コンクリート工学年次論文集 Vol.30
|
|
|
- ひとお さかど
- 7 years ago
- Views:
Transcription
1 論文新潟県中越沖地震で被災した RC 造煙突の倒壊解析 金裕錫 * 壁谷澤寿海 * 壁谷澤寿一 * * 壁谷澤寿成 要旨 : 本研究では, 年 月 日に発生した新潟県中越沖地震で被災した RC 造煙突の折損および崩落の破壊過程を推測し, その原因を究明する目的で 次元地震応答解析を行った 煙突位置に近い観測点 (Knet, NIG) で得られた地震動記録を用い, 地震動の特徴を示すとともにその地震動による煙突の破壊過程を再現した その結果, 煙突壁板の配筋がダブルからシングルに変化するところに変形が集中し, 曲げ破壊しており, 実際の煙突の折損位置が特定できた なお, 外力分布の種類による Pushover 解析結果および地震応答解析時のせん断力係数分布から地震動による煙突への外力分布は逆三角形であることが推定できた キーワード : 地震被災, 煙突, 倒壊解析, 被害調査. はじめに 年 月 日に発生した新潟県中越沖地震による建物の被害は, 比較的周期の長い木造建物に集中しており, 短周期の鉄筋コンクリート造建物には大きな被害はなかった これは, キラーパルスと呼ばれる卓越周期の長い (~. 秒 ) 今回の地震動の特徴にその原因があると考えられる 一方, 秒前後の固有周期を持つ鉄筋コンクリート造煙突が今回の長周期地震動により折損し, 一部崩落する被害を受けた 本研究では, 著者らにより行われた新潟県中越沖地震の被害調査および行政独立法人建築研究所から報告された煙突の資料 ) を用いて, 被害煙突に対する 次元地震応答解析から煙突の破壊過程を推測し, その倒壊の原因を究明するのを目的とする 約 km 約 km 図 被災煙突の位置. 解析対象概要柏崎市橋場所在の柏崎クリーンセンターの位置を本震震央および Knet 柏崎 (NIG) 観測点の位置とともに図 に示す 解析対象はゴミ処理施設 ( 柏崎クリーンセンター ) にある自立型煙突で,99 年 月に完成されたものである 本煙突は二重筒形式で内筒 ( 鋼製 ) と外筒 ( 鉄筋コンクリート ) から構成されており, 本研究では RC 造である外筒のみを解析対象とする 写真 には煙突の被害状況を示しており, 地上から約 m のところが折損, 崩落し,m ぐらい降下しているのが示されている 外筒は, 高さ m,.m の正方形断面を有しており, 壁板厚および配筋は高さ方向に変化している ( 図, 図 ) 特に, 配筋においてはレベル( 図 ) からダブル配筋からシングル配筋に変化しており, その位置で煙突の破壊が生じている * 東京大学地震研究所助教工博 ( 正会員 ) * 東京大学地震研究所教授工博 ( 正会員 ) * 東京大学工学系研究科大学院生工修 ( 正会員 ) 西 東 約 m 降下 写真 煙突の被災状況 約 m
2 m X 図 煙突の立面図 (Y 構面 ) および配筋詳細 Y.m Y 壁板番号 9 9 X 節点 9~ 番壁板 X.m 9.m 9.m 9.m 9.m 9.m.m ~ 番壁板 ~9 番壁板.m D [email protected] D [email protected] D9 [email protected] 9.tonf D [email protected] D [email protected] D 9D D@ [email protected] D D D@ [email protected] 主筋外側主筋内側帯筋外側帯筋内側壁板厚重量.9m ~.m 図 断面図および平面要素番号. 解析方法本解析では, 図 に示すように 枚の壁板を, 配筋量が変化する位置を中心に分け, またそれぞれの壁板を 枚の壁板要素 ( 図 ) でモデル化した したがって, 外筒一面 枚の壁板を 9 枚の isoparametri 要素でモデル化することになり, 合計 枚の平面要素で煙突全体をモデル化した ここで, 煙突 面の壁板に設けられている開口部は無視してモデル化した 平面要素の寸法は, 最上部 (.m.m) と最下部 (.m.m) を除いては, 高さ m, 幅.m であり, 各要素は 節点平面要素 ~ 番壁板 X である 各平面要素の応答は, ガウス積分点でのコンクリートおよび鉄筋おの応力 歪関係から評価されており, 平面要素の自由度は面内変形のみを考慮し, 自由度で表される ( 図 ) D, F D, F D, F 節点 ガウス積分点 D, F D: Displaement D, F F: Fore D, F 図 壁板要素 (Isoparametri element) σ f f σ = f f ε ε ε =. /(..ε t / ε ), =., = σ t f r εr ε r 本解析で用いたコンクリートの構成則を図 に示す ここで, 圧縮モデルでは 軸応力状態での引張歪によるコンクリート圧縮強度の軟化効果が考慮されており ( 図 (a) の ), 耐力劣化を再現することが可能である コンクリートの引張モデルでは, ひび割れ発生後も引張強度を直ちに喪失せず, 鉄筋の存在による tension stiffneing 効果を考慮している ( 図 (b)) また, 面材要素のひび割れモデルとしては分散ひび割れモデル ( 平均歪 平均応力関係 ) と回転ひび割れモデルを採用している コンクリートの構成則および面材要素の詳細については文献 ) を参照されたい 鉄筋の構成則としては bilinear モ ε ε ε ε ε, σ ) (, max, max σ = (a) 圧縮モデル ( ) ( ) ) 図 コンクリートの構成則 σ t = fr ( ε r / ε t ) (b) 引張モデル 9 f ε. ε t D, F D, F ( ε ε ) input data
3 デルを用いており, 降伏後の剛性低下率を初期剛性の. 倍と設定した 材料特性としては, コンクリート強度を N/mm, 鉄筋の場合は,9 N/mm (D 以下 ) と N/mm (D9 以上 ) の つの強度を用いて解析を行った 解析対象の全節点数は 個であり ( 図 ), 各節点の自由度は X,Y,Z 方向の併進成分のみを考慮した 各節点の質量は, 壁板の重量 ( 図 ) を求め集中質量として振り分けた 自重による各部材の初期応力状態に関しては壁板の軸応力を考慮した 支持条件としては基礎固定の仮定で解析を行った 数値積分法は Newmark β 法 ( β = / ) を用い, 積分の時間刻み, t は. 秒とした 減衰に関しては, 実在する鉄筋コンクリート煙突の入力ロープ加振による振動実験の結果, 減衰定数は各次 ~ % との結果が報告されていることから ) 減衰定数を % と設定し, 瞬間剛性比例型で解析を行った 対する煙突方位のずれ ( ) も示している 地震応答解析では, 図 の EW,NS 成分をそれぞれ煙突の X 軸および Y 軸に対し 回転して入力するとともに, 上下動成分 (UD) も入力して解析を行った 図 には Knet 柏崎の擬似速度応答スペクトルを, 年能登半島地震 ( 穴水 ) と JMA Kobe 地震動のスペクトルと比較しており, 柏崎の両成分は長周期 (~. 秒 ) 成分が卓越しているのが確認できる W N 9 Y E X. 入力地震動図 (a) に Knet 柏崎 (NIG) で観測された加速度の EW 成分と NS 成分を示し, それぞれの速度波形を図 (b) に示す ここで, 速度波形は加速度記録を積分して求めた結果であり, 積分時のフィルターは butterworth, 次のバンドパース.Hz~Hz を用いた EW 速度 (kine) 加速度 (gal) NS (a) 加速度波形 EW NS (b) 速度波形図 KNet 柏崎 (NIG) の時刻歴両速度成分 (EW,NS 成分 ) による煙突に入力される地震動の方向を図 に示しており, 明確な方向性 ( 北西 南東 ) を持っているのが確認できる また, 真北に psv(m/se) 図 煙突への地震動 ( 速度 ) 入力方向 Kasiwazaki (EW) Kasiwazaki (NS) Anamizu (EW) Anamizu (NS) JMA Kobe (EW) JMA Kobe (NS) S... 周期 ( 秒 ) 図 擬似速度応答スペクトルの比較 (h=.). 解析結果. 固有値解析図 9 に煙突の固有周期およびモード形を示す ここで, 式 () の略算式 ) による 次固有周期は.9 秒であり, 固有値解析結果 (. 秒 ) より若干長いもののほぼ同等な結果となっている WH / g T =. () EI
