Microsoft PowerPoint - zairiki_3

Size: px
Start display at page:

Download "Microsoft PowerPoint - zairiki_3"

Transcription

1 材料力学講義 (3) 応力と変形 Ⅲ ( 曲げモーメント, 垂直応力度, 曲率 ) 今回は, 曲げモーメントに関する, 断面力 - 応力度 - 変形 - 変位の関係について学びます 1

2 曲げモーメント 曲げモーメント M 静定力学で求めた曲げモーメントも, 仮想的に断面を切ることによって現れる内力です

3 軸方向力は断面に働く力 曲げモーメント M は断面力 曲げモーメントも, 一つのモーメントとして表しますが, これは断面全体に働いている力を表します したがって, 断面力です 3

4 曲げモーメント ( 断面力 ) は断面に作用するモーメントの足し合わせ 断面力 ( 応力 ) 応力 ( 応力度 ) 断面にどのように働いているかと言うと, 図に示すように, 断面に垂直な分布力が, 片側は引っ張り, 片側は圧縮に働いています このような応力度を, 一本のモーメントとして表しているわけです 4

5 足し合わせは積分で表す 要素内で一定と仮定 σ dy b y 図心 y=0 dx 要素に作用するモーメントは y ( σ dxdy) a N a b iσi a b i= 1 (, ) y dxdy yσ x y dxdy 曲げモーメントも, 微小要素に働く力に関するモーメントを断面全体で積分することによって求められます ただし, このモーメントは, 断面の図心軸からの距離を掛けたモーメントとして計算されます なお, この曲げによる応力度は, 断面に垂直な方向の応力度ですから, 軸力による応力度と同じ記号 σで表します 力は, 方向が同じであれば加えることができるため, 軸力による応力度と曲げモーメントによる応力度は, 足し合わせることができます 後に出てきますが, 柱の設計では, 軸力と曲げモーメントが同時に働くので, 双方の応力は加えられて, 設計されます 5

6 曲げモーメントと垂直応力の関係 M a b a b = yσ dxdy y y b 図心位置 a したがって, 曲げモーメントと垂直応力度の関係は, ここに示すような積分で表されます 軸力と垂直応力度の関係がN=σA, せん断力とせん断応力度の関係がQ=τAと表されたのに比べると, 今の段階では,M=σ (?) という形には表すことはできません 6

7 曲げに対する変形 曲率 ( 軸の角度の変化率 ) 1 dv φ = = ρ dx 曲率曲率半径角度の変化率 x v 1 x v y x v1 v v3 v 3 x v 1 x v x v1 v v3 v 3 x 次に, 曲げモーメントによる変形について考えてみます 部材がどれくらい曲がったかという指標は, 材軸の角度がどれくらい変化しているかという変化率で表すことができます すなわち, 角度の変化が大きい場合は, 部材は急激に曲がります 角度の変化が緩い場合は, ゆるやかに曲がります このような角度の変化率を曲率と呼んでいます また, この曲率は, 微小要素が曲がった時の, 円弧の半径の逆数になります すなわち, この円弧の半径が小さいと大きな曲がりになり, 大きいとゆるやかな曲がりになります 7

8 断面力と変形の関係 軸力と変形の関係 N = EAε せん断力と変形の関係 Q = GAγ 曲げモーメントと変形の関係 M =? φ EI I は断面 次モーメント さて, 次に, 力と変形の関係について調べてみます 軸力およびせん断力の説明の時は, 応力度と変形の関係を説明しました しかし, 曲げ変形は,1つの応力度によって生じる変形ではなく, 曲げモーメント ( 積分された力 ) によって生じる変形です したがって, ここでは, 曲げモーメントとそれによる変形 ( 曲率 ) の関係を求める必要があります ちなみに, 軸力と変形の関係は,N=σA,σ=Eεの関係を用いると,N=EAεとなります また, せん断力と変形の関係は,Q=τA,τ=Gγの関係を用いると,Q=GAγとなります すなわち, 同じ軸力であれば, 断面積 ( 断面の大きさ ) とヤング係数が大きいほど軸方向の変形は小さくなり, 同じせん断力であれば, 断面積とせん断弾性係数が大きいほどせん断変形は小さくなります したがって,EAを部材の軸方向剛性,GAを部材のせん断剛性と呼びます それでは, 曲げに対する剛性は, 何で表されるのでしょうか? 一つは, 曲げによる応力度は, 軸力の応力度と同じことから, 材料のヤング係数に剛性が比例することはわかります それでは, 断面積が大きくなれば曲げに対する力が大きくなるかというと, 同じ断面積でも, 明らかに平べったい板の方が曲げやすいので, 断面積に比例することはありません 結論から言うと, 断面の曲がりにくさを表す指標は, 断面 次モーメントという定数で表されます したがって, 曲げに対する剛性は, ヤング係数と断面 次モーメントを掛けたもの (EI) で表されます 次に, この断面 次モーメントの定義の導出を行ってみます 8

9 梁の曲げによる軸方向変位 u dv = y dx x v( x) v v v y y dv v = dx yv 少し難しい話になりますが, 我慢して聞いて下さい まず,x 軸を部材の材軸とします そして, 部材が曲がると,y 方向の変位 ( たわみ )vが生じ, また, 曲げによる回転によって, x 方向の変位 uが生じます ここで, この曲げによる回転角は, 変位 vのx 軸方向の傾きと一致しますから,vのx 方向の微分で表されます そうすると,x 方向の変位 uは, 近似的に, この角度 v と材軸からの距離 yを掛けたもので近似できます なお,y 軸は, 下向きが正なので,uは, 上に書いてある式で表されることになります 9

10 梁の曲げによる軸方向歪み 歪み - 変位関係 ε = du dx u dv = y dx 代入 d v ε = y dx 曲率 φ 垂直ひずみと変位の関係は,ε=du/dxとなりますから, これに, 先ほどのx 方向変位 u の式を代入すると, 曲げに対するひずみが求まります ここで, たわみ変位 vの 階微分は, 曲率になります 10

11 梁の曲げによる軸方向応力 応力 - 歪み関係 σ = Eε d v ε = y dx 代入 d v σ = Ey dx 垂直応力と垂直ひずみの関係は,σ=Eε となりますから, これに, 先ほどのひずみの式を代入すると, 曲げによる応力が求まります 11

12 曲げモーメントと曲率の関係 M yσ dydz = S d v σ = Ey dx 代入 M d v = E y dydz S dx 断面 次モーメント I = y dydz S M d v = M EIφ EI dx = すでに示したように, 曲げモーメントと垂直応力度の関係は, ここに示すような積分の形式で表されます したがって, この曲げモーメントの式に, 垂直応力と変位の関係式を代入すると, M=-Eiφという式が導かれます そして, この断面 次モーメントIに相当する部分が,yの 乗を断面内で積分した量になることがわかります ちなみに断面 次モーメントの単位は,y^に面積が掛けられるので,cm^4になります ここでは, この最終的な式,M=-Eiφ という式が非常に重要となりますので, 憶えてください 1

13 曲げモーメントから応力を求める σ = Eyφ M φ = EI 代入 σ = M y I 先ほどの曲げモーメントとその変形である曲率の関係がわかると, 逆に, 曲げモーメントと応力度の関係も, 積分を除いた形で表現できます ここで, 断面 次モーメントは, 断面の大きさと形状による定数ですから, 曲げモーメントに対する垂直応力度は, 図心からの距離 yに比例する形で表されることがわかります すなわち, 曲げモーメントによる垂直応力度は, 材軸が通る図心では0で, 断面の端で最も大きくなります この σ の式は, 必ず憶えてください 13

14 断面力と応力の関係 軸力から応力度を求める σ = N A 曲げモーメントから応力度を求める せん断力から応力度を求める σ = τ = M y I Q A 図心からの距離 これで, 軸力, 曲げモーメント, せん断力に関して, 応力度と断面力の関係が示されたことになります N=σA,Q=τA,σ=(M/I)y の 3 つの式は, 必ず憶えてください 14

15 断面内最大応力と断面係数 σ = M y I 原点は図心 y y t M σ max = ht = I M Z t Z t I = h t o z h t h c x 梁の断面 M h M Z σ c = max c I = Z c c = I h c σ=(m/i)yの式から, 断面内の最大応力度を求めることができます 曲げモーメントによる最大応力度は,yが最も大きいところで生じます すなわち, 断面の端部です 断面の図心から, 断面の端までの距離をht, hcとすると, 引っ張り側の最大応力度 σtmaxは,(m/i)htとなります また, 圧縮側の最大応力度はσcmaxは,(M/I)hcとなります このような断面の端の応力度を 縁応力度 と呼ぶ場合があるので憶えておいて下さい このような曲げモーメントによる最大応力度を直接求める係数として, 断面係数 Zという定数が定義されます 断面係数 Zは, 断面 次モーメントを, 図心から断面端までの距離で割ったものです 単位はcm^3になります この 断面係数 という言葉と定義式も憶えてください 15

16 引張合力 (T) と圧縮合力 (C) b t σ max t ( σ max hb t ) c ( σ max hb c ) T = C = T h t j h c C c σ max j = ht + h 3 3 c 最後に, 最大応力度から, 逆に, 曲げモーメントを求める計算について説明しておきます まず, 引張側の応力度の合力は, 引張側の縁応力度に断面の中立軸から上の断面積を掛け, 三角形なのでそれを半分にしたものになります 圧縮側も同様に計算されます また, 合力の作用点は, 三角形なので, 図心軸から縁までの距離の/3を上下で加えたものになります 16

