中央大学セミナー.ppt

Similar documents
meiji_resume_1.PDF

LLG-R8.Nisus.pdf

Untitled


医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

TOP URL 1

Part () () Γ Part ,

Gmech08.dvi

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

『共形場理論』

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w

Microsoft Word - 11問題表紙(選択).docx

YITP50.dvi

untitled

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

TOP URL 1

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

TOP URL 1

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

201711grade1ouyou.pdf

gr09.dvi

QMII_10.dvi

第10章 アイソパラメトリック要素

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)


O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

arxiv: v1(astro-ph.co)

tnbp59-21_Web:P2/ky132379509610002944

inflation.key


1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

(Maldacena) ads/cft

sec13.dvi

TOP URL 1


パーキンソン病治療ガイドライン2002

研修コーナー

05Mar2001_tune.dvi


本文/目次(裏白)

( ) Note Ω m = 1 Ω m : ( ) r-process α 1: 2 32T h(t 1/2 = y) 2 38U(t 1/2 = y) 2 35U(t 1/2 = 7.038

( ) ,

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

i 18 2H 2 + O 2 2H 2 + ( ) 3K

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? , 2 2, 3? k, l m, n k, l m, n kn > ml...? 2 m, n n m

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE

D.dvi

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

The Physics of Atmospheres CAPTER :

pdf

液晶の物理1:連続体理論(弾性,粘性)

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a


(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

BayesfiI‡É“ÅfiK‡È−w‘K‡Ì‡½‡ß‡ÌChow-Liu…A…‰…S…−…Y…•

Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38



0 ϕ ( ) (x) 0 ϕ (+) (x)ϕ d 3 ( ) (y) 0 pd 3 q (2π) 6 a p a qe ipx e iqy 0 2Ep 2Eq d 3 pd 3 q 0 (2π) 6 [a p, a q]e ipx e iqy 0 2Ep 2Eq d 3 pd 3 q (2π)

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

untitled

( )


[ ] [ ] [ ] [ ] [ ] [ ] ADC

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

: (a) ( ) A (b) B ( ) A B 11.: (a) x,y (b) r,θ (c) A (x) V A B (x + dx) ( ) ( 11.(a)) dv dt = 0 (11.6) r= θ =

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

³ÎΨÏÀ

30

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,


4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.

Note.tex 2008/09/19( )

Microsoft Word - 章末問題

Transcription:

String Gas Cosmology

References Brandenberger & Vafa, Superstrings in the early universe, Nucl.Phys.B316(1988) 391. Tseytlin & Vafa, Elements of string cosmology, Nucl.Phys.B372 (1992) 443. Brandenberger, String Gas Cosmology, 0808.0746 Kanno & Soda, Moduli stabilization in string gas cosmology, Phys.Rev.D72 (2005) 104023. Brandenberger, Kanno, Soda, Easson, Khoury, Martineau, Nayeri, Patil, More on the spectrum of perturbations in string gas cosmology, JCAP 0611 (2006) 009.

= FLRW k = 0 ds 2 = dt 2 + a 2 (t) dx 2 + dy 2 + dz 2 H 2 = 8πG 3 ρ

log ( ) a = 0 a t a t p, p < 1 1 H t 1 H L a H = const. log

ρ log ( ) ρ = const. 1 a 4 H = const. ρ = const. 1 a 3 Log

V (φ) m 2 1 H 1 m H = a a = const. H = m 8

ρ log ( ) ρ = const. 1 a 4 δρ ρ δa a Hδt Hδφ φ Δ 1 a 3 Log

log ( ) horizon size Δ = const. Δ inflation log

COBE δt T Δ 1992, COBE WMAP

12

= 1 2πP(k) exp 1 2 Δ 2 (k) P(k) Δ( x) = 1 ( 2π ) 3 2 d 3 k Δ(k) e i k ix Δ(k) Δ(k ') = δ(k + k ')P(k = k ) P(k) const.

k GUT scale 10 33 cm t

10-

弦理論と宇宙論 特異点 非インフレーション 非幾何学的 超弦理論 超重力理論 String gas AdS/CFT, Matrix? cosmology Pre-big-bang cosmology Ekpyrotic or cyclic cosmology 幾何学的 D-brane inflation 場の理論 インフレーション old inflation new inflation chaotic inflation hybrid inflation 宇宙の精密観測 Primordial GW LSS, CMB, 21cm, etc.