4 ここで,W : 地上部分の固定荷重と積載荷重の和 (kn), g : 9.m / s, H : 地盤面から煙突の頂部高さ (m), E : ヤング係数 (N/mm ), I : 脚部の断面 次モーメント (m ) 東方向へ集中しているのがわかる また, 最大変位記録時 (.9 秒付近 ) の煙突の変形を図 (b) に表しており, 逆三角形外力分布を用いた Pushover 解析結果と同様に 番目の壁板に変形が集中しているのが確認できる Y 方向頂部変形角 (rad.).... 最大変位 (a) 次 :. 秒 (b) 次 :. 秒 () 次 :. 秒図 9 固有周期およびモード形. Pushover 解析矩形外力分布および逆三角形外力分布を用いて行った Pushover 解析結果を図 に示す 図からわかるように矩形分布の場合は脚部の壁板に変形が集中しているのに対し, 逆三角形外力分布の場合は, 番壁板 ( 図 参照 ) に変形が集中しているのが確認できる 実際の煙突の被害も 番目の壁板に相当する位置で大きかったことから地震動による煙突への外力分布は逆三角形分布に近いと推測される ここで, 番壁板までがシングル配筋であり, 番目から下の壁板はダブル配筋になっている Y Y.... X 方向頂部変形角 (rad.) (a) 頂部の変位オービット 番壁板 北西方向 番壁板 X X (b) 最大変位記録時の煙突変形様子 軸方向変位 (m) XY XY XY XY 番壁板 (a) 矩形外力分布 (b) 逆三角形外力分布図 外力分布による煙突の変形. 地震応答解析図 (a) に煙突頂部の変位オービットを示しており, 入力地震動の方向性により煙突の変位応答も北西 南 9 () 各壁板 (,,, 番 ) の鉛直節点間相対軸方向変位図 最大変位記録時の煙突の挙動図 () には変形が集中しているレベル 上の壁板 枚 (,,, 番, 図, 参照 ) の鉛直節点間の相対軸方向変位を示している 最大水平変位が北西方向に生じているので XY 位置で最大引張変位,XY 位置で最大圧縮変位が生じているのがわかる したがって,
5 この時点で Y 構面の壁板 ( 番壁板 ) と X 構面の壁板 ( 番壁板 ) に引張による曲げ破壊が起こったと推測される 現地の被害調査のとき撮影した写真からも最大変形時引張側となる 番と 番相当の壁板は崩落しており ( 写真 (a)), 圧縮側となる 番と 番相当の壁板は折損しているもののその壁板は崩落していないのが確認できる ( 写真 (b)) 番壁板崩落 (a) 最大変形時引張側 (b) 最大変形時圧縮側写真 煙突の折損状況,,,,,,,, 9,, 9,,,,,,,, 9, 番壁板崩落 最大変位記録時 逆三角形分布 9,, 9,,,,,,,, 9,, 9,,,,,,, 番壁板最大ベースシヤー記録時 せん断力係数 せん断力係数 (a) X 方向 (b) Y 方向 図 せん断力係数分布 ( ベースシヤー係数で基準化 ) 番壁板壁板番号 図 には 番壁板とその上下にある壁板 (, 番 ) の最大変位記録時までの主筋歪を時刻歴で比較している 図からわかるように 番の主筋歪に比べ 番と 番の歪レベルははるかに小さいのがわかり, ダブル配筋からシングル配筋に変化する位置で変形が集中しているのを表している 図 では, 図 で擬似速度応答スペクトルを示した能登半島地震 ( 穴水 ) と JMA Kobe 地震動の 成分 (EW, NS,UD) を煙突へ入力して得られた頂部の変位オービットを表している これらの地震動による変位応答は, 柏崎 (NIG) の地震動入力による変位応答に比べ小さい結果になっているのがわかる ここで, 穴水地震動の場合は, 柏崎地震動入力時の結果と同様に配筋が変化するレベル 付近で変形が集中しているのに対し,JMA Kobe 入力の場合は変形の集中具合が穏やかで, 全高さへ渡り均等に分布している結果となった これは, つの地震動の中で JMA Kobe 地震動の卓越周期がもっとも短いことと関連があると考えられる ひずみ 番壁板 番壁板 番壁板 ガウス積分点番号. 9. 図 隣接壁板のガウス積分点の主筋歪比較 図 には最大変位記録時 ( 図 (a)) および最大ベースシヤー記録時における各壁板の応答せん断力から算出した高さ方向のせん断力係数を逆三角形外力分布とともに示す ここで, 最大変位記録時と最大ベースシヤー記録時のベースシヤーが異なるので両結果を比較するためベースシヤー係数で基準化した値を示した 両時刻 ( 最大変位記録時および最大ベースシヤー記録時 ) におけるせん断力係数分布ともに, 値に差はあるものの, 逆三角形外力分布に近いのがわかる これは逆三角形外力分布を用いた pushover 解析結果と地震応答解析結果において変形集中位置が同じであることを裏付ける結果である Y 方向頂部変形角 (rad.).... Kasiwazaki JMA Kobe Anamizu.... X 方向頂部変形角 (rad.) 図 入力地震動による変位応答
6 . まとめ新潟県中越沖地震で被災した鉄筋コンクリート造煙突の倒壊過程を推測, 究明する目的で行った 次元地震応答解析から得られた知見を以下にまとめる () 速度スペクトルの特徴の異なる地震動による地震応答解析結果から, 地震動の卓越周期が煙突の破壊部位および損傷分布に影響を与えることが確認できた () ダブル配筋からシングル配筋へ変化するところで折損した実際の煙突の挙動が逆三角形外力分布を用いた Pushover 解析から再現できたことや地震応答解析から求めた応答せん断力係数分布から, 地震動による煙突への外力分布は逆三角形分布であることが推定できた () 柏崎 (NIG) 地震動の 成分を用いた地震応答解析から, 実際の被害状況と同様に配筋の変化部位への変形集中による曲げ破壊過程が再現でき, 煙突の折損部位が地震応答解析から特定できた 参考文献 ) 建築研究所 : 塔状工作物 ( 鉄筋コンクリート造 ) の被害, 独立行政法人建築研究所ホームページ ( ) 日本建築学会 : 鉄筋コンクリート煙突の構造設計指針,9 ) 陣少華, 壁谷澤寿海 : 非線形解析における鉄筋コンクリート耐震壁モデル, コンクリート工学年次論文報告集,Vol., No., pp., 999 ) 日本建築学会 : 煙突構造設計指針,
PowerPoint プレゼンテーション
SALOME-MECA を使用した RC 構造物の弾塑性解析 終局耐力と弾塑性有限要素法解析との比較 森村設計信高未咲 共同研究者岐阜工業高等専門学校柴田良一教授 研究背景 2011 年に起きた東北地方太平洋沖地震により多くの建築物への被害がみられた RC 構造の公共建築物で倒壊まではいかないものの大きな被害を負った報告もあるこれら公共建築物は災害時においても機能することが求められている今後発生が懸念されている大地震を控え
PowerPoint プレゼンテーション