Microsoft Word - 1B2011.doc

Microsoft Word - 1B2011.doc 第 14 回モールの定理 ( 単純梁の場合 ) ( モールの定理とは何か?p.11) 例題 下記に示す単純梁の C 点のたわみ角 θ C と, たわみ δ C を求めよ ただし, 部材の曲げ 剛性は材軸に沿って一様で とする C D kn B 1.5m 0.5m 1.0m 解答 1 曲げモーメント図を描く,B 点の反力を求める kn kn 4 kn 曲げモーメント図を描く knm 先に得られた曲げモーメントの値を

More information

Microsoft PowerPoint - fuseitei_6

Microsoft PowerPoint - fuseitei_6 不静定力学 Ⅱ 骨組の崩壊荷重の計算 不静定力学 Ⅱ では, 最後の問題となりますが, 骨組の崩壊荷重の計算法について学びます 1 参考書 松本慎也著 よくわかる構造力学の基本, 秀和システム このスライドの説明には, 主にこの参考書の説明を引用しています 2 崩壊荷重 構造物に作用する荷重が徐々に増大すると, 構造物内に発生する応力は増加し, やがて, 構造物は荷重に耐えられなくなる そのときの荷重を崩壊荷重あるいは終局荷重という

More information

構造力学Ⅰ第12回

構造力学Ⅰ第12回 第 回材の座屈 (0 章 ) p.5~ ( 復習 ) モールの定理 ( 手順 ) 座屈とは 荷重により梁に生じた曲げモーメントをで除して仮想荷重と考える 座屈荷重 偏心荷重 ( 曲げと軸力 ) 断面の核 この仮想荷重に対するある点でのせん断力 たわみ角に相当する曲げモーメント たわみに相当する ( 例 ) 単純梁の支点のたわみ角 : は 図 を仮想荷重と考えたときの 点の支点反力 B は 図 を仮想荷重と考えたときのB

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 材料実験演習 第 6 回 2015.05.17 スケジュール 回 月 / 日 標題 内容 授業種別 時限 講義 演習 6,7 5 月 17 日 8 5 月 24 日 5 月 31 日 9,10 6 月 7 日 11 6 月 14 日 講義 曲げモーメントを受ける鉄筋コンクリート(RC) 梁の挙動その1 構造力学の基本事項その2 RC 梁の特徴演習 曲げを受ける梁の挙動 実験 鉄筋コンクリート梁の載荷実験レポート

More information

<4D F736F F D208D5C91A297CD8A7793FC96E591E6328FCD2E646F63>

<4D F736F F D208D5C91A297CD8A7793FC96E591E6328FCD2E646F63> -1 ポイント : 材料の応力とひずみの関係を知る 断面内の応力とひずみ 本章では 建築構造で多く用いられる材料の力学的特性について学ぶ 最初に 応力とひずみの関係 次に弾性と塑性 また 弾性範囲における縦弾性係数 ( ヤング係数 ) について 建築構造用材料として代表的な鋼を例にして解説する さらに 梁理論で使用される軸方向応力と軸方向ひずみ あるいは せん断応力とせん断ひずみについて さらにポアソン比についても説明する

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 材料実験演習 第 6 回 2017.05.16 スケジュール 回 月 / 日 標題 内容 授業種別 時限 実験レポート評価 講義 演習 6,7 5 月 16 日 8 5 月 23 日 5 月 30 日 講義 曲げモーメントを受ける鉄筋コンクリート(RC) 梁の挙動その1 構造力学の基本事項その2 RC 梁の特徴演習 曲げを受ける梁の挙動 実験 鉄筋コンクリート梁の載荷実験レポート 鉄筋コンクリート梁実験レポート作成

More information

<4D F736F F D208D5C91A297CD8A7793FC96E591E631308FCD2E646F63>

<4D F736F F D208D5C91A297CD8A7793FC96E591E631308FCD2E646F63> 第 1 章モールの定理による静定梁のたわみ 1-1 第 1 章モールの定理による静定梁のたわみ ポイント : モールの定理を用いて 静定梁のたわみを求める 断面力の釣合と梁の微分方程式は良く似ている 前章では 梁の微分方程式を直接積分する方法で 静定梁の断面力と変形状態を求めた 本章では 梁の微分方程式と断面力による力の釣合式が類似していることを利用して 微分方程式を直接解析的に解くのではなく 力の釣合より梁のたわみを求める方法を学ぶ

More information

<4D F736F F D2097CD8A7793FC96E582BD82ED82DD8A E6318FCD2E646F63>

<4D F736F F D2097CD8A7793FC96E582BD82ED82DD8A E6318FCD2E646F63> - 第 章たわみ角法の基本式 ポイント : たわみ角法の基本式を理解する たわみ角法の基本式を梁の微分方程式より求める 本章では たわみ角法の基本式を導くことにする 基本式の誘導法は各種あるが ここでは 梁の微分方程式を解いて基本式を求める方法を採用する この本で使用する座標系は 右手 右ネジの法則に従った座標を用いる また ひとつの部材では 図 - に示すように部材の左端の 点を原点とし 軸線を

More information

Microsoft PowerPoint - zairiki_7

Microsoft PowerPoint - zairiki_7 許容応力度設計の基礎 曲げに対する設計 材料力学の後半は 許容応力度設計の基礎を学びます 構造設計の手法は 現在も進化を続けています 例えば 最近では限界耐力計算法という耐震設計法が登場しています 限界耐力計算法では 地震による建物の振動現象を耐震設計法の中に取り入れています しかし この設計法も 許容応力度設計法をベースにしながら 新しい概念 ( 限界設計法 ) を取り入れて発展させたものです ですから

More information

<4D F736F F D208D7E959A82A882E682D18F498BC78BC882B B BE98C60816A2E646F63>

<4D F736F F D208D7E959A82A882E682D18F498BC78BC882B B BE98C60816A2E646F63> 降伏時および終局時曲げモーメントの誘導 矩形断面 日中コンサルタント耐震解析部松原勝己. 降伏時の耐力と変形 複鉄筋の矩形断面を仮定する また コンクリートの応力ひずみ関係を非線形 放物線型 とする さらに 引張鉄筋がちょうど降伏ひずみに達しているものとし コンクリート引張応力は無視する ⅰ 圧縮縁のひずみ

More information

第1章 単 位

第1章  単  位 H. Hmno 問題解答 問題解答. 力の釣合い [ 問題.] V : sin. H :.cos. 7 V : sin sin H : cos cos cos 上第 式より これと第 式より.. cos V : sin sin H : coscos cos 上第 式より これと第 式より.98. cos [ 問題.] :. V :. : 9 9. V :. : sin V : sin 8.78 H

More information

Microsoft PowerPoint - 静定力学講義(6)

Microsoft PowerPoint - 静定力学講義(6) 静定力学講義 (6) 静定ラーメンの解き方 1 ここでは, 静定ラーメンの応力 ( 断面力 ) の求め方について学びます 1 単純ばり型ラーメン l まず, ピンとローラーで支持される単純支持ばり型のラーメン構造の断面力の求め方について説明します まず反力を求める H V l V H + = 0 H = Y V + V l = 0 V = l V Vl+ + + l l= 0 + l V = + l

More information

問題-1.indd

問題-1.indd 科目名学科 学年 組学籍番号氏名採点結果 016 年度材料力学 Ⅲ 問題 1 1 3 次元的に外力負荷を受ける物体を考える際にデカルト直交座標 - を採る 物体 内のある点 を取り囲む微小六面体上に働く応力 が v =- 40, = 60 =- 30 v = 0 = 10 v = 60 である 図 1 の 面上にこれらの応力 の作用方向を矢印で記入し その脇にその矢印が示す応力成分を記入しなさい 図

More information

スライド 1

スライド 1 第 3 章 鉄筋コンクリート工学の復習 鉄筋によるコンクリートの補強 ( 圧縮 ) 鉄筋で補強したコンクリート柱の圧縮を考えてみよう 鉄筋とコンクリートの付着は十分で, コンクリートと鉄筋は全く同じように動くものとする ( 平面保持の仮定 ) l Δl 長さの柱に荷重を載荷したときの縮み量をとする 鉄筋及びコンクリートの圧縮ひずみは同じ量なのでで表す = Δl l 鉄筋及びコンクリートの応力はそれぞれの弾性定数を用いて次式で与えられる

More information

破壊の予測

破壊の予測 本日の講義内容 前提 : 微分積分 線形代数が何をしているかはうろ覚え 材料力学は勉強したけど ちょっと 弾性および塑性学は勉強したことが無い ー > ですので 解らないときは質問してください モールの応力円を理解するとともに 応力を 3 次元的に考える FM( 有限要素法 の概略 内部では何を計算しているのか? 3 物が壊れる条件を考える 特に 変形 ( 塑性変形 が発生する条件としてのミーゼス応力とはどのような応力か?