T :

world line = world sheet

string scale in conformal gauge g ab δ ab X µ L (τ + σ ) = x µ + α µ 0 2 (τ + σ ) + i 2 X µ R (τ σ ) = x µ + α µ 0 2 (τ σ ) + i 2 α n µ n e n 0 α n µ n e n 0 in(τ +σ ) in(τ σ ) α µ ν n,α m = nη µν δ n+ m,0 22

p µ = 2 α 0 µ = 2 α 0 µ 10, 2,

2

Kalza-Klein T

R p=n/r, w=mr. X L (σ + 2π ) + X R (σ + 2π ) = X L (σ ) + X R (σ ) + 2πw p = 1 2π ( X L + X R ) 2π dσ = 1 0 2 α + α 0 0 ( ) 4-d universe α 0 = 1 2 ( p w ) α 0 = 1 2 ( p + w ) N N = nm Target space (T-) duality

T- momentum x = p exp( ipx) p x = x + 2π R x = winding p exp( iw x ) w x = x + 2π R 29

E 2 1 E 2 na n a n N n=1 a 1 p(n) 1 2 3 4 a 2, ( a ) 2 1 a 3, a 1 a 2, ( a ) 3 1 a 4, a 1 a 3, ( a ) 2 2, a ( 2 a ) 2 1, ( a ) 4 1 p(n) 1 4N 3 exp 2π N 6 2 3 5 N 1

E 2 24 na n a n 24N n=1 p(n ) exp 2π 24N exp( 4π N ) 6 E 2 N p(e) exp( β H E) β = 4π H ( ) exp βe i de p(e) i exp( βe)

4

4 6 4 shifted dilaton

T

1

:

ds 2 = dt 2 + e 2λ(t ) δ ij dx i dx j ( ) 2 S = 1 2 d 4 x ge 2φ R + 4 φ ( ) d 4 x F λ,β β = 1 T 3 λ 2 + ϕ 2 = 2e ϕ F + β F β = 2eϕ E λ ϕ λ = e ϕ F β = eϕ P ϕ = 2φ 3λ E + 3 λp = 0 P = 0 E = const. λ = 0 ϕ = 2 t

H 1 k H 1 t 42

Z(β) = 0 de Ω(E) e βe C β Ω(E) = L +i L i dβ 2πi Z(β) e βe L Heterotic Z(β) = β H β β H β H β β 1 6 β H = 2 + 1 β 1 = 1 1 R 2 + 2 1 R 2 Ω(E, R) = β H e β H E 1+ δ Ω(E, R) ( ) 5 [ ] δ Ω = β H E 5! e (β H β 1 )E

δρ 2 = ρ 2 ρ 2 = 1 R 6 β F + β F β = T 2 R C 6 V S = logω T = S E = R2 3 log s R 2 3 s T H 1 T T H E 1 T = T H 1+ β β H 1 β H β H β 1 3 s R 2 δ Ω C V = E T = R2 s 3 T 1 T T H 1 δρ 2 = 1 R 4 T s 3 1 T T H 1

2 T µ ν = G µα G log Z G αν T i j T i j T i j T i j = 1 βr 3 log R 1 R 3 F log R = 1 p βr 3 R p = T S V = T (β H β 1 ) Eδ Ω V 1 p βr 3 R = 4 3 T 2 1 T R 4 3 s T H T H log R2 s 2 1 T T H 2 k 2 h ij (k) 8πGδT ij (k)

2 Φ = 4πGδρ k 1 = R P Φ (k) = k 3 Φ(k) 2 = 16π 2 G 2 k 4 δρ 2 = 16π 2 G 2 T s 3 1 T T H 1 P Φ (k) = p s 4 1 T T H 1 P h (k) = p s 4 1 T T H log 1 2 s k 2 1 T T H 2

4 T

T 1 1

2