材料実験演習 第 6 回 2015.05.17 スケジュール 回 月 / 日 標題 内容 授業種別 時限 講義 演習 6,7 5 月 17 日 8 5 月 24 日 5 月 31 日 9,10 6 月 7 日 11 6 月 14 日 講義 曲げモーメントを受ける鉄筋コンクリート(RC) 梁の挙動その1 構造力学の基本事項その2 RC 梁の特徴演習 曲げを受ける梁の挙動 実験 鉄筋コンクリート梁の載荷実験レポート
PowerPoint プレゼンテーション
材料実験演習 第 6 回 2017.05.16 スケジュール 回 月 / 日 標題 内容 授業種別 時限 実験レポート評価 講義 演習 6,7 5 月 16 日 8 5 月 23 日 5 月 30 日 講義 曲げモーメントを受ける鉄筋コンクリート(RC) 梁の挙動その1 構造力学の基本事項その2 RC 梁の特徴演習 曲げを受ける梁の挙動 実験 鉄筋コンクリート梁の載荷実験レポート 鉄筋コンクリート梁実験レポート作成
Microsoft PowerPoint - zairiki_3
材料力学講義 (3) 応力と変形 Ⅲ ( 曲げモーメント, 垂直応力度, 曲率 ) 今回は, 曲げモーメントに関する, 断面力 - 応力度 - 変形 - 変位の関係について学びます 1 曲げモーメント 曲げモーメント M 静定力学で求めた曲げモーメントも, 仮想的に断面を切ることによって現れる内力です 軸方向力は断面に働く力 曲げモーメント M は断面力 曲げモーメントも, 一つのモーメントとして表しますが,
< B795FB8C6094C28F6F97CD97E12E786477>
長方形板の計算システム Ver3.0 適用基準 級数解法 ( 理論解析 ) 構造力学公式集( 土木学会発行 /S61.6) 板とシェルの理論( チモシェンコ ヴォアノフスキークリ ガー共著 / 長谷川節訳 ) 有限要素法解析 参考文献 マトリックス構造解析法(J.L. ミーク著, 奥村敏恵, 西野文雄, 西岡隆訳 /S50.8) 薄板構造解析( 川井忠彦, 川島矩郎, 三本木茂夫 / 培風館 S48.6)
<4D F736F F F696E74202D D D4F93AE89F097E D F4390B32E B93C782DD8EE682E
DYMO を用いた動的解析例 単柱式鉄筋コンクリート橋脚の動的耐震設計例 解説のポイント DYMOを使った動的解析による耐震性能照査の流れ 構造のモデル化におけるポイント 固有振動解析 動的解析条件 動的解析結果 ( 各種応答 ) の見方 安全性の照査 形状寸法あるいは支承諸元の変更始め 橋梁構造のモデル作成 固有振動解析による橋梁の固有振動特性の把握 動的解析条件の設定 動的解析の実施及び解析結果の評価
「発電用原子炉施設に関する耐震設計審査指針」の改訂に伴う島根原子力発電所3号機の耐震安全性評価結果中間報告書の提出について
平成 年 9 月 日中国電力株式会社 発電用原子炉施設に関する耐震設計審査指針 の改訂に伴う島根原子力発電所 号機の耐震安全性評価結果中間報告書の提出について 当社は本日, 発電用原子炉施設に関する耐震設計審査指針 の改訂に伴う島根原子力発電所 号機の耐震安全性評価結果中間報告書を経済産業省原子力安全 保安院に提出しました また, 原子力安全 保安院の指示に基づく島根原子力発電所 号機原子炉建物の弾性設計用地震動
道路橋の耐震設計における鉄筋コンクリート橋脚の水平力 - 水平変位関係の計算例 (H24 版対応 ) ( 社 ) 日本道路協会 橋梁委員会 耐震設計小委員会 平成 24 年 5 月
道路橋の耐震設計における鉄筋コンクリート橋脚の水平力 - 水平変位関係の計算例 (H24 版対応 ) ( 社 ) 日本道路協会 橋梁委員会 耐震設計小委員会 平成 24 年 5 月 目次 本資料の利用にあたって 1 矩形断面の橋軸方向の水平耐力及び水平変位の計算例 2 矩形断面 (D51 SD490 使用 ) 橋軸方向の水平耐力及び水平変位の計算例 8 矩形断面の橋軸直角方向の水平耐力及び水平変位の計算例
<4D F736F F D208D5C91A297CD8A7793FC96E591E631308FCD2E646F63>
第 1 章モールの定理による静定梁のたわみ 1-1 第 1 章モールの定理による静定梁のたわみ ポイント : モールの定理を用いて 静定梁のたわみを求める 断面力の釣合と梁の微分方程式は良く似ている 前章では 梁の微分方程式を直接積分する方法で 静定梁の断面力と変形状態を求めた 本章では 梁の微分方程式と断面力による力の釣合式が類似していることを利用して 微分方程式を直接解析的に解くのではなく 力の釣合より梁のたわみを求める方法を学ぶ
CLT による木造建築物の設計法の開発 ( その 2)~ 構造設計法の開発 ~ 平成 26 年度建築研究所講演会 CLT による木造建築物の設計法の開発 ( その 2)~ 構造設計法の開発 ~ 構造研究グループ荒木康弘 CLT による木造建築物の設計法の開発 ( その 2)~ 構造設計法の開発 ~
CLT による木造建築物の設計法の開発 ( その 2)~ 構造設計法の開発 ~ 構造研究グループ荒木康弘 CLT 構造の特徴 構法上の特徴 構造上の特徴 講演内容 構造設計法の策定に向けた取り組み CLT 建物の現状の課題 設計法策定に向けた取り組み ( モデル化の方法 各種実験による検証 ) 今後の展望 2 構造の構法上の特徴軸組構法の建て方 鉛直荷重水平力 ( 自重 雪地震 風 ) 柱や梁で支持壁で抵抗
Microsoft PowerPoint - fuseitei_6
不静定力学 Ⅱ 骨組の崩壊荷重の計算 不静定力学 Ⅱ では, 最後の問題となりますが, 骨組の崩壊荷重の計算法について学びます 1 参考書 松本慎也著 よくわかる構造力学の基本, 秀和システム このスライドの説明には, 主にこの参考書の説明を引用しています 2 崩壊荷重 構造物に作用する荷重が徐々に増大すると, 構造物内に発生する応力は増加し, やがて, 構造物は荷重に耐えられなくなる そのときの荷重を崩壊荷重あるいは終局荷重という
Taro-2012RC課題.jtd
2011 RC 構造学 http://design-s.cc.it-hiroshima.ac.jp/tsato/kougi/top.htm 課題 1 力学と RC 構造 (1) 図のような鉄筋コンクリート構造物に どのように主筋を配筋すればよいか 図中に示し 最初に 生じる曲げひび割れを図示せよ なお 概略の曲げモーメント図も図示せよ w L 3 L L 2-1 - 課題 2. コンクリートの自重
Slide 1
Release Note Release Date : Jun. 2015 Product Ver. : igen 2015 (v845) DESIGN OF General Structures Integrated Design System for Building and General Structures Enhancements Analysis & Design 3 (1) 64ビットソルバー及び
<8D5C91A28C768E5A8F91836C C768E5A8F A2E786C73>
スカイセイフティネット構造計算書 スカイテック株式会社 1. 標準寸法 2. 設計条件 (1) 荷重 通常の使用では スカイセーフティネットに人や物は乗せないことを原則とするが 仮定の荷重としてアスファルト ルーフィング1 巻 30kgが1スパンに1 個乗ったとした場合を考える ネットの自重は12kgf/1 枚 これに単管 (2.73kgf/m) を1m 辺り2 本考える 従ってネット自重は合計で
<4D F736F F D208D7E959A82A882E682D18F498BC78BC882B B BE98C60816A2E646F63>
