Microsoft PowerPoint - fuseitei_6

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Microsoft PowerPoint - fuseitei_6"

Transcription

1 不静定力学 Ⅱ 骨組の崩壊荷重の計算 不静定力学 Ⅱ では, 最後の問題となりますが, 骨組の崩壊荷重の計算法について学びます 1

2 参考書 松本慎也著 よくわかる構造力学の基本, 秀和システム このスライドの説明には, 主にこの参考書の説明を引用しています 2

3 崩壊荷重 構造物に作用する荷重が徐々に増大すると, 構造物内に発生する応力は増加し, やがて, 構造物は荷重に耐えられなくなる そのときの荷重を崩壊荷重あるいは終局荷重という 荷重 (b) (c) 終局状態 (a) 弾性状態 塑性状態 変形 建物の設計では, 地震などによって損傷を受けないということが重要ですが, 数百年に一度おこるような巨大地震に対しては, 損傷を完全に回避することは困難なことです したがって, このような巨大地震に対しては, 人命保護のために, 損傷は受けても潰れない ( 崩壊しない ) ことを保証する必要があります 巨大地震で建物の崩壊を防ぐには, どの程度の地震荷重 ( 水平力 ) によって, 建物が崩壊するのかを求めておく必要があります このように建物が崩壊する荷重を 崩壊荷重 または 終局荷重 と呼びます ( なお, 終局荷重は, 建物が抵抗力を無くした時点での荷重です ) 図には, 骨組に作用する水平荷重が徐々に大きくなっていった時の建物の変形と作用する荷重との関係を図とグラフで示してあります (a) の弾性状態では, 建物に損傷がなく, 荷重が無くなると元の状態に戻ります しかし,(b) の塑性状態では, 建物にひびが入り, 損傷を受けます しかし, まだ崩壊には至らず, 人命は保護されます ( ただし, 補修は大変です ) (c) の終局状態では, 柱または梁が崩壊し, 建物が崩れます 人命にも被害を及ぼします この授業の目的は,(c) の状態の荷重 ( 崩壊荷重 ) を求めることにあります 3

4 材料特性のモデル化 応力 σ 応力 σ 降伏応力 σ y モデル化 ひずみ ε ひずみ ε 実際の応力 - ひずみ関係 ( 複雑 ) 完全弾塑性モデル ( 単純 ) まず, このような骨組の崩壊荷重を求めるためには, いくつかの仮定が必要です 一つは, 材料の応力とひずみの関係を右の図のようにモデル化します このような応力 -ひずみ関係のモデルを, 完全弾塑性モデルと呼びます この完全弾塑性モデルでは, ある応力に達するとひずみが一定になります すなわち, 同じ応力でどんどん変形が進むということです このひずみが一定になる時の応力を 降伏応力 と呼びます ここでは, 完全弾塑性という言葉と, 降伏応力 σy という言葉を憶えてください 4

5 完全弾塑性モデルの部材断面内における応力分布 このような完全弾塑性モデルを仮定すると, 曲げモーメントが加わる部材の断面の応力状態は図に示すように変化して行きます まず, 応力が降伏応力に至るまでは,(a), (b) のように応力の傾きは直線になります 断面の端が, 降伏応力に達すると, それ以上応力は高くならないため,(c) のように, 断面の端から徐々に応力一定の領域が進展していきます この状態が弾塑性状態です そして, 最終的に (d) のように, 断面の全領域が降伏し, 曲げに対する抵抗力が0になります これが断面の崩壊です この状態を全塑性状態と呼びます 崩壊荷重を求めるためには, この全塑性状態の曲げモーメントを求める必要があります この全塑性状態の曲げモーメントを 全塑性モーメント と呼びます 5

6 全塑性モーメント y σ y D B x C σ y T j D j = 2 BD C = T = σ y 2 部材断面 全塑性状態 全塑性モーメント 塑性断面係数 2 M p = C j = T j = BD σ D BD y = σ y = Zpσ y BD Z p = 4 2 全塑性モーメントMpは, 力の釣合からσyと断面寸法を用いて, ここに示す式で表されます ここで,Zpは, 塑性断面係数 と呼ばれ,σyは, 全塑性モーメントを塑性断面係数で割ることによって得られます 全塑性モーメントMpと塑性断面係数 Zpという言葉を憶えてください また,ZpがBD^2/4となることも憶えてください 6

7 代表的な断面形に対する塑性断面係数 長方形以外の断面の塑性断面係数は, この表のように求められています 7

8 崩壊機構の形成 荷重 荷重が増大すると 崩壊荷重 塑性ヒンジ 崩壊荷重を求めるためには, もう一つ仮定が必要です それは, どの部分 ( 断面 ) が壊れるかと, どのような形で構造全体が崩壊するかがわかっているという仮定です 例えば, 図のような問題では, 部材端部と荷重点が壊れることを仮定しています そして, 断面が崩壊する部分を図に示すようなヒンジで表します そして, 全体崩壊が生じる時のヒンジの位置を仮定します 8

9 様々な崩壊機構 たとえば, 図に示すような門形ラーメンでは, 様々な崩壊形 ( 崩壊機構 ) が考えられます このような崩壊形の中から, どのような崩壊形で崩壊に至るかを仮定する必要があります なお, 演習問題では, 崩壊形 ( 崩壊機構 ) は, 与えられています 実際は, いくつかの崩壊形に対して, 崩壊荷重を計算し, その最も小さいものを崩壊荷重とします 9

10 崩壊荷重の計算法 1. 骨組の崩壊機構を仮定する 2. 外力のなす仕事を計算する外力のなす仕事 = P 3. 内力のなす仕事を計算する内力のなす仕事 = M 4. 仮想仕事の原理より崩壊荷重を求める外力のなす仕事 = 内力のなす仕事 P= M それでは, 以上の基礎知識を元に, 崩壊荷重の求め方について説明します まず, 骨組の崩壊機構を仮定します 次に, その仮定された崩壊機構の変位をなどの変数とし, 外力のなす仕事量を計算します 外力のなす仕事量は, 外力 ( 外力の作用している点の外力方向の変位 ) によって計算できます これをすべての外力に対して計算し, 総和をとったものが外力の仕事量です 次に, 仮定された崩壊機構の各部材の内力のなす仕事量を計算します 各部材の内力の仕事量は, 各部材両端断面の回転角とその部材の全塑性モーメントを掛けることによって計算されます そして, 最後に外力のなす仕事量と内力のなす仕事量が等しいという仮想仕事の原理を用いて, 崩壊荷重 Pを求めます この時, 各部材の回転角 は, 節点の変位 を用いて表すことができるため, 仮定した仮想変位 は, この式から消去されます したがって, 崩壊荷重 Pは, 全塑性モーメントを長さで割った形で表されます 10

11 例題 2L P B 2M p M p 2M p C D L A 3L 次に, 具体的な例題で崩壊荷重の求め方を説明します この例題では, 柱の全塑性モーメントが, 梁の場合の 2 倍になっていることに注意してください 11

12 Step1 崩壊機構の仮定 P u B 2 2 C L 2L D A 3L まず, 崩壊機構を図のように仮定します この場合, 梁の両端 B, Cと固定端側の柱脚 Aにヒンジを仮定しています なお,D 点は, ピン支持であるため, ここでは仕事は発生しません 次に崩壊機構のどこかの節点の変位をと置き, どこかの部材の回転角をと置きます この場合は,B 点の荷重方向の変位をと置き, 柱 ABの傾きをと置いています 次に, 機構のヒンジの回転角をすべてで表します この場合は,B 点とC 点の変位が等しいことから, 柱 DCの傾きは2になります また, 柱 BAと梁 BCは,B 点にヒンジができなければ直角のはずですから,B 点の梁の回転角はになります また,C 点がヒンジでなければ,DCとCBは直角のはずですから,C 点の梁の回転角は 2になります 12

