2.1: n = N/V ( ) k F = ( 3π 2 N ) 1/3 = ( 3π 2 n ) 1/3 V (2.5) [ ] a = h2 2m k2 F h2 2ma (1 27 ) (1 8 ) erg, (2.6) /k B 1 11 / K

Similar documents
[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3

本文/目次(裏白)

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ଗȨɍɫȮĘർǻ 図 : a)3 次元自由粒子の波数空間におけるエネルギー固有値の分布の様子 b) マクロなサイズの系 L ) における W E) と ΩE) の対応 として与えられる 周期境界条件を満たす波数 kn は kn = πn, L n = 0, ±, ±, 7) となる 長さ L の有限


Note.tex 2008/09/19( )

gr09.dvi

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

抄録/抄録1    (1)V

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

総研大恒星進化概要.dvi

30

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

( ) ,

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

日本内科学会雑誌第102巻第4号

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

Maxwell

第86回日本感染症学会総会学術集会後抄録(I)

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

I ( ) 2019

第90回日本感染症学会学術講演会抄録(I)

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

i Γ

Ł\”ƒ-2005

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1


9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

untitled

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

i

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

LLG-R8.Nisus.pdf

PDF

Contents 1 Jeans (


all.dvi

63 3.2,.,.,. (2.6.38a), (2.6.38b), V + V V + Φ + fk V = 0 (3.2.1)., Φ = gh, f.,. (2.6.40), Φ + V Φ + Φ V = 0 (3.2.2). T = L/C (3.2.3), C. C V, T = L/V

プログラム

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

The Physics of Atmospheres CAPTER :

プリント

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

/Volumes/NO NAME/gakujututosho/chap1.tex i

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

/Volumes/NO NAME/gakujututosho/chap1.tex i

2011de.dvi

master.dvi

現代物理化学 1-1(4)16.ppt

keisoku01.dvi


201711grade1ouyou.pdf

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

物性物理学I_2.pptx

untitled

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

τ τ

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

pdf

meiji_resume_1.PDF

sec13.dvi

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

: , 2.0, 3.0, 2.0, (%) ( 2.

Part () () Γ Part ,

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

2000年度『数学展望 I』講義録

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI

untitled

Microsoft Word - 章末問題

untitled

4.6 (E i = ε, ε + ) T Z F Z = e βε + e β(ε+ ) = e βε (1 + e β ) F = kt log Z = kt log[e βε (1 + e β )] = ε kt ln(1 + e β ) (4.18) F (T ) S = T = k = k

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

Bose-Einstein Hawking Hawking Hawking Hawking nk Hawking Bose-Einstein Hawking 1 Bekenstein[1] Hawking 1974 [2,

untitled

支持力計算法.PDF

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

,,,,., = (),, (1) (4) :,,,, (1),. (2),, =. (3),,. (4),,,,.. (1) (3), (4).,,., () : = , ( ) : = F 1 + F 2 + F 3 + ( ) : = i Fj j=1 2

QMI_10.dvi

,,..,. 1

Formation process of regular satellites on the circumplanetary disk Hidetaka Okada Department of Earth Sciences, Undergraduate school of Scie

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

液晶の物理1:連続体理論(弾性,粘性)

KENZOU Karman) x

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx


devicemondai

Transcription:

2 2.1? [ ] L 1 ε(p) = 1 ( p 2 2m x + p 2 y + pz) 2 = h2 ( k 2 2m x + ky 2 + kz) 2 n x, n y, n z (2.1) (2.2) p = hk = h 2π L (n x, n y, n z ) (2.3) n k p 1 i (ε i ε i+1 )1 1 g = 2S + 1 2 1/2 g = 2 ( p F k F ) (= p 2 F/2m) v F = p F /m 1 ε 1 N(ε) N(ε) = 2 4π 3 p3 F V 1 (2π h) 3 = V 3π 2 ( ) pf 3 V = h 3π 2 k3 F. (2.4) 1 (spinless fermion) 2 13

2.1: n = N/V ( ) k F = ( 3π 2 N ) 1/3 = ( 3π 2 n ) 1/3 V (2.5) [ ] a = h2 2m k2 F h2 2ma (1 27 ) 2 1 27 (1 8 ) 2 1 11 erg, (2.6) /k B 1 11 /1 16 1 5 K ε < 1 1 1 11 23..917g/cm 3 n = 6.2 1 23.917 23. 2.4 122 cm 3 (2.7) 14