降伏時および終局時曲げモーメントの誘導 矩形断面 日中コンサルタント耐震解析部松原勝己. 降伏時の耐力と変形 複鉄筋の矩形断面を仮定する また コンクリートの応力ひずみ関係を非線形 放物線型 とする さらに 引張鉄筋がちょうど降伏ひずみに達しているものとし コンクリート引張応力は無視する ⅰ 圧縮縁のひずみ
AP 工法 による増設壁補強計算例 (1) 設計フロー RC 耐震改修設計指針に示された 中低層鉄筋コンクリート造建物を対象とした開口付き増設壁に AP 工法 を用いて強度抵抗型補強とする場合の補強壁 ( せん断壁 ) の設計フローを示す 周辺架構から補強壁に期待できる耐力の目安をつけ プロポーショ
AP 工法 による増設壁補強計算例 (1) 設計フロー RC 耐震改修設計指針に示された 中低層鉄筋コンクリート造建物を対象とした開口付き増設壁に AP 工法 を用いて強度抵抗型補強とする場合の補強壁 ( せん断壁 ) の設計フローを示す 周辺架構から補強壁に期待できる耐力の目安をつけ プロポーション ( 壁厚さ 開口形状 寸法 ) ならびに配筋を仮定する 補強壁架構のせん断耐力を計算する せん断破壊するときのメカニズムは
<4D F736F F D208D5C91A297CD8A7793FC96E591E6328FCD2E646F63>
-1 ポイント : 材料の応力とひずみの関係を知る 断面内の応力とひずみ 本章では 建築構造で多く用いられる材料の力学的特性について学ぶ 最初に 応力とひずみの関係 次に弾性と塑性 また 弾性範囲における縦弾性係数 ( ヤング係数 ) について 建築構造用材料として代表的な鋼を例にして解説する さらに 梁理論で使用される軸方向応力と軸方向ひずみ あるいは せん断応力とせん断ひずみについて さらにポアソン比についても説明する
平板曲げ理論による部材の等分布荷重または節点の集中荷重を受ける薄板のたわみと断面力の計算ソフト 鉄筋コンクリート床版や鋼板などの平板 ( 薄板 ) の等分布や集中荷重による作用曲げモーメント等の算出方法は 下記の平板の曲げ解析法一覧表より [1 平板曲げ理論による解析 ( 理論解 ) による方法 ]
平板曲げ理論による部材の等分布荷重または節点の集中荷重を受ける薄板のたわみと断面力の計算ソフト 鉄筋コンクリート床版や鋼板などの平板 ( 薄板 ) の等分布や集中荷重による作用曲げモーメント等の算出方法は 下記の平板の曲げ解析法一覧表より [1 平板曲げ理論による解析 ( 理論解 ) による方法 ] と [2 格子モデルによる微小変位理論 ( 棒部材の簡易格子モデル )] および [3 簡易算出式による方法
構造力学Ⅰ第12回
第 回材の座屈 (0 章 ) p.5~ ( 復習 ) モールの定理 ( 手順 ) 座屈とは 荷重により梁に生じた曲げモーメントをで除して仮想荷重と考える 座屈荷重 偏心荷重 ( 曲げと軸力 ) 断面の核 この仮想荷重に対するある点でのせん断力 たわみ角に相当する曲げモーメント たわみに相当する ( 例 ) 単純梁の支点のたわみ角 : は 図 を仮想荷重と考えたときの 点の支点反力 B は 図 を仮想荷重と考えたときのB
コンクリート実験演習 レポート
. 鉄筋コンクリート (RC) 梁の耐力算定.1 断面諸元と配筋 ( 主鉄筋とスターラップ ) スターラップ :D D D 5 7 軸方向筋 ( 主筋 ) (a) 試験体 1 スターラップ :D D D 5 7 軸方向筋 ( 主筋 ) (b) 試験体 鉄筋コンクリート (RC) 梁の断面諸元と配筋 - 1 - . 載荷条件 P/ P/ L-a a = 5 = a = 5 L = V = P/ せん断力図
Microsoft PowerPoint - zairiki_10
許容応力度設計の基礎 はりの断面設計 前回までは 今から建てようとする建築物の設計において 建物の各部材断面を適当に仮定しておいて 予想される荷重に対してラーメン構造を構造力学の力を借りていったん解き その仮定した断面が適切であるかどうかを 危険断面に生じる最大応力度と材料の許容応力度を比較することによって検討するという設計手法に根拠を置いたものでした 今日は 前回までとは異なり いくつかの制約条件から
集水桝の構造計算(固定版編)V1-正規版.xls
集水桝の構造計算 集水桝 3.0.5 3.15 横断方向断面の計算 1. 計算条件 11. 集水桝の寸法 内空幅 B = 3.000 (m) 内空奥行き L =.500 (m) 内空高さ H = 3.150 (m) 側壁厚 T = 0.300 (m) 底版厚 Tb = 0.400 (m) 1. 土質条件 土の単位体積重量 γs = 18.000 (kn/m 3 ) 土の内部摩擦角 φ = 30.000
<4D F736F F F696E74202D20906C8D488AC28BAB90DD8C7689F090CD8D488A D91E F1>
人工環境設計解析工学構造力学と有限要素法 ( 第 回 ) 東京大学新領域創成科学研究科 鈴木克幸 固体力学の基礎方程式 変位 - ひずみの関係 適合条件式 ひずみ - 応力の関係 構成方程式 応力 - 外力の関係 平衡方程式 境界条件 変位規定境界 反力規定境界 境界条件 荷重応力ひずみ変形 場の方程式 Γ t Γ t 平衡方程式構成方程式適合条件式 構造力学の基礎式 ひずみ 一軸 荷重応力ひずみ変形
国土技術政策総合研究所 研究資料
3. 解析モデルの作成汎用ソフトFEMAP(Ver.9.0) を用いて, ダムおよび基礎岩盤の有限要素メッシュを8 節点要素により作成した また, 貯水池の基本寸法および分割数を規定し,UNIVERSE 2) により差分メッシュを作成した 3.1 メッシュサイズと時間刻みの設定基準解析結果の精度を確保するために, 堤体 基礎岩盤 貯水池を有限要素でモデル化する際に, 要素メッシュの最大サイズならびに解析時間刻みは,
国土技術政策総合研究所資料
5. 鉄筋コンクリート橋脚の耐震補強設計における考え方 5.1 平成 24 年の道路橋示方書における鉄筋コンクリート橋脚に関する規定の改定のねらい H24 道示 Ⅴの改定においては, 橋の耐震性能と部材に求められる限界状態の関係をより明確にすることによる耐震設計の説明性の向上を図るとともに, 次の2 点に対応するために, 耐震性能に応じた限界状態に相当する変位を直接的に算出する方法に見直した 1)
Microsoft Word - 技術資料Vol.2.docx
技術資料 Vol.2 Civil Engineering & Consultants 株式会社クレアテック東京都千代田区西神田 2 丁目 5-8 共和 15 番館 6 階 TEL:03-6268-9108 / FAX:03-6268-9109 http://www.createc-jp.com/ ( 株 ) クレアテック技術資料 Vol.2 P.1 解析種別キーワード解析の目的解析の概要 3 次元静的線形解析
Microsoft PowerPoint - zairiki_11
許容応力度設計の基礎 圧縮材の設計 ( 座屈現象 ) 構造部材には 圧縮を受ける部材があります 柱はその代表格みたいなものです 柱以外にも トラス材やブレース材 ラチス材といったものがあります ブレースは筋交いともいい はりや柱の構面に斜め材として設けられています この部材は 主に地震などの水平力に抵抗します 一方 ラチス材は 細長い平鋼 ( 鉄の板 ) を組み合わせて はりや柱をつくることがありますが
Microsoft Word - 第5章.doc
第 5 章表面ひび割れ幅法 5-1 解析対象 ( 表面ひび割れ幅法 ) 表面ひび割れ幅法は 図 5-1 に示すように コンクリート表面より生じるひび割れを対象とした解析方法である. すなわち コンクリートの弾性係数が断面で一様に変化し 特に方向性を持たない表面にひび割れを解析の対象とする. スラブ状構造物の場合には地盤を拘束体とみなし また壁状構造物の場合にはフーチングを拘束体として それぞれ外部拘束係数を定める.