More information

< B795FB8C6094C28F6F97CD97E12E786477>

< B795FB8C6094C28F6F97CD97E12E786477> 長方形板の計算システム Ver3.0 適用基準 級数解法 ( 理論解析 ) 構造力学公式集( 土木学会発行 /S61.6) 板とシェルの理論( チモシェンコ ヴォアノフスキークリ ガー共著 / 長谷川節訳 ) 有限要素法解析 参考文献 マトリックス構造解析法(J.L. ミーク著, 奥村敏恵, 西野文雄, 西岡隆訳 /S50.8) 薄板構造解析( 川井忠彦, 川島矩郎, 三本木茂夫 / 培風館 S48.6)

More information

Microsoft PowerPoint - zairiki_10

Microsoft PowerPoint - zairiki_10 許容応力度設計の基礎 はりの断面設計 前回までは 今から建てようとする建築物の設計において 建物の各部材断面を適当に仮定しておいて 予想される荷重に対してラーメン構造を構造力学の力を借りていったん解き その仮定した断面が適切であるかどうかを 危険断面に生じる最大応力度と材料の許容応力度を比較することによって検討するという設計手法に根拠を置いたものでした 今日は 前回までとは異なり いくつかの制約条件から

More information

<4D F736F F D208D5C91A297CD8A7793FC96E591E6388FCD2E646F63>

<4D F736F F D208D5C91A297CD8A7793FC96E591E6388FCD2E646F63> 8-1 第 8 章梁の微分方程式 ポイント : ベルヌーイ オイラー梁による梁の微分方程式 平面保持と法線保持の仮定 本章では 梁理論の基本となるベルヌーイ オイラー梁に従い 3 次元物体である梁を 1 次元の線材に置換し その挙動を支配する梁の微分方程式を誘導する このベルヌーイ オイラー梁は 平面保持と法線保持の両仮定で成立しており この 種の仮定を用いることで 梁内の応力やひずみを容易に求めることができる

More information

パソコンシミュレータの現状

パソコンシミュレータの現状 第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に

More information

Microsoft PowerPoint - elast.ppt [互換モード]

Microsoft PowerPoint - elast.ppt [互換モード] 弾性力学入門 年夏学期 中島研吾 科学技術計算 Ⅰ(48-7) コンピュータ科学特別講義 Ⅰ(48-4) elast 弾性力学 弾性力学の対象 応力 弾性力学の支配方程式 elast 3 弾性力学 連続体力学 (Continuum Mechanics) 固体力学 (Solid Mechanics) の一部 弾性体 (lastic Material) を対象 弾性論 (Theor of lasticit)

More information

第1章 単 位

第1章  単  位 H. Hamano,. 長柱の座屈 - 長柱の座屈 長い柱は圧縮荷重によって折れてしまう場合がある. この現象を座屈といい, 座屈するときの荷重を座屈荷重という.. 換算長 長さ の柱に荷重が作用する場合, その支持方法によって, 柱の理論上の長さ L が異なる. 長柱の計算は, この L を用いて行うと都合がよい. この L を換算長 ( あるいは有効長さという ) という. 座屈荷重は一般に,

More information

Microsoft PowerPoint - 構造設計学_2006

Microsoft PowerPoint - 構造設計学_2006 構造設計学 講義資料 構造設計は 建築物に作用すると思われる荷重によって生じる構造物内部の抵抗力 ( 応力 ) を 各構造要素 ( 柱 はり 床 壁など ) が安全に支持するために 各構造要素の部材断面を具体的に決定するためのプロセスを言います 本講義では 1 鉛直荷重 ( 固定荷重 積載荷重 積雪荷重 ) に対するはりや柱の設計条件を解説します 2その設計条件を踏まえて 鉄筋コンクリート構造と鋼構造はりの構造原理を解説します

More information

Microsoft PowerPoint - fuseitei_4

Microsoft PowerPoint - fuseitei_4 不静定力学 Ⅱ 固定法 今回から, 固定法について学びます 参考書 教科書 藤本盛久, 和田章監修 建築構造力学入門, 実教育出版 松本慎也著 よくわかる構造力学の基本, 秀和システム 参考書として,3つ挙げておきますが, 固定法に関しては松本慎也さんの書かれた本がわかりやすいと思います この本は, 他の手法についてもわかりやすく書いてあるので, 参考書としては非常に良い本です この授業の例題も,

More information

上式を整理すると d df - N = 両辺を で割れば df d - N = (5) となる ところで

上式を整理すると d df - N = 両辺を で割れば df d - N = (5) となる ところで 長柱の座屈 断面寸法に対して非常に長い柱に圧縮荷重を加えると 初期段階においては一様圧縮変形を生ずるが ある荷重に達すると急に横方向にたわむことがある このように長柱が軸圧縮荷重を受けていて突然横方向にたわむ現象を座屈といい この現象を示す荷重を座屈荷重 cr このときの応力を座屈応力 s cr という 図 に示すように一端を鉛直な剛性壁に固定された長柱が自 図 曲げと圧縮を受けるはり + 由端に圧縮力

More information

材料の力学解答集

材料の力学解答集 材料の力学 ( 第 章 ) 解答集 ------------------------------------------------------------------------------- 各種応力の計算問題 (No1) 1. 断面積 1mm の材料に 18N の引張荷重が働くとき, 断面に生じる応力はどれほどか ( 18(N/mm ) または 18(MP)) P 18( N) 18 N /

More information

44_417

44_417 * ** 福岡俊道 4. 力と変位のつり合い - 不静定問題とは - 図 10(a) に示した断面積がA の真直棒の中央部に引張荷重 を与える問題を考える. 荷重点より上の部分には /A の引張応力が作用し, 下の部分の応力は零である. つぎに, 図 10() のように棒の下端を固定した場合に各部に作用する力を求める. 上下固定端に作用する反力を R,S とすると, 力の釣り合いより ( R + S

More information

集水桝の構造計算(固定版編)V1-正規版.xls

集水桝の構造計算(固定版編)V1-正規版.xls 集水桝の構造計算 集水桝 3.0.5 3.15 横断方向断面の計算 1. 計算条件 11. 集水桝の寸法 内空幅 B = 3.000 (m) 内空奥行き L =.500 (m) 内空高さ H = 3.150 (m) 側壁厚 T = 0.300 (m) 底版厚 Tb = 0.400 (m) 1. 土質条件 土の単位体積重量 γs = 18.000 (kn/m 3 ) 土の内部摩擦角 φ = 30.000

More information

材料強度試験 ( 曲げ試験 ) [1] 概要 実験 実習 Ⅰ の引張り試験に引続き, 曲げ試験による機械特性評価法を実施する. 材料力学で学ぶ梁 の曲げおよびたわみの基礎式の理解, 材料への理解を深めることが目的である. [2] 材料の変形抵抗変形抵抗は, 外力が付与された時の変形に対する各材料固有

材料強度試験 ( 曲げ試験 ) [1] 概要 実験 実習 Ⅰ の引張り試験に引続き, 曲げ試験による機械特性評価法を実施する. 材料力学で学ぶ梁 の曲げおよびたわみの基礎式の理解, 材料への理解を深めることが目的である. [2] 材料の変形抵抗変形抵抗は, 外力が付与された時の変形に対する各材料固有 材料強度試験 ( 曲げ試験 [] 概要 実験 実習 Ⅰ の引張り試験に引続き, 曲げ試験による機械特性評価法を実施する. 材料力学で学ぶ梁 の曲げおよびたわみの基礎式の理解, 材料への理解を深めることが目的である. [] 材料の変形抵抗変形抵抗は, 外力が付与された時の変形に対する各材料固有の抵抗値のことであり, 一般に素材の真応力 - 真塑性ひずみ曲線で表される. 多くの金属材料は加工硬化するため,

More information

Microsoft Word - 断面諸量

Microsoft Word - 断面諸量 応用力学 Ⅱ 講義資料 / 断面諸量 断面諸量 断面 次 次モーメントの定義 図 - に示すような形状を有する横断面を考え その全断面積を とする いま任意に定めた直交座標軸 O-, をとり また図中の斜線部の微小面積要素を d とするとき d, d () で定義される, をそれぞれ与えられた横断面の 軸, 軸に関する断面 次モーメント (geometrcal moment of area) という

More information

<8D5C91A28C768E5A8F91836C C768E5A8F A2E786C73>

<8D5C91A28C768E5A8F91836C C768E5A8F A2E786C73> スカイセイフティネット構造計算書 スカイテック株式会社 1. 標準寸法 2. 設計条件 (1) 荷重 通常の使用では スカイセーフティネットに人や物は乗せないことを原則とするが 仮定の荷重としてアスファルト ルーフィング1 巻 30kgが1スパンに1 個乗ったとした場合を考える ネットの自重は12kgf/1 枚 これに単管 (2.73kgf/m) を1m 辺り2 本考える 従ってネット自重は合計で

More information

<4D F736F F F696E74202D AD482DC82C682DF2E B8CDD8AB B83685D>

<4D F736F F F696E74202D AD482DC82C682DF2E B8CDD8AB B83685D> 力のつり合い反力 ( 集中荷重 ) V 8 V 4 X H Y V V V 8 トラス部材に生じる力 トラスの解法 4k Y 4k 4k 4k ' 4k X ' 30 E ' 30 H' 節点を引張る力節点を押す力部材に生じる力を表す矢印の向きに注意 V 0k 反力の算定 V' 0k 力のつり合いによる解法 リッターの切断法 部材 の軸力を求める k k k 引張側に仮定 3 X cos30 Y 04

More information

技術者のための構造力学 2014/06/11 1. はじめに 資料 2 節点座標系による傾斜支持節点節点の処理 三好崇夫加藤久人 従来, マトリックス変位法に基づく骨組解析を紹介する教科書においては, 全体座標系に対して傾斜 した斜面上の支持条件を考慮する処理方法として, 一旦, 傾斜支持を無視した

技術者のための構造力学 2014/06/11 1. はじめに 資料 2 節点座標系による傾斜支持節点節点の処理 三好崇夫加藤久人 従来, マトリックス変位法に基づく骨組解析を紹介する教科書においては, 全体座標系に対して傾斜 した斜面上の支持条件を考慮する処理方法として, 一旦, 傾斜支持を無視した . はじめに 資料 節点座標系による傾斜支持節点節点の処理 三好崇夫加藤久人 従来, マトリックス変位法に基づく骨組解析を紹介する教科書においては, 全体座標系に対して傾斜 した斜面上の支持条件を考慮する処理方法として, 一旦, 傾斜支持を無視した全体座標系に関する構造 全体の剛性マトリックスを組み立てた後に, 傾斜支持する節点に関して対応する剛性成分を座標変換に よって傾斜方向に回転処理し, その後は通常の全体座標系に対して傾斜していない支持点に対するのと