13 Step2 外力のなす仕事の計算 P u B 2 2 C L 2L D A P = P u ただし, 2L 次に, 外力の仕事量を計算します 外力の仕事量は, 外力 ( 外力が作用する節点の外力方向の変位 ) となります この場合は,Pu となります また,は, 近似的に,AB 要素の長さ となりますから,2Lで表されます 13

14 Step3 内力のなす仕事の計算 P u B 2 2 C L 2L D A M = 2M + M + M 2 ヒンジA p p p ヒンジB ヒンジC 次に内力のなした仕事量を計算します 内力の仕事量は, ヒンジを発生させるためのエネルギーに費やされますから, それぞれのヒンジについて仕事量を計算すればOKです まず, ヒンジAができるためには, 柱の全塑性モーメント2Mpの内力が必要です したがって, ヒンジAができた時の仕事量は,2Mp となります 次に, ヒンジBができるためには, 梁の全塑性モーメントMpの内力が必要ですから, 仕事量はMp です ヒンジCができるためには, 梁の全塑性モーメントが必要ですから, 仕事量はMp です ここで, 柱にヒンジがある場合は, 柱の全塑性モーメントを, 梁にヒンジがある場合は, 梁の全塑性モーメントを用いることに注意してください 14

15 Step4 仮想仕事の原理より崩壊荷重を求める P u B 2 2 C L 2L D A P = M P = 2M + M + M 2 u p p p P 2L = 5M u 5M Pu = 2L p p 最後に, 外力の仕事量と内力の仕事量が等しいとする仮想仕事の原理を用いて, 崩壊荷重 Puを求めます この時, 荷重は曲げモーメントを長さに割ったものになることを頭に入れておいて下さい この式によれば,Mp の値が計算されれば, 崩壊荷重が求まります 15

16 断面寸法と降伏応力が与えられれば, 崩壊荷重が計算できる P u 5M = 2L p D M p = BD 4 2 σ y B 部材断面 P u = 5 BD 2L 4 2 σ y 全塑性モーメントMpは, 断面形状と降伏応力が与えられれば計算できます 長方形断面の場合, 塑性断面係数は,BD^2/4でしたから, 崩壊荷重はここに示す式で計算できます 16

第1章 単 位

第1章  単  位 H. Hamano,. 長柱の座屈 - 長柱の座屈 長い柱は圧縮荷重によって折れてしまう場合がある. この現象を座屈といい, 座屈するときの荷重を座屈荷重という.. 換算長 長さ の柱に荷重が作用する場合, その支持方法によって, 柱の理論上の長さ L が異なる. 長柱の計算は, この L を用いて行うと都合がよい. この L を換算長 ( あるいは有効長さという ) という. 座屈荷重は一般に,

More information

<4D F736F F D208D7E959A82A882E682D18F498BC78BC882B B BE98C60816A2E646F63>

<4D F736F F D208D7E959A82A882E682D18F498BC78BC882B B BE98C60816A2E646F63> 降伏時および終局時曲げモーメントの誘導 矩形断面 日中コンサルタント耐震解析部松原勝己. 降伏時の耐力と変形 複鉄筋の矩形断面を仮定する また コンクリートの応力ひずみ関係を非線形 放物線型 とする さらに 引張鉄筋がちょうど降伏ひずみに達しているものとし コンクリート引張応力は無視する ⅰ 圧縮縁のひずみ

More information

seika.PS

seika.PS Carrier Gas Distiled Water Heater Mixed Gas Carrier gas with H 2 O Mixed Gas Inlet Sample Purge Ar gas Quartz Rod Quartz Tube Furnace Thermo Couple Clucible (Molten Salt) Gas Outlet アクティブ制御を用いた長尺アームの制振制御

More information

48 * *2

48 * *2 374-1- 17 2 1 1 B A C A C 48 *2 49-2- 2 176 176 *2 -3- B A A B B C A B A C 1 B C B C 2 B C 94 2 B C 3 1 6 2 8 1 177 C B C C C A D A A B A 7 B C C A 3 C A 187 187 C B 10 AC 187-4- 10 C C B B B B A B 2 BC

More information

<4D F736F F F696E74202D AB97CD8A E630398FCD5F8AC C896E291E8816A2E B8CDD8AB B83685D>

<4D F736F F F696E74202D AB97CD8A E630398FCD5F8AC C896E291E8816A2E B8CDD8AB B83685D> 単純な ( 単純化した ) 応力状態における弾塑性問題 () 繊維強化複合材の引張り () 三本棒トラスへの負荷 () はりの曲げ (4) 円筒 丸棒のねじりとせん断変形 (5) 熱弾塑性問題 負荷 ( 弾性変形 ) 負荷 ( 弾塑性変形 ) 除荷 残留応力 第 9 章,4 ページ ~ その. 繊維強化複合材料の引張り Rs.: []htt://authrs.library.caltch.du/5456//hrst.it.du/hrs/

More information

PowerPoint Presentation

PowerPoint Presentation 応用数学 Ⅱ (7) 7 連立微分方程式の立て方と解法. 高階微分方程式による解法. ベクトル微分方程式による解法 3. 演算子による解法 連立微分方程式 未知数が複数個あり, 未知数の数だけ微分方程式が与えられている場合, これらを連立微分方程式という. d d 解法 () 高階微分方程式化による解法 つの方程式から つの未知数を消去して, 未知数が つの方程式に変換 のみの方程式にするために,

More information

Microsoft PowerPoint - 10.pptx

Microsoft PowerPoint - 10.pptx m u. 固有値とその応用 8/7/( 水 ). 固有値とその応用 固有値と固有ベクトル 行列による写像から固有ベクトルへ m m 行列 によって線形写像 f : R R が表せることを見てきた ここでは 次元平面の行列による写像を調べる とし 写像 f : を考える R R まず 単位ベクトルの像 u y y f : R R u u, u この事から 線形写像の性質を用いると 次の格子上の点全ての写像先が求まる

More information

構造解析マニュアル@RDstr

構造解析マニュアル@RDstr 構造解析マニュアル @RDstr ~ 片持ち梁の弾性静解析 ~ 岐阜高専構造解析学研究室 H270608 版 1. 解析モデル 下に示すような長さ 1000mm 高さ 100mm 幅 200mm の片持ち梁の弾性解析を行う 2. Salome-meca でのメッシュの作成 1 1 アイコンをクリックして Salome-meca を起動する 2 2 ジオメトリのアイコンをクリックする 表示されるウィンドウで

More information

. 実験方法 ヒノキ板を断面形状を高さ 8mm および 16mm の 種類としいずれも幅 mm として用意した 試験片長さを 1mm mm 3mm mm mm に切断し 写真 1, のように万能試験機で垂直になるように設置後 圧縮荷重をかけ最大圧縮荷重値を最大座屈荷重値としてデータを収集した 折れ曲