コンクリート工学年次論文集 Vol.29
論文高速衝突を受けるコンクリート板の局部損傷解析に対する粒子法の適用性に関する基礎的研究 別府万寿博 *1 *2 園田佳巨 要旨 : 本研究は, 剛飛翔体の高速衝突を受けるコンクリート板の局部損傷解析に対する粒子法の適用性について検討を行ったものである まず, 剛飛翔体の高速衝突を受けるコンクリート板の局部破壊の特徴について説明した 次に, 粒子法による数値解析の概要について説明するとともに, 重み付き平均の影響範囲やひずみ速度効果をパラメータとして,
05設計編-標準_目次.indd
2012 年制定 コンクリート標準示方書 [ 設計編 : 本編 ] 目 次 1 章 総 則 1 1.1 適用の範囲 1 1.2 設計の基本 2 1.3 用語の定義 4 1.4 記 号 7 2 章 要求性能 13 2.1 一 般 13 2.2 耐久性 13 2.3 安全性 14 2.4 使用性 14 2.5 復旧性 14 2.6 環境性 15 3 章 構造計画 16 3.1 一 般 16 3.2 要求性能に関する検討
スライド 1
第 3 章 鉄筋コンクリート工学の復習 鉄筋によるコンクリートの補強 ( 圧縮 ) 鉄筋で補強したコンクリート柱の圧縮を考えてみよう 鉄筋とコンクリートの付着は十分で, コンクリートと鉄筋は全く同じように動くものとする ( 平面保持の仮定 ) l Δl 長さの柱に荷重を載荷したときの縮み量をとする 鉄筋及びコンクリートの圧縮ひずみは同じ量なのでで表す = Δl l 鉄筋及びコンクリートの応力はそれぞれの弾性定数を用いて次式で与えられる
第 2 章 構造解析 8
第 2 章 構造解析 8 2.1. 目的 FITSAT-1 の外郭構造が, 打ち上げ時の加速度等によって発生する局所的な応力, 及び温度変化によってビスに発生する引っ張り応力に対して, 十分な強度を有することを明らかにする. 解析には SolidWorks2011 を用いた. 2.2. 適用文書 (1)JMX-2011303B: JEM 搭載用小型衛星放出機構を利用する小型衛星への構造 フラクチャコントロール計画書
Super Build/FA1出力サンプル
*** Super Build/FA1 *** [ 計算例 7] ** UNION SYSTEM ** 3.44 2012/01/24 20:40 PAGE- 1 基本事項 計算条件 工 事 名 : 計算例 7 ( 耐震補強マニュアル設計例 2) 略 称 : 計算例 7 日 付 :2012/01/24 担 当 者 :UNION SYSTEM Inc. せん断による変形の考慮 : する 剛域の考慮 伸縮しない材(Aを1000
水平打ち継ぎを行った RC 梁の実験 近畿大学建築学部建築学科鉄筋コンクリート第 2 研究室 福田幹夫 1. はじめに鉄筋コンクリート ( 以下 RC) 造建物のコンクリート打設施工においては 打ち継ぎを行うことが避けられない 特に 地下階の施工においては 山留め のために 腹起し や 切ばり があ
水平打ち継ぎを行った RC 梁の実験 近畿大学建築学部建築学科鉄筋コンクリート第 2 研究室 福田幹夫 1. はじめに鉄筋コンクリート ( 以下 RC) 造建物のコンクリート打設施工においては 打ち継ぎを行うことが避けられない 特に 地下階の施工においては 山留め のために 腹起し や 切ばり があるために 高さ方向の型枠工事に制限が生じ コンクリートの水平打ち継ぎを余儀なくされる可能性が考えられる
材料の力学解答集
材料の力学 ( 第 章 ) 解答集 ------------------------------------------------------------------------------- 各種応力の計算問題 (No1) 1. 断面積 1mm の材料に 18N の引張荷重が働くとき, 断面に生じる応力はどれほどか ( 18(N/mm ) または 18(MP)) P 18( N) 18 N /
コンクリート工学年次論文集 Vol.30
論文ポリマーセメントモルタルを用いて補強した RC 造基礎梁の補強効果に関する実験的研究 安藤祐太郎 *1 田中卓 *2 *3 中野克彦 要旨 : 現在, 戸建住宅直接基礎における開口部補強工法,RC 造基礎梁の曲げおよびせん断補強工法が注目されている 阪神淡路大震災や新潟県中越沖地震等の大地震が発生する度に, 基礎の強度の弱い部分からひび割れや破断等の被害が生じている そこで, 補強工法として,
PowerPoint Presentation
Non-linea factue mechanics き裂先端付近の塑性変形 塑性域 R 破壊進行領域応カ特異場 Ω R R Hutchinson, Rice and Rosengen 全ひずみ塑性理論に基づいた解析 現段階のひずみは 除荷がないとすると現段階の応力で一義的に決まる 単純引張り時の応カーひずみ関係 ( 構成方程式 ): ( ) ( ) n () y y y ここで α,n 定数, /
Microsoft Word - 4_構造特性係数の設定方法に関する検討.doc
第 4 章 構造特性係数の設定方法に関する検討 4. はじめに 平成 年度 年度の時刻歴応答解析を実施した結果 課題として以下の点が指摘 された * ) 脆性壁の評価法の問題 時刻歴応答解析により 初期剛性が高く脆性的な壁については現在の構造特性係数 Ds 評価が危険であることが判明した 脆性壁では.5 倍程度必要保有耐力が大きくなる * ) 併用構造の Ds の設定の問題 異なる荷重変形関係を持つ壁の
. 軸力作用時における曲げ耐力基本式の算定 ) ここでは破壊包絡線の作成を前提としているので, コンクリートは引張領域を無視した RC 断面時を考える. 圧縮域コンクリートは応力分布は簡易的に, 降伏時は線形分布, 終局時は等価応力ブロック ( 図 -2) を考えることにする. h N ε f e
課題 軸力と曲げモーメントの相互作用図. はじめに 骨組構造を形成する梁 柱構造部材には, 一般に軸力, 曲げモーメント, せん断力が作用するが, ここでは軸力と曲げモーメントの複合断面力を受ける断面の相互作用図 (interation urve) を考える. とくに, 柱部材では, 偏心軸圧縮力や, 地震 風などの水平力を受け ( 図 -), 軸力 + 曲げ荷重下の検討は, 設計上不可欠となる.