More information

<4D F736F F D208D5C91A297CD8A7793FC96E591E631318FCD2E646F63>

<4D F736F F D208D5C91A297CD8A7793FC96E591E631318FCD2E646F63> 11-1 第 11 章不静定梁のたわみ ポイント : 基本的な不静定梁のたわみ 梁部材の断面力とたわみ 本章では 不静定構造物として 最も単純でしかも最も大切な両端固定梁の応力解析を行う ここでは 梁の微分方程式を用いて解くわけであるが 前章とは異なり 不静定構造物であるため力の釣合から先に断面力を決定することができない そのため 梁のたわみ曲線と同時に断面力を求めることになる この両端固定梁のたわみ曲線や断面力分布は

More information

PowerPoint Presentation

PowerPoint Presentation Non-linea factue mechanics き裂先端付近の塑性変形 塑性域 R 破壊進行領域応カ特異場 Ω R R Hutchinson, Rice and Rosengen 全ひずみ塑性理論に基づいた解析 現段階のひずみは 除荷がないとすると現段階の応力で一義的に決まる 単純引張り時の応カーひずみ関係 ( 構成方程式 ): ( ) ( ) n () y y y ここで α,n 定数, /

More information

<4D F736F F D20824F B CC92E8979D814696CA90CF95AA82C691CC90CF95AA2E646F63>

<4D F736F F D20824F B CC92E8979D814696CA90CF95AA82C691CC90CF95AA2E646F63> 1/1 平成 23 年 3 月 24 日午後 6 時 52 分 6 ガウスの定理 : 面積分と体積分 6 ガウスの定理 : 面積分と体積分 Ⅰ. 直交座標系 ガウスの定理は 微分して すぐに積分すると元に戻るというルールを 3 次元積分に適用した定理になります よく知っているのは 簡単化のため 変数が1つの場合は dj ( d ( ににします全微分 = 偏微分 d = d = J ( + C d です

More information

道路橋の耐震設計における鉄筋コンクリート橋脚の水平力 - 水平変位関係の計算例 (H24 版対応 ) ( 社 ) 日本道路協会 橋梁委員会 耐震設計小委員会 平成 24 年 5 月

道路橋の耐震設計における鉄筋コンクリート橋脚の水平力 - 水平変位関係の計算例 (H24 版対応 ) ( 社 ) 日本道路協会 橋梁委員会 耐震設計小委員会 平成 24 年 5 月 道路橋の耐震設計における鉄筋コンクリート橋脚の水平力 - 水平変位関係の計算例 (H24 版対応 ) ( 社 ) 日本道路協会 橋梁委員会 耐震設計小委員会 平成 24 年 5 月 目次 本資料の利用にあたって 1 矩形断面の橋軸方向の水平耐力及び水平変位の計算例 2 矩形断面 (D51 SD490 使用 ) 橋軸方向の水平耐力及び水平変位の計算例 8 矩形断面の橋軸直角方向の水平耐力及び水平変位の計算例

More information

FEM原理講座 (サンプルテキスト)

FEM原理講座 (サンプルテキスト) サンプルテキスト FEM 原理講座 サイバネットシステム株式会社 8 年 月 9 日作成 サンプルテキストについて 各講師が 講義の内容が伝わりやすいページ を選びました テキストのページは必ずしも連続していません 一部を抜粋しています 幾何光学講座については 実物のテキストではなくガイダンスを掲載いたします 対象とする構造系 物理モデル 連続体 固体 弾性体 / 弾塑性体 / 粘弾性体 / 固体

More information

<4D F736F F D208D5C91A297CD8A7793FC96E591E6398FCD2E646F63>

<4D F736F F D208D5C91A297CD8A7793FC96E591E6398FCD2E646F63> 9-1 第 9 章静定梁のたわみ ポイント : 梁の微分方程式を用いて梁のたわみを求める 静定梁のたわみを計算 前章では 梁の微分方程式を導き 等分布荷重を受ける単純梁の解析を行った 本節では 導いた梁の微分方程式を利用し さらに多くの静定構造物の解析を行い 梁の最大たわみや変形状態を求めることにする さらに を用いて課題で解析した構造を数値計算し 解析結果を比較 検討しよう 9.1 はじめに キーワード梁の微分方程式単純梁の応力解析片持ち梁の応力解析

More information

. 軸力作用時における曲げ耐力基本式の算定 ) ここでは破壊包絡線の作成を前提としているので, コンクリートは引張領域を無視した RC 断面時を考える. 圧縮域コンクリートは応力分布は簡易的に, 降伏時は線形分布, 終局時は等価応力ブロック ( 図 -2) を考えることにする. h N ε f e

. 軸力作用時における曲げ耐力基本式の算定 ) ここでは破壊包絡線の作成を前提としているので, コンクリートは引張領域を無視した RC 断面時を考える. 圧縮域コンクリートは応力分布は簡易的に, 降伏時は線形分布, 終局時は等価応力ブロック ( 図 -2) を考えることにする. h N ε f e 課題 軸力と曲げモーメントの相互作用図. はじめに 骨組構造を形成する梁 柱構造部材には, 一般に軸力, 曲げモーメント, せん断力が作用するが, ここでは軸力と曲げモーメントの複合断面力を受ける断面の相互作用図 (interation urve) を考える. とくに, 柱部材では, 偏心軸圧縮力や, 地震 風などの水平力を受け ( 図 -), 軸力 + 曲げ荷重下の検討は, 設計上不可欠となる.

More information

Microsoft Word - 建築研究資料143-1章以外

Microsoft Word - 建築研究資料143-1章以外 4. ブレース接合部 本章では, ブレース接合部について,4 つの部位のディテールを紹介し, それぞれ問題となる点や改善策等を示す. (1) ブレースねらい点とガセットプレートの形状 (H 形柱, 弱軸方向 ) 対象部位の概要 H 形柱弱軸方向にガセットプレートタイプでブレースが取り付く場合, ブレースの傾きやねらい点に応じてガセットプレートの形状等を適切に設計する. 検討対象とする接合部ディテール

More information

<4D F736F F F696E74202D E94D58B9393AE82F AC82B782E982BD82DF82CC8AEE E707074>

<4D F736F F F696E74202D E94D58B9393AE82F AC82B782E982BD82DF82CC8AEE E707074> 地盤数値解析学特論 防災環境地盤工学研究室村上哲 Mrakam, Satoh. 地盤挙動を把握するための基礎. 変位とひずみ. 力と応力. 地盤の変形と応力. 変位とひずみ 変形勾配テンソルひずみテンソル ひずみテンソル : 材料線素の長さの 乗の変化量の尺度 Green-Lagrange のひずみテンソルと Alman のひずみテンソル 微小変形状態でのひずみテンソル ひずみテンソルの物理的な意味

More information

(Microsoft PowerPoint - \221\34613\211\361)

(Microsoft PowerPoint - \221\34613\211\361) 計算力学 ~ 第 回弾性問題の有限要素解析 (Ⅱ)~ 修士 年後期 ( 選択科目 ) 担当 : 岩佐貴史 講義の概要 全 5 講義. 計算力学概論, ガイダンス. 自然現象の数理モデル化. 行列 場とその演算. 数値計算法 (Ⅰ) 5. 数値計算法 (Ⅱ) 6. 初期値 境界値問題 (Ⅰ) 7. 初期値 境界値問題 (Ⅱ) 8. マトリックス変位法による構造解析 9. トラス構造の有限要素解析. 重み付き残差法と古典的近似解法.

More information

Taro-2012RC課題.jtd

Taro-2012RC課題.jtd 2011 RC 構造学 http://design-s.cc.it-hiroshima.ac.jp/tsato/kougi/top.htm 課題 1 力学と RC 構造 (1) 図のような鉄筋コンクリート構造物に どのように主筋を配筋すればよいか 図中に示し 最初に 生じる曲げひび割れを図示せよ なお 概略の曲げモーメント図も図示せよ w L 3 L L 2-1 - 課題 2. コンクリートの自重

More information

<4D F736F F D208D5C91A297CD8A7793FC96E591E6368FCD2E646F63>

<4D F736F F D208D5C91A297CD8A7793FC96E591E6368FCD2E646F63> 6-1 ポイント : 梁のせん断応力分布を考える 断面内部の応力による力の釣合からせん断応力分布を求める 梁が曲げられるとき 曲げモーメントによる軸方向応力と同時にせん断応力も発生する 本章では その際に断面内部に生じるせん断応力分布を断面内の応力の釣合より求める 特に 長方形断面では 断面内部のせん断応力分布が放物線となることを示す また 梁理論の代表であるベルヌーイ オイラー梁では せん断応力は発生するが

More information

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように 3 章 Web に Link 解説 連続式 微分表示 の誘導.64 *4. 連続式連続式は ある領域の内部にある流体の質量の収支が その表面からの流入出の合計と等しくなることを定式化したものであり 流体における質量保存則を示したものである 2. 連続式 微分表示 の誘導図のような微小要素 コントロールボリューム の領域内の流体の増減と外部からの流体の流入出を考えることで定式化できる 微小要素 流入

More information

新日本技研 ( 株 ) 技術報告 弾性横桁で支持された床版の断面力式 仙台支店 設計部高橋眞太郎 本社 顧問倉方慶夫 元本社 顧問高尾孝二 要旨 橋梁形式は 公共事業費抑制の要求を受けてコスト縮減を図ることができる合理化形式の採用が多くなっている この流れを受けて鈑桁形式では少数鈑桁橋

新日本技研 ( 株 ) 技術報告 弾性横桁で支持された床版の断面力式 仙台支店 設計部高橋眞太郎 本社 顧問倉方慶夫 元本社 顧問高尾孝二 要旨 橋梁形式は 公共事業費抑制の要求を受けてコスト縮減を図ることができる合理化形式の採用が多くなっている この流れを受けて鈑桁形式では少数鈑桁橋 新日本技研 ( 株 技術報告 - 弾性横桁で支持された床版の断面力式 仙台支店 設計部高橋眞太郎 本社 顧問倉方慶夫 元本社 顧問高尾孝二 要旨 橋梁形式は 公共事業費抑制の要求を受けてコスト縮減を図ることができる合理化形式の採用が多くなっている この流れを受けて鈑桁形式では少数鈑桁橋の採用が多くなっている この形式はおよそ 年前に 日本道路公団が欧州の少数鈑桁橋を参考にPC 床版を有する少数鈑桁橋の検討を始め

More information

目次 章設計条件 適用基準 形式 形状寸法 地盤条件 使用材料 土砂 載荷荷重 その他荷重 浮力 土圧 水圧 基礎の条件..

