量子力学 問題

Similar documents
量子力学3-2013

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α

TOP URL 1

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2



1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

I ( ) ( ) (1) C z = a ρ. f(z) dz = C = = (z a) n dz C n= p 2π (ρe iθ ) n ρie iθ dθ 0 n= p { 2πiA 1 n = 1 0 n 1 (2) C f(z) n.. n f(z)dz = 2πi Re

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

( )


B ver B

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)


,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

Onsager SOLUTION OF THE EIGENWERT PROBLEM (O-29) V = e H A e H B λ max Z 2 Onsager (O-77) (O-82) (O-83) Kramers-Wannier 1 1 Ons

gr09.dvi

201711grade1ouyou.pdf

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

TOP URL 1

TOP URL 1

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

meiji_resume_1.PDF


SFGÇÃÉXÉyÉNÉgÉãå`.pdf

Z: Q: R: C:

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

0 4/

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

all.dvi

基礎数学I


量子力学A

Untitled


tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

b n c n d n d n = f() d (n =, ±, ±, ) () πi ( a) n+ () () = a R a f() = a k Γ ( < k < R) Γ f() Γ ζ R ζ k a Γ f() = f(ζ) πi ζ dζ f(ζ) dζ (3) πi Γ ζ (3)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

(1) (2) (3) (4) 1

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j


1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

Note.tex 2008/09/19( )

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Dynkin Serre Weyl


30

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)


d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

液晶の物理1:連続体理論(弾性,粘性)

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

sec13.dvi

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

R = Ar l B r l. A, B A, B.. r 2 R r = r2 [lar r l B r l2 ]=larl l B r l.2 r 2 R = [lar l l Br ] r r r = ll Ar l ll B = ll R rl.3 sin θ Θ = ll.4 Θsinθ

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

Z: Q: R: C: sin 6 5 ζ a, b

3 filename=quantum-3dim110705a.tex ,2 [1],[2],[3] [3] U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

SO(2)

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

newmain.dvi

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h


July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)

Transcription:

3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H, R] = 0 0 0 (7) R = ψ Rψ (8) R v, v 2, v 3 U = (v, v 2, v 3 ) ψ = ψu = (, 2, 3 ) i H, R 2. [ L/2, L/2] ψ(x) = ψ(x + L) () x = d dx xψ φ = ψ x φ x = x ψ x φ = ψ ( x φ ) = ( ψ x ) φ p x = iħ x

3 : 203 2 (2) p x ψ k (x) = ħk ψ k (x) ψ k ψ k (x) = L e ikx k k = 2π n, n = 0, ±, ±2, L (3) ψ k [0, 2π] 2π n einx = δ(x) (4) H = p2 x 2m ψ k(x) (5) R R : x x = Rx = x H = U R HU R U Rψ(x) = ψ(r x) = ψ( x) (6) H H ψ k (x) H R (7) H H U R ψ ϵ,r (Hψ ϵ,r = ψ ϵ,r ϵ, U R ψ ϵ,r = ψ ϵ,r r ) r (8) r ± 3. () (2) (3) (4)

3 2 : 203 2 :. H = H x = p2 x 2m + 2 mω2 x 2 () (2) [x, p] = iħ a x [a, a ] = a = mω 2ħ (x + i p mω ) (3) H a (4) a 0 = 0 0 ψ(x) ψ(x) ψ ( x) (5) ˆn = a a [ˆn, (a ) k ], k = 0,, 2, (6) n = (n!) /2 (a ) n 0 ˆn n (7) H (8) a n = n + n + (9) a n = n n 2. 2 H 2 = p2 2m + 2 mω2 p 2, r = (x, y), p = (p x, p y ) () [a i, a j ] = δ ij a i = mω 2ħ (r i + i p i mω ) (2) H 2 = H x + H y H 2