. 実験方法 ヒノキ板を断面形状を高さ 8mm および 16mm の 種類としいずれも幅 mm として用意した 試験片長さを 1mm mm 3mm mm mm に切断し 写真 1, のように万能試験機で垂直になるように設置後 圧縮荷重をかけ最大圧縮荷重値を最大座屈荷重値としてデータを収集した 折れ曲 研究結果報告書 公益財団法人長野県学校科学教育奨励基金 理事長小根山克雄様 1 研究テーマ 座屈現象の測定について 平成 8 年 1 月 1 日 学校名長野工業高等学校 校長森本克則印 研究グループ名 長野工業高等学校機械班 西村神之将 丸山颯斗 酒井達也 塚田郁哉 3 指導者土屋善裕 研究の動機及び目標工業 機械科の教科書 機械設計 には様々な公式が記載されているが なかには式の由来について説明もなくいきなり出てくる場合もあり日常生活の実体験とイメージしにくいものがある

More information

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X ( 第 週ラプラス変換 教科書 p.34~ 目標ラプラス変換の定義と意味を理解する フーリエ変換や Z 変換と並ぶ 信号解析やシステム設計における重要なツール ラプラス変換は波動現象や電気回路など様々な分野で 微分方程式を解くために利用されてきた ラプラス変換を用いることで微分方程式は代数方程式に変換される また 工学上使われる主要な関数のラプラス変換は簡単な形の関数で表されるので これを ラプラス変換表

More information

140 120 100 80 60 40 20 0 115 107 102 99 95 97 95 97 98 100 64 72 37 60 50 53 50 36 32 18 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 1 100 () 80 60 40 20 0 1 19 16 10 11 6 8 9 5 10 35 76 83 73 68 46 44 H11

More information

Microsoft Word - ミクロ経済学02-01費用関数.doc

Microsoft Word - ミクロ経済学02-01費用関数.doc ミクロ経済学の シナリオ 講義の 3 分の 1 の時間で理解させる技術 国際派公務員養成所 第 2 章 生産者理論 生産者の利潤最大化行動について学び 供給曲線の導出プロセスを確認します 2-1. さまざまな費用曲線 (1) 総費用 (TC) 固定費用 (FC) 可変費用 (VC) 今回は さまざまな費用曲線を学んでいきましょう 費用曲線にはまず 総費用曲線があります 総費用 TC(Total Cost)

More information

今週の内容 後半全体のおさらい ラグランジュの運動方程式の導出 リンク機構のラグランジュの運動方程式 慣性行列 リンク機構のエネルギー保存則 エネルギー パワー 速度 力の関係 外力が作用する場合の運動方程式 粘性 粘性によるエネルギーの消散 慣性 粘性 剛性と微分方程式 拘束条件 ラグランジュの未

今週の内容 後半全体のおさらい ラグランジュの運動方程式の導出 リンク機構のラグランジュの運動方程式 慣性行列 リンク機構のエネルギー保存則 エネルギー パワー 速度 力の関係 外力が作用する場合の運動方程式 粘性 粘性によるエネルギーの消散 慣性 粘性 剛性と微分方程式 拘束条件 ラグランジュの未 力学 III GA 工業力学演習 X5 解析力学 5X 5 週目 立命館大学機械システム系 8 年度後期 今週の内容 後半全体のおさらい ラグランジュの運動方程式の導出 リンク機構のラグランジュの運動方程式 慣性行列 リンク機構のエネルギー保存則 エネルギー パワー 速度 力の関係 外力が作用する場合の運動方程式 粘性 粘性によるエネルギーの消散 慣性 粘性 剛性と微分方程式 拘束条件 ラグランジュの未定乗数法

More information

Microsoft PowerPoint - 10.pptx

Microsoft PowerPoint - 10.pptx 0. 固有値とその応用 固有値と固有ベクトル 2 行列による写像から固有ベクトルへ m n A : m n n m 行列によって線形写像 f R R A が表せることを見てきた ここでは 2 次元平面の行列による写像を調べる 2 = 2 A 2 2 とし 写像 まず 単位ベクトルの像を求める u 2 x = v 2 y f : R A R を考える u 2 2 u, 2 2 0 = = v 2 0

More information

Microsoft PowerPoint - stat-2014-[9] pptx

Microsoft PowerPoint - stat-2014-[9] pptx 統計学 第 17 回 講義 母平均の区間推定 Part-1 014 年 6 17 ( )6-7 限 担当教員 : 唐渡 広志 ( からと こうじ ) 研究室 : 経済学研究棟 4 階 43 号室 email: kkarato@eco.u-toyama.ac.j website: htt://www3.u-toyama.ac.j/kkarato/ 1 講義の目的 標本平均は正規分布に従うという性質を

More information

平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム A 札幌医科大学 年 P ab, を正の定数とする 平面上において ( a, を中心とする円 Q 4 C と (, b を中心とする円 C が 原点 O で外接している また P を円 C 上の点と

平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム A 札幌医科大学 年 P ab, を正の定数とする 平面上において ( a, を中心とする円 Q 4 C と (, b を中心とする円 C が 原点 O で外接している また P を円 C 上の点と 平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム 微分積分の拡張 変数関数問題へのアプローチ 予選決勝優勝法からラグランジュ未定乗数法 松本睦郎 ( 札幌北高等学校 変数関数の最大値 最小値に関する問題には多様なアプローチ法がある 文字を固定した 予選決勝優勝法, 計算のみで解法する 文字消去法, 微分積分を利用した ラグランジュ未定乗数法 がある

More information

はじめに ここ 10 年の間に 有限要素法 (FEA) は 解析専任者のツールとしてだけでなく 設計において実用的に使用できるツールとなりました 現在の CAD ソフトウェアは FEA を内蔵しており 設計者は日常の設計ツールとして製品設計の過程で FEA を使用します しかしながら 最近まで 設計

はじめに ここ 10 年の間に 有限要素法 (FEA) は 解析専任者のツールとしてだけでなく 設計において実用的に使用できるツールとなりました 現在の CAD ソフトウェアは FEA を内蔵しており 設計者は日常の設計ツールとして製品設計の過程で FEA を使用します しかしながら 最近まで 設計 ホワイトペーパー 非線形解析活用ガイド insight 概要 このホワイトペーパーでは 線形解析と非線形解析の違いについて説明し どのようなケースにそれぞれを使用するのが最適化を解析します 非線形効果を無視することにより重大な設計エラーにつながる可能性があることを認識することが重要です 一般的な設計に含まれるいくつかの例で確認することにより 非線形解析が過剰設計を防ぎ よりよい製品の設計に役立つことが理解できるでしょう

More information

書式に示すように表示したい文字列をダブルクォーテーション (") の間に書けば良い ダブルクォーテーションで囲まれた文字列は 文字列リテラル と呼ばれる プログラム中では以下のように用いる プログラム例 1 printf(" 情報処理基礎 "); printf("c 言語の練習 "); printf

書式に示すように表示したい文字列をダブルクォーテーション () の間に書けば良い ダブルクォーテーションで囲まれた文字列は 文字列リテラル と呼ばれる プログラム中では以下のように用いる プログラム例 1 printf( 情報処理基礎 ); printf(c 言語の練習 ); printf 情報処理基礎 C 言語についてプログラミング言語は 1950 年以前の機械語 アセンブリ言語 ( アセンブラ ) の開発を始めとして 現在までに非常に多くの言語が開発 発表された 情報処理基礎で習う C 言語は 1972 年にアメリカの AT&T ベル研究所でオペレーションシステムである UNIX を作成するために開発された C 言語は現在使われている多数のプログラミング言語に大きな影響を与えている