目次 章設計条件 適用基準 形式 形状寸法 地盤条件 使用材料 土砂 載荷荷重 その他荷重 浮力 土圧 水圧 基礎の条件.. 3 鉄筋コンクリート造擁壁の構造計算例 逆 T 型 ( 粘性土 ):H=5.0m タイプ 56 目次 章設計条件... 59. 適用基準... 59. 形式... 59.3 形状寸法... 59.4 地盤条件... 59.5 使用材料... 60.6 土砂... 60.7 載荷荷重... 6.8 その他荷重... 6.9 浮力... 6.0 土圧... 6. 水圧... 63. 基礎の条件... 63..

More information

Microsoft Word - thesis.doc

Microsoft Word - thesis.doc 剛体の基礎理論 -. 剛体の基礎理論初めに本論文で大域的に使用する記号を定義する. 使用する記号トルク撃力力角運動量角速度姿勢対角化された慣性テンソル慣性テンソル運動量速度位置質量時間 J W f F P p .. 質点の並進運動 質点は位置 と速度 P を用いる. ニュートンの運動方程式 という状態を持つ. 但し ここでは速度ではなく運動量 F P F.... より質点の運動は既に明らかであり 質点の状態ベクトル

More information

断面の諸量

断面の諸量 断面の諸量 建設システム工学科高谷富也 断面 次モーメント 定義 G d G d 座標軸の平行移動 断面 次モーメント 軸に平行な X Y 軸に関する断面 次モーメント G X G Y を求める X G d d d Y 0 0 G 0 G d d d 0 0 G 0 重心 軸に関する断面 次モーメントを G G とし 軸に平行な座標軸 X Y の原点が断面の重心に一致するものとする G G, G G

More information

-

- 計算書番号 :01710014655 日付 :017 年 10 月 0 日 14:6:55 面材張り大壁 詳細計算書 仕様名 新グレー本モデルプラン 大壁 1. 計算条件 1. 1 概要情報 仕様名仕様詳細 特記事項 新グレー本モデルプラン 大壁 壁面を構成する面材数階高 H(mm) 壁長 (mm) 1 枚 730 910 1. 面材 釘情報 面材寸法 (mm) 730 910 面材厚さ t(mm)

More information

<4D F736F F D20824F E B82CC90FC90CF95AA2E646F63>

<4D F736F F D20824F E B82CC90FC90CF95AA2E646F63> 1/1 平成 3 年 6 月 11 日午前 1 時 3 分 4 ベクトルの線積分 4 ベクトルの線積分 Ⅰ. 積分の種類 通常の物理で使う積分には 3 種類あります 積分変数の数に応じて 線積分 ( 記号 横(1 重 d, dy, dz d ( ine: 面積分 ( 記号 縦 横 ( 重 線 4 ベクトルの線積分 重積分記号 ddy, dydz, dzdz ds ( Surface: 1 重積分記号

More information

スライド 1

スライド 1 概要材料に外から力が作用すると応力が発生し それに見合った変形が生じる 変形が発生すると 材料に内力が発生し 内力は外力と釣り合い変形が止まる この応力と変形 ( 歪 ) の関係を本講座では復習する 学習の内容. 応力と歪. 真っ直ぐな軸に外力が軸方向に作用する場合 3. 真っ直ぐな梁の曲げ. 軸のねじり 5. 座屈 6. エネルギー法 第 章 : 釣り合いの状態力の釣り合いとモーメントの釣り合いを満たすことによる.

More information

<4D F736F F D EBF97CD8A B7982D189898F4B A95748E9197BF4E6F31312E646F63>

<4D F736F F D EBF97CD8A B7982D189898F4B A95748E9197BF4E6F31312E646F63> 土質力学 Ⅰ 及び演習 (B 班 : 小高担当 ) 配付資料 N.11 (6.1.1) モールの応力円 (1) モールの応力円を使う上での3つの約束 1 垂直応力は圧縮を正とし, 軸の右側を正の方向とする 反時計まわりのモーメントを起こさせるせん断応力 の組を正とする 3 物体内で着目する面が,θ だけ回転すると, モールの応力円上では θ 回転する 1とは物理的な実際の作用面とモールの応力円上との回転の方向を一致させるために都合の良い約束である

More information

目次 1 章設計条件 形状寸法 上部工反力 設計水平震度 単位重量他 柱 使用材料 鉄筋 柱躯体自重 章柱の設計 ( レベル 1 地震

目次 1 章設計条件 形状寸法 上部工反力 設計水平震度 単位重量他 柱 使用材料 鉄筋 柱躯体自重 章柱の設計 ( レベル 1 地震 2013 年度 都市設計製図 RC 橋脚の耐震設計 課題 3:RC 橋脚の耐震設計 ( その 2) 2013/12/16 学籍番号 氏名 目次 1 章設計条件... 1 1.1 形状寸法... 1 1.2 上部工反力... 1 1.3 設計水平震度... 1 1.4 単位重量他... 1 1.5 柱... 2 1.5.1 使用材料... 2 1.5.2 鉄筋... 2 1.6 柱躯体自重... 3

More information

Microsoft Word - 圧縮材

Microsoft Word - 圧縮材 応用力学 Ⅱ 講義資料 / 圧縮材 1 圧縮材 圧縮材 (compssion mm) または柱 (column): 軸方向の圧縮力を受ける部材 圧縮材の破壊形態による分類 ( 破壊形態 ) 短柱 (shot column): 比較的太く短い圧縮材 圧潰 (cushing failu) 長柱 (long column) : 比較的細長い圧縮材 座屈 (uckling) 細長比 (slndnss atio):

More information

SPACEstJ User's Manual

SPACEstJ User's Manual 6-1 第 6 章部材の断面力計算 ポイント : 部材断面力の計算 両端の変位より両端外力を計算する 本章では 両端の変位を用いて部材両端の材端力を求め 断面内の応力との釣合より 断面力を求める方法を学ぶ ここでは 部材荷重は等分布荷重を考慮しているため 基本応力と節点荷重による断面力を重ね合わせて 実際の部材断面力を求める 6.1 はじめに キーワード 部材断面力の計算部材座標系の変位等分布荷重による基本応力

More information

<4D F736F F D C082CC8BC882B08B7982D182B982F192668E8E8CB12E646F63>

<4D F736F F D C082CC8BC882B08B7982D182B982F192668E8E8CB12E646F63> 6.1 目的 6.RC 梁の曲げ及びせん断試験 RC 梁の基本特性を 梁の曲げ せん断実験を通じて学ぶ RC 梁の断面解析を行い 実験で用いる梁の曲げ及びせん断耐力 荷重変形関係を予想する 梁のモデル試験体を用いた実験を通じて 荷重と変形の関係 ひび割れの進展状況 最終破壊性状等を観察する 解析の予想と実験結果とを比較し 解析手法の精度について考察する 梁の様々な耐力 変形能力 エネルギー吸収能力について考察し

More information

計算例 5t超え~10t以下用_(補強リブ無しのタイプ)

計算例 5t超え~10t以下用_(補強リブ無しのタイプ) 1 標準吊金具の計算事例 5t 超え ~10t 以下用 ( 補強リブ無しのタイプ ) 015 年 1 月 修正 1:015.03.31 ( 社 ) 鋼管杭 鋼矢板技術協会製品技術委員会 1. 検討条件 (1) 吊金具形状 寸法 ( 材料 : 引張強度 490 N/mm 級 ) 00 30 φ 65 90 30 150 150 60 15 () 鋼管仕様 外径 板厚 長さ L 質量 (mm) (mm)

More information

PowerPoint Presentation

PowerPoint Presentation CAE 演習 :Eas-σ lite に よる応力解析 目標 : 機械工学実験 はりの曲げと応力集中 の有限要素法による応力解析を行う 用語 CAD: Computer Aided Design CAE: Computer Aided Engineering コンピュータシミュレーション CAM: Computer Aided Manufacturing スケジュール. 有限要素法の基礎と応用例 2.