3 2 : 203 2 (3) L z = xp y yp x [H 2, L z ] = 0 (4) L z a x, a y (5) α, β [α, α ] = [β, β ] =, [α, β] = 0 α = i a x β 2 i a y (6) H 2 α, β (7) L z α, β (8) H z L z 3. 3 ( H 3 ) () L 2 = L 2 x + L 2 y + L 2 z H 3 (2) a z H 3 a x, a y, a z (3) (4) L ± = L x ± il y, L 2 = (L 2 +L + L L + ) + L z L z (5) L ± α, β, a z (6) n α, n β, n z 000 L 2 000 (7) 00 L 2 00 (8) 00 L 2 00

3 3 : 203 3 :. L = r p () p = iħ [r i, p j ] (2) [L i, L j ] (3) [L i, r j ] (4) [L i, p j ] 2. J [J i, J j ] = iħϵ ijk J k () [J 2, J z ] = 0 (2) [J z, J ± ] (3) [J +, J ] (4) J J = iħj (5) J, J 2 ([J i, J 2j ] = 0) [J J 2, J z + J 2z ] (6) J = J + J 2 [J 2, J z ] 3. x r cos ϕ sin θ () 3 r = y = r sin ϕ sin θ, (Ω = θ, ϕ ) z r cos θ (e r, e θ, e ϕ ) ( r r, θ r, ϕ r) e i e j = δ ij (e r e θ = e ϕ )

3 3 : 203 2 (2) = e r r + e θ r θ + e ϕ r sin θ ϕ, r = re r L = r p (3) L + = ħe iϕ ( θ + i cot θ ϕ ), L = ħe iϕ ( θ + i cot θ ϕ ) (4) L 2 L z lm Y lm (Ω) = Ω lm = Θ lm (θ)φ m (ϕ) L z Y lm = ħmy lm Φ m (ϕ) = 2π e imϕ 2π 0 dϕ Φ m (ϕ) 2 = (5) L + Y ll = 0 Θ ll Θ ll θ (6) C l Θ ll = C l sin l θ l cot θθ ll = 0 π (7) C l = ( ) l C l, C l > 0 dθ sin θ Θ ll (θ) 2 = C l C l = ( ) l (2l + )! 2 2 l l! (8) Y ll L [ ] Y lm (Ω) = ( ) m+ m 2l + (l m )! e imϕ m 2 sin m d θ P l (cos θ) 2 (l + m )! 2π d cos θ Y lm, (m = l,, l) l = 0,, 2 d l P l (t) = 2 l l! dt l (t2 ) l l 0

3 4 203. σ x = 4 : 0 0, σ y = 0 i i 0 2 E 2, σ z = 0 0 () σ 2 x = σ 2 y = σ 2 z = E 2 (2) σ x σ y = σ y σ x = iσ z (3) σ y σ z = σ z σ y = iσ x (4) σ z σ x = σ x σ z = iσ y (5) S = ħ 2 σ, S [S i, S j ] = iϵ ijk S k (6) S z ħm m (7) S 2 = S 2 x + S 2 y + S 2 z (8) S 2 m m S 2 ħ 2 S(S + ) S > 0 (9) (a σ)(b σ) = a z a x ia y a z + ia y a z b z b x ib y b z + ib y b z (a σ)(b σ) = (a b)e 2 + i(a b) σ 2. 3 ñ = (n x, n y, n z ), ( n = ) e iφn σ = E 2 cos φ + in σ sin φ ( ) () (n σ) 2 = E 2

3 4 203 2 (2) P ± = 2[ E2 n σ) ] P± 2 = P ± (3) P + P = 0, P P + = 0 (4) P + + P (5) (n σ)p ± = ±P ± (6) n σ = P + P n (iφn σ) n = (iφ) n P + + ( iφ) n P (7) e in σ = n=0 (iφn σ)n /n! (*) (8) n n x = cos ϕ sin θ, n y = sin ϕ sin θ, n z = cos θ n σ u N = P +, v N = P 0 0 (9) u N = u N / u N, v N = v N / v N n σ +, (0) u S = P 0 +, v S = P 0 u S = u S / u S, v S = v S / v S u N u S v N v S () P + = u N u N = u Su S, P = v N v N = v Sv S 3. Θ = iσ 2 K (K ) () p = iħ ΘpΘ (2) S = ħσ/2 ΘSΘ (3) Θ 2 (4) ψ, ϕ ψ ϕ = ϕ ψ = Θϕ Θψ (5) ψ, ψ Θ = Θ ψ ψ ψ Θ = 0