More information

統計的データ解析

統計的データ解析 統計的データ解析 011 011.11.9 林田清 ( 大阪大学大学院理学研究科 ) 連続確率分布の平均値 分散 比較のため P(c ) c 分布 自由度 の ( カイ c 平均値 0, 標準偏差 1の正規分布 に従う変数 xの自乗和 c x =1 が従う分布を自由度 の分布と呼ぶ 一般に自由度の分布は f /1 c / / ( c ) {( c ) e }/ ( / ) 期待値 二乗 ) 分布 c

More information

Microsoft Word - 要旨まとめ.doc

Microsoft Word - 要旨まとめ.doc スティック状口紅における感触の数値化 株式会社コーセー 生産部 生産技術課 津原 一寛 塗布抵抗F [gf] スティック状口紅の使用方法は 化粧品の中でも特殊な塗 布行為を行なうアイテムといえる それは 固形状の口紅に 応力を加え液状の化粧膜へと状態の変化をさせる必要があ るためである スティック状口紅を口唇へ塗布する際の感触は 配合する 油剤の粘度等により左右されるものの 上述した状態変化も 大きな割合を占めている

More information

Microsoft Word - 00.マニュアル表紙.docx

Microsoft Word - 00.マニュアル表紙.docx 土木用木材の使い方 (Ver.1) - 平成 24 年 6 月 - 大分県農林水産研究指導センター林業研究部 1 2 3 4 5 樹種基準強度 (N/ mm2 ) これらの基準強度の単位は N/ mm2であり 実際の強度は 圧縮 引張り せん断強度は面 6 7 許容応力度 ( 単位 :N/ mm2 ) 8 9 (N/ mm2 ) (N/ mm2 ) (kn/ mm2 ) また 等級区分しないときの

More information

技術者のための構造力学 156 w M P m + M M+M 図 -1 はりの座標系, 外力と断面力の向きと方向 表 -1 荷重, 反力と断面力の表記に用いる記号一覧 荷重 ( 外力 ) 分布荷重 (kn/m) w 分布モーメント (knm/m) m 集中荷重 (kn) P 集中モーメント (kn

技術者のための構造力学 156 w M P m + M M+M 図 -1 はりの座標系, 外力と断面力の向きと方向 表 -1 荷重, 反力と断面力の表記に用いる記号一覧 荷重 ( 外力 ) 分布荷重 (kn/m) w 分布モーメント (knm/m) m 集中荷重 (kn) P 集中モーメント (kn 技術者のための構造力学 156 曲げ変形とせん断変形 ( 前編 ) 三好崇夫加藤久人 1. せん断変形の影響が顕著な事例実務設計でせん断変形の影響が無視できない事例として, 高さ h が部材長 に比べて大きい,h/ が 1/1 よりも小さいはり部材が挙げられる.h/ 1/5 ではせん断変形に伴うたわみが曲げに伴うたわみの ~% に達し, さらに h/ 1/ になるとせん断変形によるたわみと曲げ変形に伴うたわみは同程度になる.

More information

ディジタル信号処理

ディジタル信号処理 ディジタルフィルタの設計法. 逆フィルター. 直線位相 FIR フィルタの設計. 窓関数法による FIR フィルタの設計.5 時間領域での FIR フィルタの設計 3. アナログフィルタを基にしたディジタル IIR フィルタの設計法 I 4. アナログフィルタを基にしたディジタル IIR フィルタの設計法 II 5. 双 次フィルタ LI 離散時間システムの基礎式の証明 [ ] 4. ] [ ]*

More information

2 (1) 軸応力 σが最大値 σ max に達する以前 : 応力 -ひずみ線図は ほぼ直線となる 軸応力- 軸ひずみ線図の傾きからヤング率 Eが dσ/dεとして求まり 同一の応力レベルにおける軸ひずみと周ひずみの比としてポアソン比 νが得られる E=dσ/dε ν= ε θ /ε z (3.1)

2 (1) 軸応力 σが最大値 σ max に達する以前 : 応力 -ひずみ線図は ほぼ直線となる 軸応力- 軸ひずみ線図の傾きからヤング率 Eが dσ/dεとして求まり 同一の応力レベルにおける軸ひずみと周ひずみの比としてポアソン比 νが得られる E=dσ/dε ν= ε θ /ε z (3.1) 1 3. 岩石の変形強度特性 3.1 緒言 2 章では 1 軸や3 軸圧縮試験などの岩石の標準的な試験によって供試体にどのような応力ひずみ状態が現れるかについて説明した 本章では これらの岩石の標準的な試験で得られる岩石の変形強度特性について述べる 岩盤を構成する基質部が岩石であるが 岩盤のもう一つの構成要素である不連続面の強度変形特性とそれらを調べる試験方法については4 章で述べる 基質部と不連続面から成る岩盤の強度変形特性については5

More information

技術解説_有田.indd

技術解説_有田.indd Acceleration / G 2 18 16 14 12 1 8 6 4 2 Damping : 1. Period / s XY.1.1 1. 6533 283 3333 423 155 15 (X) 26.12 Hz 15 12 (Y) 28.32 Hz (Z) 43.98 Hz GS Yuasa Technical Report 211 年 6 月 第8巻 水平方向 X_3G 1.7e+7

More information

2011年度 筑波大・理系数学

2011年度 筑波大・理系数学 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ O を原点とするy 平面において, 直線 y= の を満たす部分をC とする () C 上に点 A( t, ) をとるとき, 線分 OA の垂直二等分線の方程式を求めよ () 点 A が C 全体を動くとき, 線分 OA の垂直二等分線が通過する範囲を求め, それ を図示せよ -- 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ

More information

Microsoft Word - 09弾性02基礎方程式.doc

Microsoft Word - 09弾性02基礎方程式.doc 第 章基礎方程式と弾性問題の解. フックの法則 応力に対してひずみが生じ 応力をゼロに戻すとひずみも消失する性質を 弾性 という 弾性挙動を示す棒の軸方向の応力 とひずみの間には式 の関係が成り立つ これが フックの法則 であり をヤング率または弾性率と呼ぶ 棒を軸 縦 方向に引張ると直交 横 方向に収縮し 逆に縦方向に圧縮すると横方向に膨張する 棒の縦横の長さを L,d とし 縦ひずみを L L-L

More information

Microsoft Word - NJJ-105の平均波処理について_改_OK.doc

Microsoft Word - NJJ-105の平均波処理について_改_OK.doc ハンディサーチ NJJ-105 の平均波処理について 2010 年 4 月 株式会社計測技術サービス 1. はじめに平均波処理の処理アルゴリズムの内容と有効性の度合いを現場測定例から示す まず ほぼ同じ鉄筋かぶりの密接鉄筋 壁厚測定時の平均波処理画像について また ダブル筋 千鳥筋の現場測定例へ平均波処理とその他画像処理を施し 処理画像の差について比較検証し 考察を加えた ( 平均波処理画像はその他の各処理画像同様

More information

Microsoft PowerPoint - 集積デバイス工学7.ppt

Microsoft PowerPoint - 集積デバイス工学7.ppt 集積デバイス工学 (7 問題 追加課題 下のトランジスタが O する電圧範囲を求めよただし T, T - とする >6 問題 P 型 MOS トランジスタについて 正孔の実効移動度 μ.7[m/ s], ゲート長.[μm], ゲート幅 [μm] しきい値電圧 -., 単位面積あたりの酸化膜容量