More information

<4D F736F F D E682568FCD CC82B982F192668BAD9378>

<4D F736F F D E682568FCD CC82B982F192668BAD9378> 7. 組み合わせ応力 7.7. 応力の座標変換載荷 ( 要素 の上方右側にずれている位置での載荷を想定 図 ( この場合正 ( この場合負 応力の座標変換の知識は なぜ必要か? 例 土の二つの基本的せん断変形モード : - 三軸圧縮変形 - 単純せん断変形 一面せん断変形両者でのせん断強度の関連を理解するためには 応力の座標変換を理解する必要がある 例 粘着力のない土 ( 代表例 乾燥した砂 のせん断破壊は

More information

1

1 半剛節が部材上の任意点にある部材剛性方程式 米子高専 川端康洋 稲田祐二. ピン半剛節を有する部材の解析の歴史 ()940 二見秀雄材の途中にピン接合点を有するラーメン材の算式とその応用建築学会論文集 つのピン節を含む部材の撓角法基本式と荷重項ピン節を含む部材の撓角法基本式と荷重項が求められている 以降 固定モーメント法や異形ラーメンの解法への応用が研究された 戦後には 関連する論文は見当たらない

More information

Microsoft PowerPoint - シミュレーション工学-2010-第1回.ppt

Microsoft PowerPoint - シミュレーション工学-2010-第1回.ppt シミュレーション工学 ( 後半 ) 東京大学人工物工学研究センター 鈴木克幸 CA( Compter Aded geerg ) r. Jaso Lemo (SC, 98) 設計者が解析ツールを使いこなすことにより 設計の評価 設計の質の向上を図る geerg の本質の 計算機による支援 (CA CAM などより広い名前 ) 様々な汎用ソフトの登場 工業製品の設計に不可欠のツール 構造解析 流体解析

More information

<4D F736F F D20824F F6490CF95AA82C696CA90CF95AA2E646F63>

<4D F736F F D20824F F6490CF95AA82C696CA90CF95AA2E646F63> 1/15 平成 3 年 3 月 4 日午後 6 時 49 分 5 ベクトルの 重積分と面積分 5 重積分と面積分 Ⅰ. 重積分 と で 回積分することを 重積分 といいます この 重積分は何を意味しているのでしょう? 通常の積分 (1 重積分 ) では C d 図 1a 1 f d (5.1) 1 f d f ( ) は 図形的には図 1a のように面積を表しています つまり 1 f ( ) を高さとしてプロットすると図

More information

第 2 章 構造解析 8

第 2 章 構造解析 8 第 2 章 構造解析 8 2.1. 目的 FITSAT-1 の外郭構造が, 打ち上げ時の加速度等によって発生する局所的な応力, 及び温度変化によってビスに発生する引っ張り応力に対して, 十分な強度を有することを明らかにする. 解析には SolidWorks2011 を用いた. 2.2. 適用文書 (1)JMX-2011303B: JEM 搭載用小型衛星放出機構を利用する小型衛星への構造 フラクチャコントロール計画書

More information

Microsoft PowerPoint - zairiki_11

Microsoft PowerPoint - zairiki_11 許容応力度設計の基礎 圧縮材の設計 ( 座屈現象 ) 構造部材には 圧縮を受ける部材があります 柱はその代表格みたいなものです 柱以外にも トラス材やブレース材 ラチス材といったものがあります ブレースは筋交いともいい はりや柱の構面に斜め材として設けられています この部材は 主に地震などの水平力に抵抗します 一方 ラチス材は 細長い平鋼 ( 鉄の板 ) を組み合わせて はりや柱をつくることがありますが

More information

IT1815.xls

IT1815.xls 提出番号 No.IT1815 提出先御中 ハンドホール 1800 1800 1500 - 強度計算書 - 国土交通省大臣官房官庁営繕部監修平成 5 年度版 電気設備工事監理指針 より 受領印欄 提出平成年月日 株式会社インテック 1 1. 設計条件奥行き ( 短辺方向 ) X 1800 mm 横幅 Y 1800 mm 側壁高 Z 1500 mm 部材厚 床版 t 1 180 mm 底版 t 150

More information

まえがき 材料力学の教科書を見ると 2ページ目から 微分 積分 行列の式などがずらっと並んでいます もう それを見るだけで拒絶反応を起こしてしまう方もおられるのではないでしょうか? 確かに 三次元で評価しようとするとそのような計算が必要になるかもしれませんが 一次元 二次元なら 簡単な式にまとめられ

まえがき 材料力学の教科書を見ると 2ページ目から 微分 積分 行列の式などがずらっと並んでいます もう それを見るだけで拒絶反応を起こしてしまう方もおられるのではないでしょうか? 確かに 三次元で評価しようとするとそのような計算が必要になるかもしれませんが 一次元 二次元なら 簡単な式にまとめられ 技術士だぁーちゃんの 材料力学基礎講座 http://www.eonet.ne.jp/~northriver/gijutsushi/ まえがき 材料力学の教科書を見ると 2ページ目から 微分 積分 行列の式などがずらっと並んでいます もう それを見るだけで拒絶反応を起こしてしまう方もおられるのではないでしょうか? 確かに 三次元で評価しようとするとそのような計算が必要になるかもしれませんが 一次元

More information

例題1 転がり摩擦

例題1 転がり摩擦 重心 5.. 重心問題解法虎の巻. 半円 分円. 円弧. 扇形. 半球殻 5. 半球体 6. 厚みのある半球殻 7. 三角形 8. 円錐 9. 円錐台. 穴あき板. 空洞のある半球ボール 重心問題解法虎の巻 関西大学工学部物理学教室 齊藤正 重心を求める場合 質点系の重心の求め方が基本 実際の物体では連続体であるので 積分形式で求める場合が多い これらの式は 次元のベクトル形式で書かれている通り つの式は実際には

More information

<4D F736F F F696E74202D BD E838A815B836791A28D9C916782CC94F190FC8C6089F090CD288C9A8CA4292E707074>

<4D F736F F F696E74202D BD E838A815B836791A28D9C916782CC94F190FC8C6089F090CD288C9A8CA4292E707074> 2011 年 6 月 9 日 ( 独 ) 建築研究所中国耐震構造研修 鉄筋コンクリート造骨組の非線形解析 曲げ挙動する RC 骨組の解析 せん断破壊 付着割裂破壊 定着破壊等の脆性破壊は設計段階で除外 東京大学名誉教授小谷俊介 コンクリートの応力度 - 歪度関係 影響因子 (1) コンクリートの調合 (2) 試験時の材令 (3) 供試体の養生方法 (4) 供試体の形状と大きさ (5) 載荷速度 圧縮強度

More information

応用数学Ⅱ 偏微分方程式(2) 波動方程式(12/13)

応用数学Ⅱ 偏微分方程式(2) 波動方程式(12/13) 偏微分方程式. 偏微分方程式の形 偏微分 偏導関数 つの独立変数 をもつ関数 があるとき 変数 が一定値をとって だけが変化したとす ると は だけの関数となる このとき を について微分して得られる関数を 関数 の に関する 偏微分係数 略して偏微分 あるいは偏導関数 pil deiie といい 次のように表される についても同様な偏微分を定義できる あるいは あるいは - あるいは あるいは -

More information

POWER-直接基礎Ⅱの出力例(表形式)

POWER-直接基礎Ⅱの出力例(表形式) page < 出力例 > 地盤の支持力の計算 S01 (1F Y1@X1 ) BxL hf hw C,O r2 r1 基礎底面の形状 長方形 基礎最小幅 B 1.20 (m) 基礎の長さ L 2.60 (m) 基礎下端の深さ hf GL- 1.20 (m) 地下水位 hw GL- 3.90 (m) 根入れ深さ Df 1.20 (m) 土質定数 砂層 基礎下の土重量 γ1 18.14 (kn/m 3

More information

DVIOUT-SS_Ma

DVIOUT-SS_Ma 第 章 微分方程式 ニュートンはリンゴが落ちるのを見て万有引力を発見した という有名な逸話があります 無重力の宇宙船の中ではリンゴは落ちないで静止していることを考えると 重力が働くと始め静止しているものが動き出して そのスピードはどんどん大きくなる つまり速度の変化が現れることがわかります 速度は一般に時間と共に変化します 速度の瞬間的変化の割合を加速度といい で定義しましょう 速度が変化する, つまり加速度がでなくなるためにはその原因があり

More information

木村の物理小ネタ ケプラーの第 2 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という) が単位時間に描く面積を 動点 P の定点 O に

木村の物理小ネタ   ケプラーの第 2 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という) が単位時間に描く面積を 動点 P の定点 O に ケプラーの第 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という が単位時間に描く面積を 動点 P の定点 O に関する面積速度の大きさ という 定点 O まわりを回る面積速度の導き方導き方 A ( x( + D, y( + D v ( q r ( A ( x (, y( 動点 P が xy 座標平面上を時刻

More information

Microsoft PowerPoint - 講義PPT2019.ppt [互換モード]

Microsoft PowerPoint - 講義PPT2019.ppt [互換モード] . CA 演習 :as σ lite による応力解析 目標 : 機械工学実験 はりの曲げと応力集中 の有限要素法による応力解析を行う CAD: Computer Aided Design CA: Computer Aided ngineering コンピュータシミュレーション CAM: Computer Aided Manufacturing スケジュール. 有限要素法の基礎と応用例. as σの使い方の説明.

