95 C ad (1 U (, d Q = 0 (, ( U, ( U ad ( (2 U (, U C ( ( (3 U (, U, C, ( (4 (2, (3 (1 (3.95 3-22

(1 0 = du + d = ( [( ] U U d + + d (3.96 d d ( = + ( U ad ( U (3.97 (2 U (, 2 C ( ( ( ( U U = = C (3.98 (3 U (, C ( ( ( ( ( ( U U = = C ( ( ( ( = C = C }{{} 1 (3.99 (4 (2 (3 (1 ( = C ( ( ad C (3.100 chain relation ( ( ( = 1 ( ( ( = (3.101 (3.100 (3.95 // 3-23