FC 正面 1. 地震入力 1-1. 設計基準 準拠基準は以下による 建築設備耐震設計 施工指針 (2005 年版 ): 日本建築センター FH = KH M G KH: 設計用水平震度 KH = Z KS W : 機械重量 FV = KV M G = 機械質量 (M) 重力加速度 (G) KV =
FC 正面 1. 地震入力 1-1. 設計基準 準拠基準は以下による 建築設備耐震設計 施工指針 (2005 年版 ): 日本建築センター FH = KH M G KH: 設計用水平震度 KH = Z KS W : 機械重量 FV = KV M G = 機械質量 (M) 重力加速度 (G) KV = (1/2) KH Z : 地域係数 KS: 設計用標準震度 KV: 設計用鉛直震度 1-2. 設計条件耐震クラス
Microsoft PowerPoint - 知財報告会H20kobayakawa.ppt [互換モード]
亀裂の変形特性を考慮した数値解析による岩盤物性評価法 地球工学研究所地圏科学領域小早川博亮 1 岩盤構造物の安定性評価 ( 斜面の例 ) 代表要素 代表要素の応力ひずみ関係 変形: 弾性体の場合 :E,ν 強度: モールクーロン破壊規準 :c,φ Rock Mech. Rock Engng. (2007) 40 (4), 363 382 原位置試験 せん断試験, 平板載荷試験 原位置三軸試験 室内試験
材料強度試験 ( 曲げ試験 ) [1] 概要 実験 実習 Ⅰ の引張り試験に引続き, 曲げ試験による機械特性評価法を実施する. 材料力学で学ぶ梁 の曲げおよびたわみの基礎式の理解, 材料への理解を深めることが目的である. [2] 材料の変形抵抗変形抵抗は, 外力が付与された時の変形に対する各材料固有
材料強度試験 ( 曲げ試験 [] 概要 実験 実習 Ⅰ の引張り試験に引続き, 曲げ試験による機械特性評価法を実施する. 材料力学で学ぶ梁 の曲げおよびたわみの基礎式の理解, 材料への理解を深めることが目的である. [] 材料の変形抵抗変形抵抗は, 外力が付与された時の変形に対する各材料固有の抵抗値のことであり, 一般に素材の真応力 - 真塑性ひずみ曲線で表される. 多くの金属材料は加工硬化するため,
第1章 単 位
H. Hamano,. 長柱の座屈 - 長柱の座屈 長い柱は圧縮荷重によって折れてしまう場合がある. この現象を座屈といい, 座屈するときの荷重を座屈荷重という.. 換算長 長さ の柱に荷重が作用する場合, その支持方法によって, 柱の理論上の長さ L が異なる. 長柱の計算は, この L を用いて行うと都合がよい. この L を換算長 ( あるいは有効長さという ) という. 座屈荷重は一般に,
<4D F736F F D2097CD8A7793FC96E582BD82ED82DD8A E6318FCD2E646F63>
- 第 章たわみ角法の基本式 ポイント : たわみ角法の基本式を理解する たわみ角法の基本式を梁の微分方程式より求める 本章では たわみ角法の基本式を導くことにする 基本式の誘導法は各種あるが ここでは 梁の微分方程式を解いて基本式を求める方法を採用する この本で使用する座標系は 右手 右ネジの法則に従った座標を用いる また ひとつの部材では 図 - に示すように部材の左端の 点を原点とし 軸線を
コンクリート工学年次論文集 Vol.29
論文 RC 造基礎梁に定着されたアンカーボルトの構造性能に関する実験的研究 安藤祐太郎 *1 酒井悟 *2 *3 中野克彦 要旨 : 本研究は,RC 造基礎梁に定着されたアンカーボルトの構造性能 ( 支持耐力, 抜出し性状および破壊性状 ) を実験的に把握することを目的としている ここでは, 梁幅が 1 mm の薄厚 RC 梁に, 現在, 使用されている種々のアンカーボルトを定着した場合の曲げ せん断実験を実施し,
IT1815.xls
提出番号 No.IT1815 提出先御中 ハンドホール 1800 1800 1500 - 強度計算書 - 国土交通省大臣官房官庁営繕部監修平成 5 年度版 電気設備工事監理指針 より 受領印欄 提出平成年月日 株式会社インテック 1 1. 設計条件奥行き ( 短辺方向 ) X 1800 mm 横幅 Y 1800 mm 側壁高 Z 1500 mm 部材厚 床版 t 1 180 mm 底版 t 150
技術解説_有田.indd
Acceleration / G 2 18 16 14 12 1 8 6 4 2 Damping : 1. Period / s XY.1.1 1. 6533 283 3333 423 155 15 (X) 26.12 Hz 15 12 (Y) 28.32 Hz (Z) 43.98 Hz GS Yuasa Technical Report 211 年 6 月 第8巻 水平方向 X_3G 1.7e+7
GEH-1011ARS-K GEH-1011BRS-K 1. 地震入力 参考 1-1. 設計基準 使用ワッシャー 準拠基準は以下による M10 Φ 30 内径 11 t2 建築設備耐震設計 施工指針 (2005 年版 ): 日本建築センター FH = KH M G KH: 設計用水平震度 KH =
GEH-1011ARS-K GEH-1011BRS-K 1. 地震入力 参考 1-1. 設計基準 使用ワッシャー 準拠基準は以下による M10 Φ 30 内径 11 t2 建築設備耐震設計 施工指針 (2005 年版 ): 日本建築センター FH = KH M G KH: 設計用水平震度 KH = Z KS W : 機械重量 FV = KV M G = 機械質量 (M) 重力加速度 (G) KV =
検討の背景 10Hz を超える地震動成分の扱いに関する日 - 米の相違 米国 OBE (SSE ) EXCEEDANCE CRITERIA 観測された地震動が設計基準地震動を超えたか否かの判定振動数範囲 : 1Hz - 10Hz (10Hz 以上は評価対象外 ) 地震ハザードのスクリーニング (Ne
第 14 回日本地震工学シンポジウム G011-Fri-6 10Hz を超える地震動成分と機械設備の健全性 に関する考察 2014 年 12 月 5 日 落合兼寛 ( 一般社団法人 ) 原子力安全推進協会 Copyright 2012 by. All Rights Reserved. 検討の背景 10Hz を超える地震動成分の扱いに関する日 - 米の相違 米国 OBE (SSE ) EXCEEDANCE
を 0.1% から 0.5% 1.0% 1.5% 2.0% まで増大する正負交番繰り返し それぞれ 3 回の加力サイクルとした 加力図および加力サイクルは図に示すとおりである その荷重 - 変位曲線結果を図 4a から 4c に示す R6-1,2,3 は歪度が 1.0% までは安定した履歴を示した
エネルギー吸収を向上させた木造用座屈拘束ブレースの開発 Development of Buckling Restrained Braces for Wooden Frames with Large Energy Dissapation 吉田競人栗山好夫 YOSHIDA Keito, KURIYAMA Yoshio 1. 地震などの水平力に抵抗するための方法は 種々提案されているところであるが 大きく分類すると三種類に分類される
1
鉄筋コンクリート柱のせん断破壊実験 1 2 2-1 4 CS- 36N 2% CS-36A2 4% CS-36A4 2 CS-36HF -1 F C28 =36N/mm 2-1 CS-36N 普通コンクリート 36NC 2-3 CS-36A2 石炭灰 2% コンクリート 36CA2 2-4 2% CS-36A4 石炭灰 4% コンクリート 36CA4 2-5 4% CS-36HF 高流動コンクリート
技術基準改訂による付着検討・付着割裂破壊検討の取り扱いについてわかりやすく解説
技術基準改訂による付着検討 付着割裂破壊検討の取り扱いについてわかりやすく解説 2016 年 6 月 株式会社構造ソフト はじめに 2015 年に 建築物の構造関係技術基準解説書 ( 以下 技術基準と表記 ) が2007 年版から改訂されて 付着検討および付着割裂破壊検討に関して 2007 年版と2015 年版では記載に差がみられ お客様から様々な質問が寄せられています ここでは 付着検討や付着割裂破壊検討に関して
Microsoft Word - 1B2011.doc
第 14 回モールの定理 ( 単純梁の場合 ) ( モールの定理とは何か?p.11) 例題 下記に示す単純梁の C 点のたわみ角 θ C と, たわみ δ C を求めよ ただし, 部材の曲げ 剛性は材軸に沿って一様で とする C D kn B 1.5m 0.5m 1.0m 解答 1 曲げモーメント図を描く,B 点の反力を求める kn kn 4 kn 曲げモーメント図を描く knm 先に得られた曲げモーメントの値を
<4D F736F F D208D5C91A297CD8A7793FC96E591E631318FCD2E646F63>
11-1 第 11 章不静定梁のたわみ ポイント : 基本的な不静定梁のたわみ 梁部材の断面力とたわみ 本章では 不静定構造物として 最も単純でしかも最も大切な両端固定梁の応力解析を行う ここでは 梁の微分方程式を用いて解くわけであるが 前章とは異なり 不静定構造物であるため力の釣合から先に断面力を決定することができない そのため 梁のたわみ曲線と同時に断面力を求めることになる この両端固定梁のたわみ曲線や断面力分布は
(Microsoft PowerPoint - \221\34613\211\361)
計算力学 ~ 第 回弾性問題の有限要素解析 (Ⅱ)~ 修士 年後期 ( 選択科目 ) 担当 : 岩佐貴史 講義の概要 全 5 講義. 計算力学概論, ガイダンス. 自然現象の数理モデル化. 行列 場とその演算. 数値計算法 (Ⅰ) 5. 数値計算法 (Ⅱ) 6. 初期値 境界値問題 (Ⅰ) 7. 初期値 境界値問題 (Ⅱ) 8. マトリックス変位法による構造解析 9. トラス構造の有限要素解析. 重み付き残差法と古典的近似解法.
