TCSE4~5

Similar documents
C:/KENAR/0p1.dvi

Gmech08.dvi

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

A大扉・騒音振動.qxd

slide1.dvi

24.15章.微分方程式

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (


x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

I 1

meiji_resume_1.PDF

x ( ) x dx = ax

.. p.2/5

09 P107〜118/木下 〃 芦塚 〃 稲

pdf

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

KENZOU

08-Note2-web

第1章 微分方程式と近似解法


S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

3 ( 9 ) ( 13 ) ( ) 4 ( ) (3379 ) ( ) 2 ( ) 5 33 ( 3 ) ( ) 6 10 () 7 ( 4 ) ( ) ( ) 8 3() 2 ( ) 9 81

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

CSE2LEC2

1.1 ft t 2 ft = t 2 ft+ t = t+ t d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

ohp_06nov_tohoku.dvi

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

6. Euler x

Gmech08.dvi

Chap10.dvi

genron-3

応力とひずみ.ppt

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

30

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

1 1 x y = y(x) y, y,..., y (n) : n y F (x, y, y,..., y (n) ) = 0 n F (x, y, y ) = 0 1 y(x) y y = G(x, y) y, y y + p(x)y = q(x) 1 p(x) q(

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1


lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

30 (11/04 )

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

「産業上利用することができる発明」の審査の運用指針(案)

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1


さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n

振動と波動

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

( ) ( )

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l


120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

6 6.1 B A: Γ d Q S(B) S(A) = S (6.1) T (e) Γ (6.2) : Γ B A R (reversible) 6-1

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

A

DE-resume

熊本県数学問題正解

入試の軌跡

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)


24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3)

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

 

1 1. x 1 (1) x 2 + 2x + 5 dx d dx (x2 + 2x + 5) = 2(x + 1) x 1 x 2 + 2x + 5 = x + 1 x 2 + 2x x 2 + 2x + 5 y = x 2 + 2x + 5 dy = 2(x + 1)dx x + 1

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

December 28, 2018

29

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 :

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

K E N Z OU


高等学校学習指導要領

高等学校学習指導要領

example2_time.eps

2 p T, Q

i

1 180m g 10m/s v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =

phs.dvi

Korteweg-de Vries

i

II (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1


sec13.dvi

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

Transcription:

II. T = 1 m!! U = mg!(1 cos!) E = T + U! E U = T E U! m

U,E mg! U = mg!(1! cos)! < E < mg! mg! < E! L = T!U = 1 m!! mg!(1! cos) d L! L = L = L m!, =!mg!sin m! + mg!sin = d =! g! sin & g! d =! sin

! = v v = sin! (!, v) dv d! = v! = sin! v v dv d! = sin! 1 d(v ) d! = d sin! = d! cos! v cos! = A A A =!! < A < v =,! = n (n =!1,,1,!) A = < A v!!!

U = mg!(1! cos) cos =1! 1! + 1 4! 4! <<1 U U * = k + a ' & 4 ) k * mg!, a =! 1 ( 6 L = T!U T!U * = 1 m!! k + a ' & 4 ) ( d +L + = m! +L, + =!k(1 + a ), m! + mg!(1 + a ) = + - (1 + a ) = - * g!! = f (!) = K! + K'! 3 d! = sin! d! 1 d! ' & ) = ( cos! + E' E'* E 1 d! ' & ) ( k * = (1 cos!) + E E! ' 1 cos! = sin & ) ( d! ' & ) ( = 4 k sin! ' & ) (

E <! (k <1) U =! (1 cos) U max =! E <! = U max d!! = k = sin!! ksin! = sin d = k cos! 1 k sin! d! d!! ' = 4( & k ) sin ' & * d! = (! k ) sin = ( k 1) sin + = ( k cos+, ( = d! k cos+ = k cos+ k cos+ 1) k sin + d+ = d+ 1) k sin + * ( = + d+ - = F(+,k) 1) k sin + <! <! < < /! T 4 = / d = K(k) 1 k sin k = sin! K(k) = ( ) * T 4 T = ' * ' /!! k! d k ' / ( d = ' 1& k sin '

E >! (k >1) d! & ' sin! = sin* +! = 4( k ) sin & ' = 4( k 1 ) 1 k sin! & ' d! cos! = d* cos* d! = ( k 1 ) 1 k sin! = ( k 1 ) 1 k sin * ( k = 1 1 ) 1 k sin * d* cos* 1 cos! d! cos! 1 <! < < < cos = d cos = 1 sin = 1 sin! = cos! cos = cos! kt =! kt & = K 1 ) ' ( k * + d! 1 1 k sin! E =! (k =1)! t = d 1 + sin cos = log 1 sin sin = tanh! t (t & ±') = ±(

! x f (u) u = v! x v m x =!x + f (v! x ) v >> x f (v! x ) f (v )! x f '(v ) = x! f (v ) m =! + f (v ) ( ' * + f (v )! f '(v ) & ) + m + f '(v ) + = f (u) f '(u)! = ± =! 1, x = Ae! 1 t + Be! t v u = v! x

Van der Pol!Rayleigh Load Rayleigh (John William Strutt 184-1919) m x + kx = a x! b x 3 y = x x = y y = 1 m (!kx + ay! by 3 ) Rayleigh m d x dx + m! + x = x = e t m + m! + = D =! 4 m D =! 4 m <! = 1 ± i 4 m = 1 ± i = 4 m & x = ae 1 t cos(t + ') > (