More information

<4D F736F F F696E74202D20906C8D488AC28BAB90DD8C7689F090CD8D488A D91E F1>

<4D F736F F F696E74202D20906C8D488AC28BAB90DD8C7689F090CD8D488A D91E F1> 人工環境設計解析工学構造力学と有限要素法 ( 第 回 ) 東京大学新領域創成科学研究科 鈴木克幸 固体力学の基礎方程式 変位 - ひずみの関係 適合条件式 ひずみ - 応力の関係 構成方程式 応力 - 外力の関係 平衡方程式 境界条件 変位規定境界 反力規定境界 境界条件 荷重応力ひずみ変形 場の方程式 Γ t Γ t 平衡方程式構成方程式適合条件式 構造力学の基礎式 ひずみ 一軸 荷重応力ひずみ変形

More information

<4D F736F F D2091E6368FCD92508F838E788E9D82CC8BE98C6094C582F089F082AD4E CC95FB96402E646F63>

<4D F736F F D2091E6368FCD92508F838E788E9D82CC8BE98C6094C582F089F082AD4E CC95FB96402E646F63> 57-6 第 6 章 単純支持の矩形板を解く Nvier の方法 目次 第 6 章単純支持の矩形板を解く Nvier の方法 6. 概説 6. 正弦型の分布荷重を受ける単純支持の矩形板 Ⅰ 6.3 正弦型の分布荷重を受ける単純支持の矩形板 Ⅱ 5 6. 任意の分布荷重をうける単純支持の矩形板 6 6.5 例題 9 [ 例題 ] 満載等分布荷重をうける 辺単純支持の矩形板 9 [ 例題 ] 中心部に矩形型の等分布荷重が作用する

More information

物理演習問題

物理演習問題 < 物理 > =0 問 ビルの高さを, ある速さ ( 初速 をとおく,において等加速度運動の公式より (- : -= t - t : -=- t - t (-, 式よりを消去すると t - t =- t - t ( + - ( + ( - =0 0 t t t t t t ( t + t - ( t - =0 t=t t=t t - 地面 ( t - t t +t 0 より, = 3 図 問 が最高点では速度が

More information

<82658C5E95578EAF928C208BAD93788C768E5A8F >

<82658C5E95578EAF928C208BAD93788C768E5A8F > 001 F 型標識柱強度計算書 ( 柱長 6.75m ) (1400 * 3800) (1400 * 3800) 略図 000 3800 300 300 6750 300 550 900 300 5700 STK-φ76.3x.8 STK-φ165.x4.5 STK-φ67.4x6.6 50 300 5000 1400 3000 100 1400 P. 1 1. 一般事項 1-1 概要 F 型 標識柱

More information

Microsoft PowerPoint - 構造力学Ⅰ第03回.pptx

Microsoft PowerPoint - 構造力学Ⅰ第03回.pptx 分布荷重の合力 ( 効果 ) 前回の復習 ( 第 回 ) p. 分布荷重は平行な力が連続して分布していると考えられる 例 : 三角形分布 l dx P=ql/ q l qx q l 大きさ P dx x 位置 Px 0 x x 0 l ql 0 : 面積に等しい 0 l l 重心に等しいモーメントの釣合より ( バリノンの定理 ) l qx l qx ql q 3 l ql l xdx x0 xdx

More information

木村の物理小ネタ 単振動と単振動の力学的エネルギー 1. 弾性力と単振動 弾性力も単振動も力は F = -Kx の形で表されるが, x = 0 の位置は, 弾性力の場合, 弾性体の自然状態の位置 単振動の場合, 振動する物体に働く力のつり合

木村の物理小ネタ   単振動と単振動の力学的エネルギー 1. 弾性力と単振動 弾性力も単振動も力は F = -Kx の形で表されるが, x = 0 の位置は, 弾性力の場合, 弾性体の自然状態の位置 単振動の場合, 振動する物体に働く力のつり合 単振動と単振動の力学的エネルギー. 弾性力と単振動 弾性力も単振動も力は F = -x の形で表されるが, x = の位置は, 弾性力の場合, 弾性体の自然状態の位置 単振動の場合, 振動する物体に働く力のつり合いの位置 である たとえば, おもりをつるしたばねについて, ばねの弾性力を考えるときは, ばねの自然長を x = とし, おもりの単振動で考える場合は, おもりに働く力がつり合った位置を

More information

LEDの光度調整について

LEDの光度調整について 光測定と単位について 目次 1. 概要 2. 色とは 3. 放射量と測光量 4. 放射束 5. 視感度 6. 放射束と光束の関係 7. 光度と立体角 8. 照度 9. 照度と光束の関係 10. 各単位の関係 11. まとめ 1/6 1. 概要 LED の性質を表すには 光の強さ 明るさ等が重要となり これらはその LED をどのようなアプリケーションに使用するかを決定するために必須のものになることが殆どです

More information

ギリシャ文字の読み方を教えてください

ギリシャ文字の読み方を教えてください 埼玉工業大学機械工学学習支援セミナー ( 小西克享 ) 慣性モーメント -1/6 テーマ 01: 慣性モーメント (Momet of ietia) コマ回しをすると, 長い時間回転させるには重くて大きなコマを選ぶことや, ひもを早く引くことが重要であることが経験的にわかります. 遊びを通して, 回転の運動エネルギーを増やせば, 回転の勢いが増すことを学習できるので, 機械系の学生にとってコマ回しも大切な体験学習のひとつと言えます.

More information

配管設計解析に関する補足技術資料 全 6 頁 曲げモーメントを負荷した場合のエルボの変形 MSP0002-R 年 5 月 31 日 エムエス配管解析技術水野貞男 1. まえがき曲げモーメントを負荷した場合のエルボの変形に就いては, 配管の設計解析法 (1) の 項で説明して

配管設計解析に関する補足技術資料 全 6 頁 曲げモーメントを負荷した場合のエルボの変形 MSP0002-R 年 5 月 31 日 エムエス配管解析技術水野貞男 1. まえがき曲げモーメントを負荷した場合のエルボの変形に就いては, 配管の設計解析法 (1) の 項で説明して 配管設計解析に関する補足技術資料 全 6 頁 曲げモーメントを負荷した場合のエルボの変形 SP0002-R00 2013 年 5 月 31 日 エムエス配管解析技術水野貞男 1. まえがき曲げモーメントを負荷した場合のエルボの変形に就いては, 配管の設計解析法 (1) の 4.1.5 項で説明しており, 特に, 面内曲げに関しては, 偏平化が起きる力学的原因も解説した 紙幅の関係から, 配管の設計解析法

More information

第 5 章 構造振動学 棒の振動を縦振動, 捩り振動, 曲げ振動に分けて考える. 5.1 棒の縦振動と捩り振動 まっすぐな棒の縦振動の固有振動数 f[ Hz] f = l 2pL である. ただし, L [ 単位 m] は棒の長さ, [ 2 N / m ] 3 r[ 単位 Kg / m ] E r

第 5 章 構造振動学 棒の振動を縦振動, 捩り振動, 曲げ振動に分けて考える. 5.1 棒の縦振動と捩り振動 まっすぐな棒の縦振動の固有振動数 f[ Hz] f = l 2pL である. ただし, L [ 単位 m] は棒の長さ, [ 2 N / m ] 3 r[ 単位 Kg / m ] E r 第 5 章 構造振動学 棒の振動を縦振動, 捩り振動, 曲げ振動に分けて考える 5 棒の縦振動と捩り振動 まっすぐな棒の縦振動の固有振動数 f[ Hz] f l pl である ただし, L [ 単位 m] は棒の長さ, [ N / m ] [ 単位 Kg / m ] E は (5) E 単位は棒の材料の縦弾性係数 ( ヤング率 ) は棒の材料の単位体積当りの質量である l は境界条件と振動モードによって決まる無

More information

20~22.prt

20~22.prt [ 三クリア W] 辺が等しいことの証明 ( 円周角と弦の関係利用 ) の の二等分線がこの三角形の外接円と交わる点をそれぞれ とするとき 60 ならば であることを証明せよ 60 + + 0 + 0 80-60 60 から ゆえに 等しい長さの弧に対する弦の長さは等しいから [ 三クリア ] 方べきの定理 接線と弦のなす角と円周角を利用 線分 を直径とする円 があり 右の図のように の延長上の点

More information

diode_revise

diode_revise 2.3 pn 接合の整流作用 c 大豆生田利章 2015 1 2.3 pn 接合の整流作用 2.2 節では外部から電圧を加えないときの pn 接合について述べた. ここでは, 外部か らバイアス電圧を加えるとどのようにして電流が流れるかを電子の移動を中心に説明す る. 2.2 節では熱エネルギーの存在を考慮していなかったが, 実際には半導体のキャリアは 周囲から熱エネルギーを受け取る その結果 半導体のキャリヤのエネルギーは一定でな

More information

Microsoft Word - 中村工大連携教材(最終 ).doc

Microsoft Word - 中村工大連携教材(最終 ).doc 音速について考えてみよう! 金沢工業大学 中村晃 ねらい 私たちの身の回りにはいろいろな種類の波が存在する. 体感できる波もあれば, できない波もある. その中で音は体感できる最も身近な波である. 遠くで雷が光ってから雷鳴が届くまで数秒間時間がかかることにより, 音の方が光より伝わるのに時間がかかることも経験していると思う. 高校の物理の授業で音の伝わる速さ ( 音速 ) は約 m/s で, 詳しく述べると

More information

<8BC882B082A882E682D18EB297CD82F08EF382AF82E CD82E882CC90DD8C E93E7817A2E786477>

<8BC882B082A882E682D18EB297CD82F08EF382AF82E CD82E882CC90DD8C E93E7817A2E786477> コンクリート構造設計の基本 第 6 章曲げおよび軸力を受ける鉄筋コンクリートはりの設計 P7~P96 ( 株 ) 国際建設技術研究所真鍋英規 はじめに 土木学会 コンクリート標準示方書 昭和 6 年版 限界状態設計法 を導入 許容応力度設計法 から 限界状態設計法 へ 7 年版安全性の照査使用性の照査曲げひび割れ幅の制御 変位 変形等耐久性の照査に関する記述が追加 /8/ 鉄筋コンクリート Reinforced

More information

数学 ⅡB < 公理 > 公理を論拠に定義を用いて定理を証明する 1 大小関係の公理 順序 (a > b, a = b, a > b 1 つ成立 a > b, b > c a > c 成立 ) 順序と演算 (a > b a + c > b + c (a > b, c > 0 ac > bc) 2 図

数学 ⅡB < 公理 > 公理を論拠に定義を用いて定理を証明する 1 大小関係の公理 順序 (a > b, a = b, a > b 1 つ成立 a > b, b > c a > c 成立 ) 順序と演算 (a > b a + c > b + c (a > b, c > 0 ac > bc) 2 図 数学 Ⅱ < 公理 > 公理を論拠に定義を用いて定理を証明する 大小関係の公理 順序 >, =, > つ成立 >, > > 成立 順序と演算 > + > + >, > > 図形の公理 平行線の性質 錯角 同位角 三角形の合同条件 三角形の合同相似 量の公理 角の大きさ 線分の長さ < 空間における座漂とベクトル > ベクトルの演算 和 差 実数倍については 文字の計算と同様 ベクトルの成分表示 平面ベクトル