3 5 203 5 :. 2 J, J 2, [J iµ, J jν ] = δ ij iħϵ µνλ J iλ, i =, 2 j i m i J 2 i j i m i = ħ 2 j i (j i + ) j i m i, J iz j i m i = ħm i j i m i jm = jm 2 = ħ (j + m)(j m + ) J jm ħ 2 (j + m)(j + m ) (j m + )(j m + 2) J jm 2. jm k = [ ] /2 ħ k (j + m) (j + m k + ) (j m + ) (j m + k) J }{{}}{{} jm k k k () J = J + J 2 J (2) j max = j +j 2, j min = j j 2 j max j=j min (2j+) = (2j +)(2j 2 +) (3) Clebsch-Gordan 2. j = /2, j 2 = /2 Clebsch-Gordan () J z,,, 2 2 2 2 J +,,, 2 2 2 2,,, 2 2 2 2 (2) 0 J (3) J 2 (4) 00 = a, + b 2 2 2 2 2, 0 00 = 0 2 2 2 a, b b > 0 00 00 = a 2 + b 2 =

3 5 203 2 (5) 00 J + 00 = 0 (6) Ψ 0 = ( 0, 00 ), ψ 0 = (,, 2 2 2 2 2 ψ C (7) 2 2 P = ψ C ψ C 2, 2 2 0 = ψ 0ψ C (8) (E 2 P )ψ C = 0 E 2 0 (9) ϕ = ψ = (E 2 P )ϕ (0) ψ = ψ / ψ 00 = ψ 0 ψ ( ) () 2 2 M 0 Ψ 0 = ψ 0 M 0 3. j =, j 2 = Clebsch-Gordan () J z J + 22 (2) 2 (3) 20 (4) 2 (5) 2 2 (6) = a 0 + b 0 2 = b > 0 (7) 0 (8) (9) J

3 5 203 3 (0) Ψ = ( 2, ), ψ = ( 0, 0 ) Ψ = ψ M M () Ψ 0 = ( 20, 0, 00 ), ψ 0 = (, 00, ) 00 = ψ 0 ψ ψ (i) 20 = ψ 0 ψ C ψ C (ii) 0 = ψ 0 ψ C2 ψ C2 (iii) ψ C = (ψ C, ψ C2 ) P = ψ C ψ C 0 (iv) ϕ = 0 ψ = (E 3 P )ϕ E 3 (v) ψ C ψ = ψ C2 ψ = 0 (vi) ψ = ψ / ψ 00 = ψ 0 ψ (a) J z 00 (b) J + 00 (c) J 00 (2) Ψ 0 = ψ 0 M 0 M 0 (3) m m 2 jm

3 6 203 6 :. j =, j 2 = 2 Clebsch-Gordan 2. S = /2 3 S i, (i=,2,3) (J > 0) H 3 = J(S S 2 + S 2 S 3 + S 3 S ), S 2 i = ħ 2 2 3 2 = 3 4 ħ2 (i) s s 2 s 3 = s s 2 s 3, s i = (ii) S = S + S 2 + S 3 H = JS 2 9 4 Jħ2 (iii) 2 2 = 0 2 2 2 = 2 2 3 2 (iv) H (v). H 3. 2 ( )S S i, (i=,2) (J > 0) H S = J S S 2, S 2 = ħ 2 S(S + ) (i) S = S + S 2 H S S (ii) S S = 2S 2S 0 H S

3 6 203 2 (iii) m H S m = J m (S S 2 ) m 4. S /2 N N H N = J i<j S i S j, S 2 i = 3 4 ħ2 (i) H N S = N i= S i (ii) s,, s N, s i = ± 2 (iii) S z s,, s N = ħm s,, s N, M = N i= σ M = N/2 m D M (m = 0,, N) ( :N m S z ħm ) (iv) S 2 s,, s N = ħ 2 S(S+) s,, s N, S z s,, s N = ħs s,, s N,, d S, D S S = N/2 d S = D S D S+ S = 0,, N/2 (v) N/2 (2S + )d S = 2 N (vi) H N 0