! = A + B dx & ( ' A >, B > dx! < )! > Rayleigh m d x + ( dx + dx )!A + B ', * & - +.x = Rayleigh (Varistor, Surge Protector) v R = R i + R i 3 R >, R < v L = L di v C = q C i = dq, v L + v R + v C = V R & '!()!(!)!' ) ( ()!&!! i i d q + 1 ' ) L R! dq + ) dq ( + R &, *) -) +. q =. / 1 LC V L V R V C Rayleigh

u J! d! = F(v), v = u + d J d! + d! + F u + d! & ( + mgasin! = ' U F u + d! & ( = F(u) + F'(u) d! ' + 1 d! & F''(u) ( + 1 3 d! & F'''(u) ( +! ' 6 ' F''(u) = u sin!! J d! + d! d! + F(u) + F'(u) + 1 3 d! & F'''(u) ( + mga! = 6 ' mga) * mga! + F(u) J d ) d) + ( + F'(u)) + 1 6 d) & F'''(u) ( ' 3! d! + mga) = Rayleigh a!van der Pol Rayleigh Van der Pol m d x + ( dx + dx )!A + B ', * & - +.x = / = t dx =. m, y = 3B A A 3B y, dx d x = A dy 3B Rayleigh m A 3B dy + (!A + Ay ) A 3B y + x = m d y + A(!a + y ) dy + y = d y d + (!1 + y ) dy d + y =, A m Van der Pol

Van der Pol Rayleigh d z +!(z 1) dz + z = z = 3 y 3 y +!(3 y 1) 3 y + 3 y = y +!(3 y 1) y + y = y = y + C, y = y + C 1 t 3 y y = d ( y 3 ) = y 3 + C 3 t y +!( y 3 y ) + y = C t x = y C x!(1 x ) x + x = t Van der Pol Rayleigh Lienard Rayleigh d x +! dx ' + x = & dx = v dv = ( ) x +! dx, * '- + &. dv dx = ( x +!(v) v

!Van der Pol i =!v + v 3!i = v R + C dv + 1 L v M i L C R v d v! d * C! 1 & ( v! ) - +, RC' C v3. / + 1 LC v = t! = LC, x = v d x d! d + LC d! C 1 ' & ) * LC., - RC( C x / x + x =! LC C 1 ( & ) ' RC*,! 3+ d x d,!(1 x ) dx d, + x = L C Van der Pol

!Van der Pol Limit Cycle x!(1! x ) x + x = >!(1! x ) : Limit Cycle Limit Cycle Limit Cycle x = asint a LimitCycle!(1 x ) x t +T!(1 x ) x dx =, x = acost, T = t t +T!(1 x ) x dx =!(1 a sin t)a cos t = t & ) & )!a ( cos t a 4 sin t+ =!a ( 1 a + = ' * ' 4 * a = & ' (!!!&! &!!!!! =.

!Van der Pol! <<1 d x!(1! x ) dx + x = t, t 1, t,! t =1 t 1 = t ~ t, t 1 ~ t, t ~ t,! t n ~ n t,! n =1, =, =,! x = x +!x 1 +! x +! x = x (t, t 1, t,!) x 1 = x 1 (t, t 1, t,!) dx = dx + dx + = dx = dx +! dx dx +! +! dx +! +! dx 1 dx +! +! ' +! dx +! dx 1 dx +! dx +! ' +! +! dx 1 dx +! +! ' +! & & & = dx +! dx 1 + dx ' +! dx + dx 1 + dx ' +! & & t d x = d x +! d x 1 + d x d x ' +! & + d x + d x 1 + d x ' +! 1 &!(1! x ) dx =!(1! x ) dx )! (1! x ) dx 1 + dx & dx, * (! x x 1 - + '. + O(3 )

Van der Pol d x +! d x 1 + d x ' (!(1( x ) dx + x +!x 1 = & d x! : + x =! 1 : d x 1 + x 1 = ( d x + (1( x ) dx x = acos(t +!) t a,! t 1 x (t,t 1 ) = a(t 1 )cos[ t +!(t 1 )]! x = a(t 1 )sin[ t + (t 1 )] t x = da sin(t + ) a d cos(t + ) t 1 t x 1 t + x 1 = da sin(t + ) + a d cos(t + ) a 1 a cos (t + ) [ ]sin(t + ) sin 3 x =! 1 4 sin 3x + 3 sin x 4 [ 1! a cos (t + )]sin(t + ) = 1! 1 & 4 a ( sin(t ' + )! 1 4 a sin(3t + 3) ) x 1 )t + x * 1 = da! a 1! 1 &- + 4 a (., '/ sin(t + ) + a d cos(t + ) + 1 4 a3 sin(3t + 3) a = a(t 1),! =!(t 1 )

x 1 cost sint Van der Pol cos(t +!) sin(t +!) da! a 1! 1 4 a ' = & d( =!(t 1 ) = const da 1 = = 1 8 a(a )(a + ) 4a + 1 1 8 a + 1 & ( a + ' t 1 = ln a + ln(a 4) + const 4 a = 1 Ce t 1 x = 1! Ce!t 1 cos(t + (t 1 )) t 1 = a(t 1 ) = A C =1! 4 A x = 1 + 4 cos(t + )) A!1 ' e!(t & A < 4! cos(t + ) A > 4! cos(t + )

!Van der Pol! Relaxation Oscillation &!!!&!& &!!! &!!&!& &!!! & &!& & ' (!!!! & '!!!! =.1! =.35