k F = ( 3π 2 n ) 1/3 = (3 3.14 2 2.4 1 22 ) 1/3 = (3 3.14 2 24) 1/3 1 7 = 8.92 1 7 cm 1 (2.8) p F = hk F = 1.5 1 27 8.92 1 7 = 9.37 1 2 g cm/sec (2.9) v F = p F m e = 9.37 1 2 9.11 1 28 = 1.3 18 cm/sec (2.1) 1km/sec = h2 2m k2 F = (1.5 1 27 ) 2 2 9.11 1 (8.92 28 17 ) 2 = 1.52 8.92 2 1 12 2 9.11 = 4.81 1 12 erg (2.11) 3.1eV(= 4.81 1 12 /1.6 1 12 ) 3 T F = k B = [ ] E = 2V (2π h) 3 = V 5π 2 ( pf h pf : E = N p2 2m = N 2m 4.81 1 12 1.38 1 16 = 3.49 14 K (2.12) pf p 2 V 2m 4πp2 dp = 2π 2 h 3 p 4 dp = 1 V p 5 F m 1π 2 h 3 m ) 3 p 2 F 2m = 3 5 N. (2.13) pf pf p 2 p 2 dp p 2 dp = N p 5 F/5 2m p 3 F/3 = N 2m 3 5 p2 F. (2.14) E = 3 ( 5 N h2 3π 2 N ) 2/3 (2.15) 2m V : P = E V = [ 3 V 5 N h2 2m ( 3π 2 N ) 2/3 ] V = 2 h 2 5 2m ( ) 3π 2 2/3 ( ) N 5/3 V = 2 E 3 V = 2 N 5 V = 2 5 n. (2.16) 15

P = 2 E 3 V (2.17) 3 κ 1 κ P = V V = V V (3π2 ) 2/3 5 (2.18) h 2 ( ) N 5/3 (2.19) m V = (3π2 ) 2/3 h 2 ( ) N 5/3 3 m V (2.2) = 2 h 2 ( 3π 2 n ) 2/3 2 n = 3 2m 3 n (2.21) ( ) 1 κ = 2 3 2.4 122 4.81 1 12 = 7.7 1 1 erg/cm 3. (2.22) C 11 C 12 4 1 κ = C 11 + 2C 12 3 [ ] = 1 3 (7.3 11 + 2 6.2 1 1 ) = 6.6 1 1 dyn/cm 2 (2.23) (white dwarf) M R U = 3GM 2 5R GM 2 R (2.24) 3 4 (1968) 4.2 16

(a) (b) 2.2: (a) B (b) : (http://www.nationalgeographic.co.jp/science/photos/photo science.php?gallery VignVCMId=ba8d9f48ddfe411VgnVCM1ee2a8cRCRD&no=1) (http://ja.wikipedia.org/wiki/%e4%b8%ad%e6%8%a7%e5%ad%9%e6%98%9f) K 2K = i r i ṗ i = i r i i U (2.25) ( -1) 2K = U (2.26) m N K = E = 3 ( 5 N h2 3π 2 N ) 2/3 2m V (2.27) h2 M 5/3 mm 5/3 N R 2 (2.28) (2.24) (2.28) M 1/3 R h 2 Gmm 5/3 N (1.5 1 27 ) 2 6.67 1 8 9.11 1 28 (1.67 1 24 ) 5/3 1 2 g 1/3 cm (2.29) 17

ρ M/R 3 M 2 2 (2.28) (2.24) ( ) E(R) = h2 M 5/3 mm 5/3 N R GM 2 2 R (2.3) 2 R 1 R (2.29) (2.28) ( ) E = 3 ( M 4 Ncp F M V ) 1/3 M 4/3 R (2.31) 1.44 5 p + e n + ν e (2.28) m m N m n (2.29) M 1/3 R 1 17 g 1/3 cm (2.32) (2.29) (2.31) 2 1 33 g 1 4 km 1km 5 (Chandrasekhar) 18

1.4 1.2 1..8.6.4.2 f..5 1. 1.5 2. Μ 2.3: k B T/µ = 1/1, k B T/µ = 1/1 k B T/µ = 1 2.2 Ε [ ] f(ε) N = i f(ε i ), E = i ε i f(ε i ) (2.33) 1 i dε 1 S V i (2π h) S = S 3 d 3 p (2.34) g = 2S + 1 ε = p2 2m, i dε dp = p m = = = 2mε m = 2ε m (2.35) gv 4πp 2 dp (2π h) 3 gv 2π 2 h 3 2mε dp dε dε gv m3/2 dε 2 1/2 3 ε1/2 π2 h dεd(ε) (2.36) 19

1.4 1.2 1..8.6.4.2 D f..5 1. 1.5 2. Μ 2.4: 3 D(ε) D(ε)f(ε) k B T/µ = 1/1 µ D(ε) = 1 (density of states) 1 N = E = gv m3/2 2 1/2 π 2 h 3 ε1/2 (2.37) D(ε)f(ε)dε, (2.38) εd(ε)f(ε)dε (2.39) 1 1 ε(p) D( ) = 2V 4πp2 dp (2π h) 3 = V dε p=pf π 2 h 3 mp F = 3 V p 3 F 2m 2 3π 2 h 3 = 3N (2.4) 2 N(ε) ε 2/3 1 A n A A n n A = e βen A n n e βen 1 i N i {N i } n {N i } p 2 F Ε N = i N i, E n = i N i ε i 2