More information

平成22年度地方都市ガス事業天然ガス化促進対策調査,次世代保安向上技術調査,地震対策技術調査,委員会の運営等,調査報告書

平成22年度地方都市ガス事業天然ガス化促進対策調査,次世代保安向上技術調査,地震対策技術調査,委員会の運営等,調査報告書 22 23 2 2 21 ( ) 2 1.1 1 1.1 1.2 2 22 22 JFE 22 2 21 22 3 22 JFE 22 2 21 ( ) 1 4 22 JFE 22 2 21 JFE 22 JFE JFE 22 JFE 22 2 21 5 2 21 22 15 3 1 1 ( )(7 8 ) 2 1 11 3 22 1 2 6 JFE 22 2 21 1 7 1 22 1 6 1

More information

6 6. 圧密理論 6. 圧密理論 6.. 圧密方程式の誘導 粘土層の圧密原因とメカニズム 地下水位の低下 盛土建設 最終圧縮量と圧縮速度 6. 圧密理論 記号の統一間隙水圧 ( 絶対圧 ): u 間隙水圧 (gauge 圧 ): u u p a ( 大気圧 ) 過剰間隙水圧 : Δu ( 教科書は これを u と記している 初期状態が u p a で u の時で uδu の状態を対象にしている ) 微小の増分

More information

Microsoft PowerPoint - 2.ppt [互換モード]

Microsoft PowerPoint - 2.ppt [互換モード] 0 章数学基礎 1 大学では 高校より厳密に議論を行う そのために 議論の議論の対象を明確にする必要がある 集合 ( 定義 ) 集合 物の集まりである集合 X に対して X を構成している物を X の要素または元という 集合については 3 セメスタ開講の 離散数学 で詳しく扱う 2 集合の表現 1. 要素を明示する表現 ( 外延的表現 ) 中括弧で 囲う X = {0,1, 2,3} 慣用的に 英大文字を用いる

More information

Microsoft PowerPoint - ‚æ3‘Í [„Ý−·…‡†[…h]

Microsoft PowerPoint - ‚æ3‘Í [„Ý−·…‡†[…h] 第 3 章変形と理論強度 目的 弾性変形および塑性変形に関し, 原子レベルからの理解を深める. 3. 弾性変形 (elastic defomation) 3.. 原子間に作用する力 3.. ポテンシャルエネルギー 33 3..3 フックの法則 3..4 弾性率の温度依存性 3..5 弾性変形時のポアソン比 3..6 理論強度 3. 塑性変形 (plastic defomation) 3.. すべり

More information

P072-076.indd

P072-076.indd 3 STEP0 STEP1 STEP2 STEP3 STEP4 072 3STEP4 STEP3 STEP2 STEP1 STEP0 073 3 STEP0 STEP1 STEP2 STEP3 STEP4 074 3STEP4 STEP3 STEP2 STEP1 STEP0 075 3 STEP0 STEP1 STEP2 STEP3 STEP4 076 3STEP4 STEP3 STEP2 STEP1

More information

1

1 1 2 3 4 5 6 7 8 9 0 1 2 6 3 1 2 3 4 5 6 7 8 9 0 5 4 STEP 02 STEP 01 STEP 03 STEP 04 1F 1F 2F 2F 2F 1F 1 2 3 4 5 http://smarthouse-center.org/sdk/ http://smarthouse-center.org/inquiries/ http://sh-center.org/

More information

STEP1 STEP3 STEP2 STEP4 STEP6 STEP5 STEP7 10,000,000 2,060 38 0 0 0 1978 4 1 2015 9 30 15,000,000 2,060 38 0 0 0 197941 2016930 10,000,000 2,060 38 0 0 0 197941 2016930 3 000 000 0 0 0 600 15

More information

画像解析論(2) 講義内容

画像解析論(2) 講義内容 画像解析論 画像解析論 東京工業大学長橋宏 主な講義内容 信号処理と画像処理 二次元システムとその表現 二次元システムの特性解析 各種の画像フィルタ 信号処理と画像処理 画像解析論 処理の応答 記憶域 入出力の流れ 信号処理系 実時間性が求められる メモリ容量に対する制限が厳しい オンラインでの対応が厳しく求められる 画像処理系 ある程度の処理時間が許容される 大容量のメモリ使用が容認され易い オフラインでの対応が容認され易い

More information

4

4 7 章破壊に関する照査 7.1 限界状態と照査破壊に関する限界状態とは, 荷重作用に対して最大耐荷性能が発揮される状態で, これより先は構造物が信頼し得る耐荷挙動を示すことが期待できない状態である. たとえば, 構造物のある断面でコンクリートが圧壊することにより, 構造物全体が安定を失う状態などである. 構造物の形状, 荷重作用の性質等に応じて, この状態に達する原因は数多くある ( 表 7.1.1

More information

C#の基本

C#の基本 C# の基本 ~ 開発環境の使い方 ~ C# とは プログラミング言語のひとつであり C C++ Java 等に並ぶ代表的な言語の一つである 容易に GUI( グラフィックやボタンとの連携ができる ) プログラミングが可能である メモリ管理等の煩雑な操作が必要なく 比較的初心者向きの言語である C# の利点 C C++ に比べて メモリ管理が必要ない GUIが作りやすい Javaに比べて コードの制限が少ない

More information

FT-DR取説 表-目次

FT-DR取説 表-目次 保証書付 警告 注意 警告 注意 機能上の制約 中心より少し左側垂直より少し下向き 1/5 フロントガラス 4/5 トラックの場合の取り付け参考例 左右角度調節 水平角度調節 脱着レバー 前後角度調節 取り外し用タブ 1フロントガラスに吸着盤を押しつける 2レバーを矢印方向に動かす 1 フロントガラス 3 角度を調節します 2 4 各部のねじを しっかりと締めます 3 本体固定ねじ 2011. 08.

More information

受信機時計誤差項の が残ったままであるが これをも消去するのが 重位相差である. 重位相差ある時刻に 衛星 から送られてくる搬送波位相データを 台の受信機 でそれぞれ測定する このとき各受信機で測定された衛星 からの搬送波位相データを Φ Φ とし 同様に衛星 からの搬送波位相データを Φ Φ とす

受信機時計誤差項の が残ったままであるが これをも消去するのが 重位相差である. 重位相差ある時刻に 衛星 から送られてくる搬送波位相データを 台の受信機 でそれぞれ測定する このとき各受信機で測定された衛星 からの搬送波位相データを Φ Φ とし 同様に衛星 からの搬送波位相データを Φ Φ とす RTK-GPS 測位計算アルゴリズム -FLOT 解 - 東京海洋大学冨永貴樹. はじめに GPS 測量を行う際 実時間で測位結果を得ることが出来るのは今のところ RTK-GPS 測位のみである GPS 測量では GPS 衛星からの搬送波位相データを使用するため 整数値バイアスを決定しなければならず これが測位計算を複雑にしている所以である この整数値バイアスを決定するためのつの方法として FLOT

More information

vecrot

vecrot 1. ベクトル ベクトル : 方向を持つ量 ベクトルには 1 方向 2 大きさ ( 長さ ) という 2 つの属性がある ベクトルの例 : 物体の移動速度 移動量電場 磁場の強さ風速力トルクなど 2. ベクトルの表現 2.1 矢印で表現される 矢印の長さ : ベクトルの大きさ 矢印の向き : ベクトルの方向 2.2 2 個の点を用いて表現する 始点 () と終点 () を結ぶ半直線の向き : ベクトルの方向