PowerPoint Presentation
H8 年度有限要素法 1 構造強度設計 1. 塑性崩壊 1.3 疲労設計 ( 一部修正版 ) H8-1/6 早川 (R : 夏学期の復習部分 ) 1. 塑性崩壊とその評価法 ( 極限解析 ) R 塑性崩壊 : 構造物として使用に耐えないほどの過度の塑性変形 全断面降伏 前提 : 弾完全塑性材モデル E ひずみ硬化ありひずみ硬化なし : 降伏強さ E : ヤング率 ε 図 1.3 弾完全塑性材モデルの応力
SPACEstJ User's Manual
6-1 第 6 章部材の断面力計算 ポイント : 部材断面力の計算 両端の変位より両端外力を計算する 本章では 両端の変位を用いて部材両端の材端力を求め 断面内の応力との釣合より 断面力を求める方法を学ぶ ここでは 部材荷重は等分布荷重を考慮しているため 基本応力と節点荷重による断面力を重ね合わせて 実際の部材断面力を求める 6.1 はじめに キーワード 部材断面力の計算部材座標系の変位等分布荷重による基本応力
技術者のための構造力学 2014/06/11 1. はじめに 資料 2 節点座標系による傾斜支持節点節点の処理 三好崇夫加藤久人 従来, マトリックス変位法に基づく骨組解析を紹介する教科書においては, 全体座標系に対して傾斜 した斜面上の支持条件を考慮する処理方法として, 一旦, 傾斜支持を無視した
. はじめに 資料 節点座標系による傾斜支持節点節点の処理 三好崇夫加藤久人 従来, マトリックス変位法に基づく骨組解析を紹介する教科書においては, 全体座標系に対して傾斜 した斜面上の支持条件を考慮する処理方法として, 一旦, 傾斜支持を無視した全体座標系に関する構造 全体の剛性マトリックスを組み立てた後に, 傾斜支持する節点に関して対応する剛性成分を座標変換に よって傾斜方向に回転処理し, その後は通常の全体座標系に対して傾斜していない支持点に対するのと
地震動予測手法の現状
[email protected] 3 4) ( ) / 5) 6) 7) 8) 995 G 地震動の大きさ 性能レベル グレード Ⅰ グレード Ⅱ グレード Ⅲ Q 基準法稀地震 基準法極稀地震 軽微な被害 ~ 小破 ~ 中破 レベル クライテリア 内陸直下型地震 軽微な被害 ~ 小破 ~ 中破 軽微な被害 ~ 小破 ~ 中破 の領域の検証法の提案を目指す 耐力劣化点 レベル
Microsoft PowerPoint - 01_内田 先生.pptx
平成 24 年度 SCOPE 研究開発助成成果報告会 ( 平成 22 年度採択 ) 塩害劣化した RC スラブの一例 非破壊評価を援用した港湾コンクリート構造物の塩害劣化予測手法の開発 かぶりコンクリートのはく落 大阪大学大学院鎌田敏郎佐賀大学大学院 内田慎哉 の腐食によりコンクリート表面に発生したひび割れ ( 腐食ひび割れ ) コンクリート構造物の合理的な維持管理 ( 理想 ) 開発した手法 点検
DNK0609.xls
提出番号 No.DNK0609 提出先御中 ハンドホール 600 600 900 - 強度計算書 - 国土交通省大臣官房官庁営繕部監修平成 5 年度版 電気設備工事監理指針 より 受領印欄 提出平成年月日 カナフレックスコーポレーション株式会社 1 1. 設計条件奥行き ( 短辺方向 ) X 600 mm 横幅 Y 600 mm 側壁高 Z 900 mm 部材厚 床版 t 1 80 mm 底版 t
コンクリート工学年次論文集 Vol.29
論文部分的に主筋の付着を切った RC 梁 RC 有孔梁に関する研究 真田暁子 *1 *2 丸田誠 要旨 : 危険断面からの一定区間の主筋の付着を切った, 部分アンボンド梁 RC 部材, 部分アンボンド RC 有孔梁部材の基本的な構造性能を把握するために, アンボンド区間長, 開孔の有無を因子とした部材実験を実施した 実験結果から, 主筋をアンボンド化することにより, 危険断面に損傷が集中してひびわれ本数が減少し,
Microsoft PowerPoint - elast.ppt [互換モード]
弾性力学入門 年夏学期 中島研吾 科学技術計算 Ⅰ(48-7) コンピュータ科学特別講義 Ⅰ(48-4) elast 弾性力学 弾性力学の対象 応力 弾性力学の支配方程式 elast 3 弾性力学 連続体力学 (Continuum Mechanics) 固体力学 (Solid Mechanics) の一部 弾性体 (lastic Material) を対象 弾性論 (Theor of lasticit)
ブレースの配置と耐力
システム天井新耐震基準 平成 20 年 10 月制定平成 23 年 9 月改定 1 はじめに 平成 13 年芸予地震 平成 15 年十勝沖地震 および平成 17 年宮城沖地震において 天井の脱落被害が発生し 大規 模空間の天井の崩落対策についての技術的助言 1) 2) 3) が国土交通省から出されたことを契機に 各方面で天井の耐震性に関する研究や実験が行われてきました ロックウール工業会においては
Microsoft PowerPoint - シミュレーション工学-2010-第1回.ppt
シミュレーション工学 ( 後半 ) 東京大学人工物工学研究センター 鈴木克幸 CA( Compter Aded geerg ) r. Jaso Lemo (SC, 98) 設計者が解析ツールを使いこなすことにより 設計の評価 設計の質の向上を図る geerg の本質の 計算機による支援 (CA CAM などより広い名前 ) 様々な汎用ソフトの登場 工業製品の設計に不可欠のツール 構造解析 流体解析
Microsoft PowerPoint - 発表II-3原稿r02.ppt [互換モード]
地震時の原子力発電所燃料プールからの溢水量解析プログラム 地球工学研究所田中伸和豊田幸宏 Central Research Institute of Electric Power Industry 1 1. はじめに ( その 1) 2003 年十勝沖地震では 震源から離れた苫小牧地区の石油タンクに スロッシング ( 液面揺動 ) による火災被害が生じた 2007 年中越沖地震では 原子力発電所内の燃料プールからの溢水があり
屋根ブレース偏心接合の研究開発
論文 報告 屋根ブレース偏心接合の研究開発 ~BT 接合ピースを用いた大梁 小梁 屋根ブレース接合部 ~ Research and Development of Eccentric Joints in Roof Brace 戸成建人 * Tatsuto TONARI 谷ヶ﨑庄二 * Shoji YAGASAKI 池谷研一 * Kenichi IKETANI 中澤潤 * Jun NAKAZAWA 川田工業システム建築の鉄骨生産ラインの特徴を活かして製作コストを低減するために,