3 7 : 203 7 :. R k D (q) (R) 2k + O (k) q O q (k) RO (k) q R = q O (k) q D (k) q q (R) (a) 2k + T (k) q k (b) R R = e iδθn J O k q k ( Dq k q (e iδθn J ) = δ q q iδθn D (k) q q (J) ) (c) 2 A, B A B = 2 (A +B + A B + ) + A z B z (A ± = A x ± ia y ) (d) k T k q J 2 T k q = ħ 2 k(k + )T k q 2. (a) jm, jm J 2, J z jm jm m (b) Wignet-Eckart (c) O S jm O S j m = 0, j j 0 (d) O V jm O V j m = 0, j j 0, ±

3 7 : 203 2 3. 2 U, V T (k) q = T j q T j 2 q 2 j q, j 2 q 2 kq (a) U (b) U ± = U ± / 2, U 0 = U z (c) 2 (d) 0 U V (e) U V (f) 2 U ±, U 0, V ±, V 0 CG j m m m 2 j m, j 2 m 2 jm 2 2 2 0 / 2 2 0 / 2 2 0 - / 6 2 0 0 0 2/ 6 2 0 - / 6 2 - - 0 / 2 2-0 - / 2 2-2 - - j m m m 2 j m, j 2 m 2 jm 0 / 2 0 / 2 0 - / 2 0 0 0 0 0 - / 2 - - 0 / 2-0 - / 2 0 0 - / 3 0 0 0 0 / 3 0 0 - / 3

3 8: 203 8 :. 3 () 3 R det R = (2) 3 (3) v R(v) Q R = QRQ R (4) (α, β, γ) ()z R α (z) ( (x, y, z = z) ) (2) y β R β (y ) ( (x 2, y 2 = y, z 2 ) ) (3) z 2 γ R γ (z 2 ) R(α, β, γ) = R γ (z 2 )R β (y )R α (z) R(α, β, γ) = R α (z)r β (y)r γ (z) 2. H E ψ i, (i =,, d) d ( ) R H [H, R] = 0 () R ψ j = ψ i D ij (R) d D: {D(R)} ij = D ij (R) (2) ψ = ( ψ,, ψ d ) Rψ = ψd(r) (3) (R 2 R )ψ = ψd(r 2 )D(R ) (4) (R )ψ = ψ[d(r)]

3 8: 203 2 3. H(x) = ħ2 d 2 ψ 2m dx 2 ψ(x) ψ(x + L/2) = ψ(x L/2) ψ k = L /2 e ikx, k = 2π n, n = 0, ±, ±2, L P ψ(x) = ψ( x) () {P, P 2 = } ( ) (2) k > 0 ψ = (ψ k, ψ k ) R = P, Rψ = ψd(r) D(R) (3) ψ ± = (ψ k ± ψ k )/ 2 P ψ + = ψ +, P ψ = ψ (4) ψ = (ψ +, ψ ) ψ = ψ U U (5) Rψ = ψ D (R) D (R) R =, P (6) D(R) D (R) 4. ẑ R(α, β, γ) ψ(r(α, β, γ)ẑ) Q Qψ(R(α, β, γ)ẑ) = ψ(q R(α, β, γ)ẑ) l l DMN l (R) M = l,, l (N ) ψ M (R(α, β, γ)ẑ) = [DMN(R(α, l β, γ))] ψ M D l Qψ M (R(α, β, γ)ẑ) = [DMN(Q l R(α, β, γ))] = [DMK(Q l )] [DKN(R(α, l β, γ))] = [[D l (Q)] ] MK[DKN(R(α, l β, γ))] = [DKN(R(α, l β, γ))] DKM(Q) l = ψ K (R(α, β, γ)ẑ)dkm(q) l