More information

解析センターを知っていただく キャンペーン

解析センターを知っていただく キャンペーン 005..5 SAS 問題設定 目的 PKパラメータ (AUC,Cmax,Tmaxなど) の推定 PKパラメータの群間比較 PKパラメータのバラツキの評価! データの特徴 非反復測定値 個体につき 個の測定値しか得られない plasma concentration 非反復測定値のイメージ図 測定時点間で個体の対応がない 着目する状況 plasma concentration 経時反復測定値のイメージ図

More information

伝熱学課題

伝熱学課題 練習問題解答例 < 第 9 章熱交換器 > 9. 入口温度 0 の kg/ の水と 入口温度 0 の 0 kg/ の水の間で熱交換を行 う 前者の出口温度が 40 の時 後者の出口温度はいくらか 解 ) 式 (9.) を使う,,,, において どちらの流体も水より に注意して 0 40 0 0, これを解いて, 9. 0 の水を用いて 0.MPa の飽和蒸気 kg/ と熱交換させ 蒸気を復水させること

More information

目 次 要旨 3 1. 緒言 背景 技術的課題 目的 5 2. 大径厚比の鋼管の構造性能 試験体 載荷実験 実験結果 考察 9 3. 大径厚比の鋼管に適用可能なM-Φ 関係算定法の検討 道示 Vの鋼製橋脚

目 次 要旨 3 1. 緒言 背景 技術的課題 目的 5 2. 大径厚比の鋼管の構造性能 試験体 載荷実験 実験結果 考察 9 3. 大径厚比の鋼管に適用可能なM-Φ 関係算定法の検討 道示 Vの鋼製橋脚 ISSN1346-784 港湾空港技術研究所 資料 TECHNICAL NOTE OF THE PORT AND AIRPORT RESEARCH INSTITUTE No.1288 September 214 港湾構造物における鋼管の M-Φ 算定法 川端雄一郎忽那惇加藤絵万大矢陽介小濱英司岩波光保 独立行政法人港湾空港技術研究所 Independent Administrative Institution,

More information

また単分子層吸着量は S をすべて加えればよく N m = S (1.5) となる ここで計算を簡単にするために次のような仮定をする 2 層目以上に吸着した分子の吸着エネルギーは潜熱に等しい したがって Q = Q L ( 2) (1.6) また 2 層目以上では吸着に与える表面固体の影響は小さく

また単分子層吸着量は S をすべて加えればよく N m = S (1.5) となる ここで計算を簡単にするために次のような仮定をする 2 層目以上に吸着した分子の吸着エネルギーは潜熱に等しい したがって Q = Q L ( 2) (1.6) また 2 層目以上では吸着に与える表面固体の影響は小さく BET 法による表面積測定について 1. 理論編ここでは吸着等温線を利用した表面積の測定法 特に Brunauer,Emmett Teller による BET 吸着理論について述べる この方法での表面積測定は 気体を物質表面に吸着させた場合 表面を 1 層覆い尽くすのにどれほどの物質量が必要か を調べるものである 吸着させる気体分子が 1 個あたりに占める表面積をあらかじめ知っていれば これによって固体の表面積を求めることができる

More information

1. 2001 10 2 480 2003 8 1.6 5 2. 90 3. 4. 5. 5 60 6. 1 2 2 2 4 5 5 6 6 6 7 10 10 10 12 12 12 14 14 15 15 60 15 17 17 18 2001 10 2 480 2003 8 1.6 5 1 1.8 3.6 1 6.8 1.5 3 3 5 6065 70 5 1.22004 1 1 2002 4

More information

丹沢のブナの立ち枯れと東名高速道路にっいて 図3 夏型の高気圧におおわれ 風の弱い日の南関東 東海道の風の1日変化 矢は風向を 矢先の数字は風速 m s を示す この地区のアメダス地点は御殿場のみ 風向の方向に長軸をもっ楕円で囲んだ 午後から夕方に かけて南 南西風が卓越している 全体に午後に海風と谷風 平地から山地へ が卓越している 東名高速道路と国道246号線および地方道 まとめて東 名高速道路という

More information

MT UNDP HDI Langville and Meyer., pp. -, Gowers, Barrow-Green, and Leader., pp. -. なおこれら 参 考 文 献 の 参 考 ページ 数 は 翻 訳 書 の 該 当 ページ 数 に 拠 った.

MT UNDP HDI Langville and Meyer., pp. -, Gowers, Barrow-Green, and Leader., pp. -. なおこれら 参 考 文 献 の 参 考 ページ 数 は 翻 訳 書 の 該 当 ページ 数 に 拠 った. MT UNDP HDI Langville and Meyer., pp. -, Gowers, Barrow-Green, and Leader., pp. -. なおこれら 参 考 文 献 の 参 考 ページ 数 は 翻 訳 書 の 該 当 ページ 数 に 拠 った. http://hdr.undp.org/en/-report. HDI MT Mahalanobis- Taguchi Method

More information

英語                                    英-1

英語                                    英-1 数学 出題のねらい 数と式, 図形, 関数, 資料の活用 の 4 領域について, 基礎的な概念や原理 法則の理解と, それらに基づき, 数学的に考察したり, 表現したり, 処理したりする力をみることをねらいとした () 数と式 では, 数の概念についての理解の程度, 文字を用いた式を処理したり, 文字を用いて式に表現したりする力, 目的に応じて式を変形する力をみるものとした () 図形 では, 平面図形や空間図形についての理解の程度,

More information

1/2

1/2 札幌学院大学社会情報学部 AO 入試課題用テキスト (4) 1 札幌学院大学社会情報学部 AO 入試課題用テキスト HTML の基礎知識 (4) 1 スタイル指定 1-1 段落を罫線 ( ボーダー ) で囲む 前回はスタイル指定を行なって段落に色をつけた 今度は罫線で囲んで見よう これまでと同様に 開始タグの中に罫線の指定を行なえばよい HTML 文書は次の通りである 下線部が罫線を引くためのスタイル指定である

More information

【NanotechJapan Bulletin】10-9 INNOVATIONの最先端<第4回>

【NanotechJapan Bulletin】10-9 INNOVATIONの最先端<第4回> 企画特集 10-9 INNOVATION の最先端 Life & Green Nanotechnology が培う新技術 < 第 4 回 > プリンテッドエレクトロニクス時代実現に向けた材料 プロセス基盤技術の開拓 NEDO プロジェクトプロジェクトリーダー東京 学教授染 隆夫 に聞く 図6 4 3 解像度を変えた TFT アレイによる電子ペーパー 提供 凸版印刷 株 大面積圧力センサの開発

More information

そこで ある程度の知識があれば数学と情報の練習もかねて用いてもおもしろいのではないだろうか これはある程度の下準備のされたファイルと FLSH のアプリケーションがあれば計算処理の結果をグラフなどで視覚的に表示することが可能となると思われる 環境が許せば できあがったものをいじ るだけでなく自分で作