<4D F736F F D208E9197BF A082C68E7B8D A815B82CC8D5C91A28AEE8F C4816A2E646F63>
資料 9 液化石油ガス法施行規則関係技術基準 (KHK0739) 地上設置式バルク貯槽に係るあと施工アンカーの構造等 ( 案 ) 地盤面上に設置するバルク貯槽を基礎と固定する方法として あと施工アンカーにより行う 場合の構造 設計 施工等は次の基準によるものとする 1. あと施工アンカーの構造及び種類あと施工アンカーとは アンカー本体又はアンカー筋の一端をコンクリート製の基礎に埋め込み バルク貯槽の支柱やサドル等に定着することで
第 5 章 構造振動学 棒の振動を縦振動, 捩り振動, 曲げ振動に分けて考える. 5.1 棒の縦振動と捩り振動 まっすぐな棒の縦振動の固有振動数 f[ Hz] f = l 2pL である. ただし, L [ 単位 m] は棒の長さ, [ 2 N / m ] 3 r[ 単位 Kg / m ] E r
第 5 章 構造振動学 棒の振動を縦振動, 捩り振動, 曲げ振動に分けて考える 5 棒の縦振動と捩り振動 まっすぐな棒の縦振動の固有振動数 f[ Hz] f l pl である ただし, L [ 単位 m] は棒の長さ, [ N / m ] [ 単位 Kg / m ] E は (5) E 単位は棒の材料の縦弾性係数 ( ヤング率 ) は棒の材料の単位体積当りの質量である l は境界条件と振動モードによって決まる無
杭の事前打ち込み解析
杭の事前打ち込み解析 株式会社シーズエンジニアリング はじめに杭の事前打込み解析 ( : Pile Driving Prediction) は, ハンマー打撃時の杭の挙動と地盤抵抗をシミュレートする解析方法である 打ち込み工法の妥当性を検討する方法で, 杭施工に最適なハンマー, 杭の肉厚 材質等の仕様等を決めることができる < 特徴 > 杭施工に最適なハンマーを選定することができる 杭の肉厚 材質等の仕様を選定することができる
コンクリート工学年次論文集 Vol.34
論文 1 階おきにドア開口を有する RC 耐震壁の耐震設計に関する研究 笠井洋伸 *1 中村聡宏 *2 *3 勅使川原正臣 要旨 :1 階おきにドア開口を有する RC 造耐震壁の地震時挙動について, 二次元 FEM 解析モデルとエレメント置換解析モデルにより比較検討を行った 奇数階 もしくは隅数階に開口を有する耐震壁それぞれの耐力, 破壊形式については, 両解析モデルによる大きな差は見られなかった
問題 2-1 ボルト締結体の設計 (1-1) 摩擦係数の推定図 1-1 に示すボルト締結体にて, 六角穴付きボルト (M12) の締付けトルクとボルト軸力を測定した ボルトを含め材質はすべて SUS304 かそれをベースとしたオーステナイト系ステンレス鋼である 測定時, ナットと下締結体は固着させた
問題 2-1 ボルト締結体の設計 (1-1) 摩擦係数の推定図 1-1 に示すボルト締結体にて, 六角穴付きボルト (M12) の締付けトルクとボルト軸力を測定した ボルトを含め材質はすべて SUS304 かそれをベースとしたオーステナイト系ステンレス鋼である 測定時, ナットと下締結体は固着させた 測定データを図 1-2 に示す データから, オーステナイト系ステンレス鋼どうしの摩擦係数を推定せよ
<8BC882B082A882E682D18EB297CD82F08EF382AF82E CD82E882CC90DD8C E93E7817A2E786477>
コンクリート構造設計の基本 第 6 章曲げおよび軸力を受ける鉄筋コンクリートはりの設計 P7~P96 ( 株 ) 国際建設技術研究所真鍋英規 はじめに 土木学会 コンクリート標準示方書 昭和 6 年版 限界状態設計法 を導入 許容応力度設計法 から 限界状態設計法 へ 7 年版安全性の照査使用性の照査曲げひび割れ幅の制御 変位 変形等耐久性の照査に関する記述が追加 /8/ 鉄筋コンクリート Reinforced
別添資料 地下階の耐震安全性確保の検討方法 大地震動に対する地下階の耐震安全性の検討手法は 以下のとおりとする BQ U > I BQ UN I : 重要度係数で構造体の耐震安全性の分類 Ⅰ 類の場合は.50 Ⅱ 類の場合は.25 Ⅲ 類の場合は.00 とする BQ U : 地下階の保有
別添資料 4-4- 大地震動時の層間変形角の検討方法 大地震動時の層間変形角の算定方法は 次のとおりとする 保有水平耐力計算により構造設計を行う場合には 構造体の変形能力を考慮し 一次設計時の層間変形角より推定する 推定の方法としては 下式に示すエネルギー一定則に基づく方法を原則とする なお 変位一定則に基づく方法による場合は 適用の妥当性を検証すること δ D δ δp: 大地震動時における建築物の最大水平変形
Microsoft PowerPoint - 構造力学Ⅰ第03回.pptx
分布荷重の合力 ( 効果 ) 前回の復習 ( 第 回 ) p. 分布荷重は平行な力が連続して分布していると考えられる 例 : 三角形分布 l dx P=ql/ q l qx q l 大きさ P dx x 位置 Px 0 x x 0 l ql 0 : 面積に等しい 0 l l 重心に等しいモーメントの釣合より ( バリノンの定理 ) l qx l qx ql q 3 l ql l xdx x0 xdx
<4D F736F F D B F090CD82C982C282A282C42E646F63>
1/8 温度応力解析についてアサヒコンサルタント 佃建一 1. はじめに解析は有限要素法 (FEM) と言われる数値解析手法で行ないます 一言で表現すれば 微分方程式で記述できるような物理現象 ( 熱現象 構造力学など ) に対して コンピュータを用いて近似解を求める手法です 右図のように解析する領域 ( 構造物 地盤 ) を 3 角形や 4 角形 ( 二次元や三次元 ) に細分割し ( 要素 )
分野毎の検討における体制・検討フロー(案)
資料 2 熊本地震による道路構造物の被災等を踏まえた対応 Ministry of Land, Infrastructure, Transport and Tourism 1 熊本地震による道路構造物の被災等を踏まえた対応 課題 論点 6/24 技術小委員会 今回の技術小委員会での調査検討事項 兵庫県南部地震より前の基準を適用した橋梁における耐震補強等の効果の検証 緊急輸送道路等の重要な橋について 被災後速やかに機能を回復できるよう耐震補強を加速化