More information

<4D F736F F D CC82E898678E77906A E DD8C7697E181698F4390B3816A312E646F63>

<4D F736F F D CC82E898678E77906A E DD8C7697E181698F4390B3816A312E646F63> 付録 1. 吹付枠工の設計例 グラウンドアンカー工と併用する場合の吹付枠工の設計例を紹介する 付録図 1.1 アンカー配置 開始 現地条件の設定現況安全率の設定計画安全率の設定必要抑止力の算定アンカー体の配置計画アンカー設計荷重の設定作用荷重および枠構造の決定設計断面力の算定安全性の照査 土質定数 (C φ γ) 等を設定 例 ) ここでは Fs0.95~1.05 を設定 例 ) ここでは Fsp1.20~1.50

More information

<4D F736F F D2089FC92E82D D4B CF591AA92E882C CA82C982C282A282C42E727466>

<4D F736F F D2089FC92E82D D4B CF591AA92E882C CA82C982C282A282C42E727466> 11 Application Note 光測定と単位について 1. 概要 LED の性質を表すには 光の強さ 明るさ等が重要となり これらはその LED をどのようなアプリケーションに使用するかを決定するために必須のものになることが殆どです しかし 測定の方法は多種存在し 何をどのような測定器で測定するかにより 測定結果が異なってきます 本書では光測定とその単位について説明していきます 2. 色とは

More information

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X ( 第 週ラプラス変換 教科書 p.34~ 目標ラプラス変換の定義と意味を理解する フーリエ変換や Z 変換と並ぶ 信号解析やシステム設計における重要なツール ラプラス変換は波動現象や電気回路など様々な分野で 微分方程式を解くために利用されてきた ラプラス変換を用いることで微分方程式は代数方程式に変換される また 工学上使われる主要な関数のラプラス変換は簡単な形の関数で表されるので これを ラプラス変換表

More information

静的弾性問題の有限要素法解析アルゴリズム

静的弾性問題の有限要素法解析アルゴリズム 概要 基礎理論. 応力とひずみおよび平衡方程式. 降伏条件式. 構成式 ( 応力 - ひずみ関係式 ) 有限要素法. 有限要素法の概要. 仮想仕事の原理式と変分原理. 平面ひずみ弾性有限要素法定式化 FEM の基礎方程式平衡方程式. G G G ひずみ - 変位関係式 w w w. kl jkl j D 構成式応力 - ひずみ関係式 ) (. 変位の境界条件力の境界条件境界条件式 t S on V

More information

相加平均 相乗平均 調和平均が表す比 台形 の上底 下底 の長さをそれぞれ, とするとき 各平均により 台形の高さ はどのように比に分けられるだろうか 相乗平均は 相似な つの台形になるから台形の高さ を : の 比に分ける また 相加平均は は : の比に分けます 調和平均は 対角線 と の交点を

相加平均 相乗平均 調和平均が表す比 台形 の上底 下底 の長さをそれぞれ, とするとき 各平均により 台形の高さ はどのように比に分けられるだろうか 相乗平均は 相似な つの台形になるから台形の高さ を : の 比に分ける また 相加平均は は : の比に分けます 調和平均は 対角線 と の交点を 台形に潜むいろいろな平均 札幌旭丘高校中村文則 台形に調和平均 相加平均をみる 右図の台形 において = = とする の長さを, を用いて表してみよう = x = y = c とすると であることから : = : より c y = x + y であることから : = : より c x = x + y を辺々加えると x + y c + = より + = x + y c となる ここで = = c =

More information

<4D F736F F F696E74202D AB97CD8A E630398FCD5F8AC C896E291E8816A2E B8CDD8AB B83685D>

<4D F736F F F696E74202D AB97CD8A E630398FCD5F8AC C896E291E8816A2E B8CDD8AB B83685D> 単純な ( 単純化した ) 応力状態における弾塑性問題 () 繊維強化複合材の引張り () 三本棒トラスへの負荷 () はりの曲げ (4) 円筒 丸棒のねじりとせん断変形 (5) 熱弾塑性問題 負荷 ( 弾性変形 ) 負荷 ( 弾塑性変形 ) 除荷 残留応力 第 9 章,4 ページ ~ その. 繊維強化複合材料の引張り Rs.: []htt://authrs.library.caltch.du/5456//hrst.it.du/hrs/

More information

技術者のための構造力学 5 線形座屈理論概説, 講習会資料目次. はじめに. 基礎式の一覧 6. バネの関係式 6. 柱の関係式 6. はりのたわみの微分方程式 6. 板のたわみの微分方程式 7.5 柱の座屈の微分方程式 7.6 板の座屈の微分方程式 8.7 補剛板の座屈の微分方程式 8. 微分方程

技術者のための構造力学 5 線形座屈理論概説, 講習会資料目次. はじめに. 基礎式の一覧 6. バネの関係式 6. 柱の関係式 6. はりのたわみの微分方程式 6. 板のたわみの微分方程式 7.5 柱の座屈の微分方程式 7.6 板の座屈の微分方程式 8.7 補剛板の座屈の微分方程式 8. 微分方程 技術者のための構造力学 5 技術者のための構造力学 線形座屈理論概説 Rev. 5.. 加藤久人三好崇夫 技術者のための構造力学 5 線形座屈理論概説, 講習会資料目次. はじめに. 基礎式の一覧 6. バネの関係式 6. 柱の関係式 6. はりのたわみの微分方程式 6. 板のたわみの微分方程式 7.5 柱の座屈の微分方程式 7.6 板の座屈の微分方程式 8.7 補剛板の座屈の微分方程式 8. 微分方程式の式の誘導

More information

問題 2-1 ボルト締結体の設計 (1-1) 摩擦係数の推定図 1-1 に示すボルト締結体にて, 六角穴付きボルト (M12) の締付けトルクとボルト軸力を測定した ボルトを含め材質はすべて SUS304 かそれをベースとしたオーステナイト系ステンレス鋼である 測定時, ナットと下締結体は固着させた

問題 2-1 ボルト締結体の設計 (1-1) 摩擦係数の推定図 1-1 に示すボルト締結体にて, 六角穴付きボルト (M12) の締付けトルクとボルト軸力を測定した ボルトを含め材質はすべて SUS304 かそれをベースとしたオーステナイト系ステンレス鋼である 測定時, ナットと下締結体は固着させた 問題 2-1 ボルト締結体の設計 (1-1) 摩擦係数の推定図 1-1 に示すボルト締結体にて, 六角穴付きボルト (M12) の締付けトルクとボルト軸力を測定した ボルトを含め材質はすべて SUS304 かそれをベースとしたオーステナイト系ステンレス鋼である 測定時, ナットと下締結体は固着させた 測定データを図 1-2 に示す データから, オーステナイト系ステンレス鋼どうしの摩擦係数を推定せよ

More information

相対性理論入門 1 Lorentz 変換 光がどのような座標系に対しても同一の速さ c で進むことから導かれる座標の一次変換である. (x, y, z, t ) の座標系が (x, y, z, t) の座標系に対して x 軸方向に w の速度で進んでいる場合, 座標系が一次変換で関係づけられるとする

相対性理論入門 1 Lorentz 変換 光がどのような座標系に対しても同一の速さ c で進むことから導かれる座標の一次変換である. (x, y, z, t ) の座標系が (x, y, z, t) の座標系に対して x 軸方向に w の速度で進んでいる場合, 座標系が一次変換で関係づけられるとする 相対性理論入門 Lorentz 変換 光がどのような座標系に対しても同一の速さ で進むことから導かれる座標の一次変換である. x, y, z, t ) の座標系が x, y, z, t) の座標系に対して x 軸方向に w の速度で進んでいる場合, 座標系が一次変換で関係づけられるとすると, x A x wt) y y z z t Bx + Dt 弨弱弩弨弲弩弨弳弩弨弴弩 が成立する. 図 : 相対速度

More information

点におけるひずみの定義 ( その1)-(ε, ε,γ ) の定義ひずみは 構造物の中で変化しているのが一般的である このために 応力と同様に 構造物内の任意の点で定義できるようにした方がよい また 応力と同様に 一つの点に注目しても ひずみは向きによって値が異なる これらを勘案し あ

点におけるひずみの定義 ( その1)-(ε, ε,γ ) の定義ひずみは 構造物の中で変化しているのが一般的である このために 応力と同様に 構造物内の任意の点で定義できるようにした方がよい また 応力と同様に 一つの点に注目しても ひずみは向きによって値が異なる これらを勘案し あ 3. 変位とひずみ 3.1 変位関数構造物は外力の作用の下で変形する いま この変形により構造物内の任意の点 P(,,z) が P (',',z') に移動したものとする ( 図 3.1 参照 ) (,,z) は変形前の点 Pの座標 (',', z') は変形後の座標である このとき 次式で示される変形前後の座標の差 u ='- u ='- u z =z'-z (3.1) を変位成分と呼ぶ 変位 (

More information

Microsoft PowerPoint - 流体力学の基礎02(OpenFOAM 勉強会 for geginner).pptx

Microsoft PowerPoint - 流体力学の基礎02(OpenFOAM 勉強会 for geginner).pptx ~ 流体力学の基礎 ~ 第 2 回 流体静力学 2011 年 10 月 22 日 ( 土 ) 講習会のスケジュール概要 ( あくまでも現時点での予定です ) 流体力学の基礎 第 1 回目 2011.09 流体について 第 2 回目 2011.10 流体静力学 第 3 回目 2011.11/12 流体運動の基礎理論 1 第 4 回目 2012.01 流体運動の基礎理論 2 第 5 回目 2012.02

More information