そこで ある程度の知識があれば数学と情報の練習もかねて用いてもおもしろいのではないだろうか これはある程度の下準備のされたファイルと FLSH のアプリケーションがあれば計算処理の結果をグラフなどで視覚的に表示することが可能となると思われる 環境が許せば できあがったものをいじ るだけでなく自分で作 五心へのアプローチ札幌新川高等学校吉田奏介 数学 Ⅰ の授業のあと 生徒から 内心や外心と頂点の延長線は中点と一致しないんですか? と質問があった その生徒には角の二等分線の話や鈍角三角形のときの話をしたら納得していたが 確かに一般的な点におけることは紙面上の図を見ただけではわかりづらいだろうし 生徒が自分で描く図は都合のよい図を描いてしまいがちである そんなことを発端にして考えてみた 1 FLSH

More information

EPSON エプソンプリンタ共通 取扱説明書 ネットワーク編

EPSON エプソンプリンタ共通 取扱説明書 ネットワーク編 K L N K N N N N N N N N N N N N L A B C N N N A AB B C L D N N N N N L N N N A L B N N A B C N L N N N N L N A B C D N N A L N A L B C D N L N A L N B C N N D E F N K G H N A B C A L N N N N D D

More information

ありがとうございました

ありがとうございました - 1 - - 2 - - 3 - - 4 - - 5 - 1 2 AB C A B C - 6 - - 7 - - 8 - 10 1 3 1 10 400 8 9-9 - 2600 1 119 26.44 63 50 15 325.37 131.99 457.36-10 - 5 977 1688 1805 200 7 80-11 - - 12 - - 13 - - 14 - 2-1 - 15 -

More information

EPSON エプソンプリンタ共通 取扱説明書 ネットワーク編

EPSON エプソンプリンタ共通 取扱説明書 ネットワーク編 K L N K N N N N N N N N N N N N L A B C N N N A AB B C L D N N N N N L N N N A L B N N A B C N L N N N N L N A B C D N N A L N A L B C D N L N A L N B C N N D E F N K G H N A B C A L N N N N D D

More information

公務員人件費のシミュレーション分析

公務員人件費のシミュレーション分析 47 50 (a) (b) (c) (7) 11 10 2018 20 2028 16 17 18 19 20 21 22 20 90.1 9.9 20 87.2 12.8 2018 10 17 6.916.0 7.87.4 40.511.6 23 0.0% 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2.0% 4.0% 6.0% 8.0%

More information

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 A B (A/B) 1 1,185 17,801 6.66% 2 943 26,598 3.55% 3 3,779 112,231 3.37% 4 8,174 246,350 3.32% 5 671 22,775 2.95% 6 2,606 89,705 2.91% 7 738 25,700 2.87% 8 1,134

More information

橡hashik-f.PDF

橡hashik-f.PDF 1 1 1 11 12 13 2 2 21 22 3 3 3 4 4 8 22 10 23 10 11 11 24 12 12 13 25 14 15 16 18 19 20 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 144 142 140 140 29.7 70.0 0.7 22.1 16.4 13.6 9.3 5.0 2.9 0.0

More information

198

198 197 198 199 200 201 202 A B C D E F G H I J K L 203 204 205 A B 206 A B C D E F 207 208 209 210 211 212 213 214 215 A B 216 217 218 219 220 221 222 223 224 225 226 227 228 229 A B C D 230 231 232 233 A

More information

ネットショップ・オーナー2 ユーザーマニュアル

ネットショップ・オーナー2  ユーザーマニュアル 1 1-1 1-2 1-3 1-4 1 1-5 2 2-1 A C 2-2 A 2 C D E F G H I 2-3 2-4 2 C D E E A 3 3-1 A 3 A A 3 3 3 3-2 3-3 3-4 3 C 4 4-1 A A 4 B B C D C D E F G 4 H I J K L 4-2 4 C D E B D C A C B D 4 E F B E C 4-3 4

More information

1

1 1 2 3 4 5 (2,433 ) 4,026 2710 243.3 2728 402.6 6 402.6 402.6 243.3 7 8 20.5 11.5 1.51 0.50.5 1.5 9 10 11 12 13 100 99 4 97 14 A AB A 12 14.615/100 1.096/1000 B B 1.096/1000 300 A1.5 B1.25 24 4,182,500

More information

8. 自由曲線と曲面の概要 陽関数 陰関数 f x f x x y y y f f x y z g x y z パラメータ表現された 次元曲線 パラメータ表現は xyx 毎のパラメータによる陽関数表現 形状普遍性 座標独立性 曲線上の点を直接に計算可能 多価の曲線も表現可能 gx 低次の多項式は 計

8. 自由曲線と曲面の概要 陽関数 陰関数 f x f x x y y y f f x y z g x y z パラメータ表現された 次元曲線 パラメータ表現は xyx 毎のパラメータによる陽関数表現 形状普遍性 座標独立性 曲線上の点を直接に計算可能 多価の曲線も表現可能 gx 低次の多項式は 計 8. 自由曲線 曲面. 概論. ベジエ曲線 曲面. ベジエ曲線 曲面の数学. OeGLによる実行. URS. スプライン関数. スプライン曲線 曲面. URS 曲線 曲面 4. OeGLによる実行 8. 自由曲線と曲面の概要 陽関数 陰関数 f x f x x y y y f f x y z g x y z パラメータ表現された 次元曲線 パラメータ表現は xyx 毎のパラメータによる陽関数表現 形状普遍性

More information

<4D F736F F D20332D89CB90DD8FAC88CF88F589EF8CB48D DC58F4994C5816A2E646F63>

<4D F736F F D20332D89CB90DD8FAC88CF88F589EF8CB48D DC58F4994C5816A2E646F63> 3. 都 市 内 高 速 道 路 ランプ 橋 の を 特 計 殊 画 架 し 設 工 実 法 施 する による 必 要 施 があった また 工 頻 繁 に 車 第 二 京 阪 道 路 門 真 ジャンクション 工 事 報 告 技 術 委 員 会 架 設 小 委 員 会 浦 田 保 森 添 慎 司 越 中 信 雄 塩 田 恵 市 1.はじめに 門 真 ジャンクションは 図 -1 に 示 すように 近 畿

More information

電気電子発送配変電二次練習問題

電気電子発送配変電二次練習問題 Copy Rght (c) 008 宮田明則技術士事務所 . ()() () n n 60 f f f 50, 60503000rp(n - ) f 60, 66060300rp(n - ) f 50, 060500300rp(n - ) f 50, 46050500rp(n - ) N N N (6) N () Copy Rght (c) 008 宮田明則技術士事務所 . r a, r a a a

More information

H27 28 4 1 11,353 45 14 10 120 27 90 26 78 323 401 27 11,120 D A BC 11,120 H27 33 H26 38 H27 35 40 126,154 129,125 130,000 150,000 5,961 11,996 6,000 15,000 688,684 708,924 700,000 750,000 1300 H28

More information

第2章

第2章 第 2 章 企業の行動 : 第二部 ここでは 短期の供給曲線がなぜ右上がりになるのか述べます 企業は利潤を最大化すると仮定します (1) π = TR TC π : 利潤 TR : 総収入 TC : 総費用 企業は自己の生産物の価格 P に影響をしない と仮定します このことは 生 産物市場が完全競争市場であるということを意味します 詳しくは 完全競争 市場の定義について教科書などを参考にしてください

More information

[] 17 15 1,,, P.,,[3,4],[5,6], 3,,,[7] [7], 1,,,,,[8],, 1 acm bcm, AB = a + b,, AP : P B = b : a AP = x