3 9 : Schwinger Boson 203 9 : Schwinger Boson. a, a [a, a ] = ˆn = a a () aˆn = (ˆn + )a (2) aˆn 2 = (ˆn + ) 2 a (3) aˆn k = (ˆn + ) k a (k =, 2, ) (4) x f(x) af(ˆn) = f(ˆn + )a (f(x) x = 0 ) (5) e iθˆn ae iθˆn = e iθ (6) k = 0,, 2, [a, (a ) k ] = k(a ) k (7) [a, f(a )] = a f(a ) (8) af(a ) 0 = a f(a ) 0 2. J = 2 a σa, a = a + () [J i, J j ] = iϵ ijk J k a (2) J 2 = 2 ˆn( 2 ˆn + ), ˆn = a a [a ξ, a η] = δ ξη (3) n = 3 h = n σ ± σ (4) h ± ψ ± U = (ψ +, ψ ) a = a + a = Ua [a ξ, a η ] = δ ξη

3 9 : Schwinger Boson 203 2 (5) n J = 2 (ˆn + ˆn ) (6) P ± = ψ ± ψ ± h ± e iθn J ae iθn J = Ue iθn J a e iθn J () = Udiag (e i θ 2, e i θ 2 )a (2) = Udiag (e i θ 2, e i θ 2 )U a (3) = (ψ +, ψ )diag (e i θ 2, e i θ 2 ) ψ + ψ a (4) = (e i θ 2 P+ + e i θ 2 P )a (5) = 2 (ei θ 2 (E2 + (n σ)) + e i θ 2 (E2 (n σ)))a (6) = (E 2 cos θ 2 + in σ sin θ )a (7) 2 (7) u = E 2 cos θ + in σ sin θ SU(2) 2 2 3. u SU(2) σ = uσu = σ σ 2 σ 3 = Qσ = Q σ σ 2 σ 3 () σ α = σ α (2) Trσ = 0 (3) σ α = Q αβ σ β, Q αβ R (4) {σ α, σ β } Q αγq βγ = δ αβ {A, B} = AB + BA (5) Q Q = E 3 (6) σ σ 2σ 3 = 2iE 2 2 det Q =

3 0 : 203 0 :. () f(z) z C f(z) = dξ f(ξ) 2πi ξ z n f (n) (z) = n! f(ξ) dξ 2πi C (ξ z) n+ (2) P l (t) = d l 2 l l! dt l (t2 ) l P l (t) = [ ] ξ 2 l dξ 2πi C t 2(ξ t) ξ t (3) ζ = ξ2 2(ξ t) ξ = R, R = 2tζ + ζ ζ 2 ) (4) ζ 0 R ζ 0 ξ t ζ C C + t ξ C + 0 R ζ = 0 (5) dξ = ξ t dζ ζr (6) P l (t) = d l l! dζ l R ζ=0 (7) R ζ = 0 ( ) 2tζ + ζ 2 = P l (t)ζ l l=0

3 0 : 203 2 (8) (r > = max( r, r ), r < = min( r, r ) ) r r = l=0 r< l r> l+ P l (ˆr ˆr ) = 4π lm 2l + r< l r> l+ Y lm (ˆr)Y lm( ˆr ) (9) ρ(r) ϕ(r) ϕ(r) = 4πϵ 0 lm 4π q lm 2l + r Y lm(ˆr), q l+ lm = d 3 r (r ) l ρ(r )Y lm(ˆr ) 2. 3 () R R j m, j 2 m 2 = (R j m ) (R j 2 m 2 ) = j m, j 2 m 2 D j m m (R)Dj 2 m 2 m 2 (R) = jm D j m m (R) jm j m, j 2 m 2 (2) j D j m m D j m m Dj 2 m 2 m 2 = j m, j 2 m 2 jm D j m m jm j m, j 2 m 2 2l + (3) Y lm (β, α) = 4π [Dl m0(α, β)] π 0 dβ sin β 2π 0 dα Y lm(β, α)y l m (β, α)y l2 m 2 (β, α) [ ] (2l + )(2l 2 + ) = l0 l 0, j 2 0 lm l m, l 2 m 2 4π(2l + )