f i N i f i = f(ε i ) = N i A 1 a a i a 1 i A = i a i N i = i a i N i = i a i f i A L 1 i p = hk = 2π h L n = 2π h L (n x, n y, n z ) (n x, n y, n z ) n 1 n p n 2π h/l i (??) S S = S [ ] d 3 n S S = S ( ) L 3 2π h ε 1 1 N(ε) = ε D(ε )dε dn(ε) dε d 3 p (2.37) dn(ε) N = f(ε)dε dε = N(ε)f(ε) + N(ε) ( ddε ) f(ε) dε ( ddε ) f(ε) = N(ε) = D(ε) (2.41) dε (2.42) N() = N(ε)f(ε) (as ε ) f (ε) O(k B T ) (k B T/ ) 2 N = N(µ) + π2 6 D (µ)(k B T ) 2 + (2.43) = N(µ ) + D(µ )(µ µ ) + π2 6 D (µ )(k B T ) 2 + (2.44) 21

f 5 4 3 2 1..5 1. 1.5 2. Ε Μ 2.5: f (ε) k B T/µ = 1/1, k B T/µ = 1/1 k B T/µ = 1 N(µ ) = N µ µ = π2 6 µ = π2 6 (2.36) D (µ ) D(µ ) (k BT ) 2 + (2.45) D ( ) D( ) (k BT ) 2 + (2.46) D (ε) D(ε) = d ln D dε = 1 2ε (2.47) µ = π2 (k B T ) 2 + 12 ε F ( ) 2 ( ) 4 = 1 π2 kb T kb T + O (2.48) 12 2 ( ) 22

Sommerfeld ( F (ε) df(ε) ) dε = F (µ) + 2 C 2n (k B T ) 2n d2n F (ε) dε n=1 dε 2n (2.49) ε=µ f(ε) = 1/[exp{(ε µ)/k B T } + 1], F (ε) C 2n 1 x 2n 1 dx (2.5) Γ(2n) e x + 1 = ( 1 2 1 2n) ζ(2n) (2.51) Γ(m) x m 1 e x dx, (2.52) n! = Γ(n + 1) Riemann ζ(m) r=1 (2.48) 1 r m (2.53) F (ε)f (ε)dε = F (µ) + π2 6 (k BT ) 2 F (µ) + 7π4 36 (k BT ) 4 F (µ) + (2.54) F (ε) = ϕ(ε) ϕ(ε)f(ε)dε = µ ϕ(ε)dε + π2 6 (k BT ) 2 ϕ (µ) + 7π4 36 (k BT ) 4 ϕ (µ) + (2.55) [ ] (2.54) ϕ(ε) = εd(ε) µ = µ µ E = = µ + µ εd(ε)f(ε)dε εd(ε)dε + π2 6 (k BT ) 2 (D(µ) + µd (µ)) + = E + µ D(µ ) µ + π2 6 (k BT ) 2 (D(µ ) + µ D (µ )) + = E + π2 6 (k BT ) 2 D(µ ) +. (2.56) 23

(2.39) E = E + π2 6 ( ) 3N 2 (k B T ) 2 + = E + π2 4 N (k BT ) 2 + ε F = 3 ( ) 2 ( ) 4 5 N 1 + 5π2 kb T kb T + O. (2.57) 12 C = de dt = π2 2 Nk k B T B (2.58) k B T / k B T / k B T k B T (2.47) G = Nµ = N 1 π2 12 ( ) 2 ( ) 4 kb T kb T + O. (2.59) P V = (2/3)E G = E + P V T S = 5 3 E T S (2.6) : S = (5/3)E G T = π2 2 Nk k B T B + (2.61) (2.57) [ ] F = E T S = 3 5 N 1 5π2 12 ( ) 2 ( ) 4 kb T kb T + O (2.62) 2 24

2.6: T = D(ε)f(ε) ( ) ( ) (Lande g ) (Bohr ) ( )=1/2 2 µ B H = µ B H εp+ = p2 2m µ BH (2.63) εp = p2 2m + µ BH (2.64) M + M H = ε = M = M + M = µ B (N + N ) D(ε + µ B H) D(ε µ B H) = µ B f(ε)dε µ B f(ε)dε 2 2 D(ε) = µ B (f(ε µ B H) f(ε + µ B H)) dε 2 ( ε ) f(ε) µ 2 BH = µ 2 BH ( D(ε) dε D(µ) + π2 6 D (µ )(k B T ) 2 + ). (2.65) D(ε) 25

χ = M H = µ 2 BD( ) (2.66) H Pauli (paramagnetism) ( ) M = µ 2 BH D(µ ) + D (µ )(µ µ ) + π2 6 D (µ )(k B T ) 2 + [ ( = µ 2 BH D(µ ) + D (µ ) π2 D ) ] (µ ) 6 D(µ ) (k BT ) 2 + π2 6 D (µ )(k B T ) 2 + [ ( = µ 2 BH D(µ ) + π2 D (µ ) (D (µ )) 2 ) ] (k B T ) 2 + 6 D(µ ) = µ 2 BH D(µ ) + D(µ ) π2 d 2 ln D(ε) 6 dε 2 (k B T ) 2 + ε=µ ( ) 2 ( ) 4 = µ 2 BHD(µ ) 1 π2 kb T kb T + O. (2.67) 12 D(ε) ε 1/2 χ = χ 1 π2 12 ( ) 2 ( ) 4 kb T kb T + O. (2.68) 26