[] 17 15 1,,, P.,,[3,4],[5,6], 3,,,[7] [7], 1,,,,,[8],, 1 acm bcm, AB = a + b,, AP : P B = b : a AP = x 006,Vol.5, 16-5 1,, 1. 15 [1],, 5 6 61.8 59. 1 3 48.8 44.6 47.1 3,,, 5 6 79.1 79. 1 3 67.7 59.6 5.7,,, 5 6 57.7 48.8 1 3 31.8 3.4 1.6 0 30 1, 17011034 16 [] 17 15 1,,, P.,,[3,4],[5,6], 3,,,[7] [7], 1,,,,,[8],,

More information

<4D F736F F D F B C9A90DD8B5A8F708A4A94AD8CF097AC89EF93878DAA89EF8FEA816A2E646F63>

<4D F736F F D F B C9A90DD8B5A8F708A4A94AD8CF097AC89EF93878DAA89EF8FEA816A2E646F63> トラス筋を用いた超軽量複合構造スラブ (KS スラブ ) 1. はじめに KS スラブは, 上下面の薄肉コンクリート版をトラス筋で結合した複合スラブ構造を有し, 上下面の 薄肉コンクリートの間に発泡スチロール ( 以下,EPS) を中空型枠として用いた超軽量なスラブである ( 図 -1) KS スラブは, 群集荷重や輪荷重 T-6 までの軽荷重に対応した製品であり, 都市再開発や駅前 立体化にともなうペデストリアンデッキ用床版,

More information

第9回 配列(array)型の変数

第9回 配列(array)型の変数 第 12 回 配列型の変数 情報処理演習 ( テキスト : 第 4 章, 第 8 章 ) 今日の内容 1. 配列の必要性 2. 配列の宣言 3. 配列変数のイメージ 4. 配列変数を使用した例 5. 範囲を超えた添字を使うと? 6. 多次元配列変数 7. 多次元配列変数を使用した例 8. データのソーティング 9. 今日の練習問題 多数のデータ処理 1. 配列の必要性 ( テキスト 31 ページ )

More information

6-3

6-3 6-3 6-3-1 2 3 2 168 6-10 169 6-3-2 空間形成への影響要因 以上のような過程を経て白山 2 丁目地区の斜面地は現在の状況を呈するようになるわけだが 斜面地の空間形成に関わる要因としては 次の 3 点が挙げられる 例えば 白山地区の台地端に 向かって南北に伸びる袋小路周辺 以下 A 図 6-10 では 3 つの因子が複合作用しながら斜 面地空間を構造的に規定するとともに

More information

新規文書1

新規文書1 日本機械学会基準 部分安全係数法を用いた機械製品の信頼性評価に関する指針 目 次 I. 用語... 2 II. 記号... 3 1. 指針の目的 適用範囲... 4 2. 部分安全係数法... 4 2.1 限界状態の数学的記述... 5 2.1.1 限界状態の明確化... 5 2.1.2 破損モードの抽出... 5 2.1.3 限界状態関数の設定... 5 2.2 部分安全係数の設定... 6 2.2.1

More information

画像参照画像送り 5 画像下部に再生ボタンが表示されます 再生ボタンをクリックすると 自動コマ送りされます 1

画像参照画像送り 5 画像下部に再生ボタンが表示されます 再生ボタンをクリックすると 自動コマ送りされます 1 画像参照画像送り 画像参照の画像送り方法について説明します 画像上にカーソルを表示した状態で マウスのホイールボタンでスクロールする またはマウスの左ボタンで上下にドラックすると アクティブなシリーズの画像送りができます 1 カルテ タブや 画像 レポート タブから 画像アイコンをクリックします 画像が表示されます 3 画像が切り替わって表示されます シリーズの位置はバー上の で表示されます 2 画像上にカーソルを表示した状態で

More information

12~

12~ R A C D B F E H I J K A A A A A A A A A A AD B C BD AD E A DB DB ADB D D DB BD A C D B F E AD B B B B BF AD B B DB B B B B DB B DB D D ADB D D D D D AB AD D DB AB B B B F D D B B D D BF DBF B B B FD

More information

314 図 10.1 分析ツールの起動 図 10.2 データ分析ウィンドウ [ データ ] タブに [ 分析 ] がないときは 以下の手順で表示させる 1. Office ボタン をクリックし Excel のオプション をクリックする ( 図 10.3) 図 10.3 Excel のオプション

314 図 10.1 分析ツールの起動 図 10.2 データ分析ウィンドウ [ データ ] タブに [ 分析 ] がないときは 以下の手順で表示させる 1. Office ボタン をクリックし Excel のオプション をクリックする ( 図 10.3) 図 10.3 Excel のオプション 313 第 10 章 Excel を用いた統計処理 10.1 Excel の統計処理レポートや卒業研究などでは 大量のデータを処理 分析し 報告しなければならない場面が数多く登場する このような場合 手計算では多くの時間を要するため現在では計算機を用いて一括処理することが一般的である これにより 時間短縮だけでなく手軽に詳細な分析を行うことができる Excel ではこのような大量のデータに対する分析を容易に行えるよう

More information

Excelによる統計分析検定_知識編_小塚明_1_4章.indd

Excelによる統計分析検定_知識編_小塚明_1_4章.indd 第2章 1 変量データのまとめ方 本章では, 記述統計の手法について説明します 具体的には, 得られたデータから表やグラフを作成し, 意昧のある統計量を算出する方法など,1 変量データのまとめ方について学びます 本章から理解を深めるための数式が出てきますが, 必ずしも, これらの式を覚える必要はありません それぞれのデータの性質や統計量の意義を理解することが重要です 円グラフと棒グラフ 1 変量質的データをまとめる方法としてよく使われるグラフは,

More information

04年度LS民法Ⅰ教材改訂版.PDF

04年度LS民法Ⅰ教材改訂版.PDF ?? A AB A B C AB A B A B A B A A B A 98 A B A B A B A B B A A B AB AB A B A BB A B A B A B A B A B A AB A B B A B AB A A C AB A C A A B A B B A B A B B A B A B B A B A B A B A B A B A B A B

More information

<4D F736F F D2089FC92E82D D4B CF591AA92E882C CA82C982C282A282C42E727466>

<4D F736F F D2089FC92E82D D4B CF591AA92E882C CA82C982C282A282C42E727466> 11 Application Note 光測定と単位について 1. 概要 LED の性質を表すには 光の強さ 明るさ等が重要となり これらはその LED をどのようなアプリケーションに使用するかを決定するために必須のものになることが殆どです しかし 測定の方法は多種存在し 何をどのような測定器で測定するかにより 測定結果が異なってきます 本書では光測定とその単位について説明していきます 2. 色とは

More information

まず y t を定数項だけに回帰する > levelmod = lm(topixrate~1) 次にこの出力を使って先ほどのレジームスイッチングモデルを推定する 以下のように入力する > levelswmod = msmfit(levelmod,k=,p=0,sw=c(t,t)) ここで k はレジ

まず y t を定数項だけに回帰する > levelmod = lm(topixrate~1) 次にこの出力を使って先ほどのレジームスイッチングモデルを推定する 以下のように入力する > levelswmod = msmfit(levelmod,k=,p=0,sw=c(t,t)) ここで k はレジ マルコフレジームスイッチングモデルの推定 1. マルコフレジームスイッチング (MS) モデルを推定する 1.1 パッケージ MSwM インスツールする MS モデルを推定するために R のパッケージ MSwM をインスツールする パッケージとは通常の R には含まれていない 追加的な R のコマンドの集まりのようなものである R には追加的に 600 以上のパッケージが用意されており それぞれ分析の目的に応じて標準の

More information