x h = (b a)/n [x i, x i+1 ] = [a+i h, a+ (i + 1) h] A(x i ) A(x i ) = h 2 {f(x i) + f(x i+1 ) = h {f(a + i h) + f(a + (i + 1) h), (2) 2 a b n A(x i )

Size: px
Start display at page:

Download "x h = (b a)/n [x i, x i+1 ] = [a+i h, a+ (i + 1) h] A(x i ) A(x i ) = h 2 {f(x i) + f(x i+1 ) = h {f(a + i h) + f(a + (i + 1) h), (2) 2 a b n A(x i )"

Transcription

1 1 f(x) a b f(x)dx = n A(x i ) (1) ix [a, b] n i A(x i ) x i 1 f(x) [a, b] n h = (b a)/n y h = (b-a)/n y = f (x) h h a a+h a+2h a+(n-1)h b x 1: 1

2 x h = (b a)/n [x i, x i+1 ] = [a+i h, a+ (i + 1) h] A(x i ) A(x i ) = h 2 {f(x i) + f(x i+1 ) = h {f(a + i h) + f(a + (i + 1) h), (2) 2 a b n A(x i ) = = h n h 2 {f(x i) + f(x i+1 ) (3) { n f(a) + f(a + i h) f(b) (4) 1 1 #include <stdio.h> #define X_MIN 0.0 // #define X_MAX // #define DIV_NUM 120 // //. float function (float x) { float result; result = x; // return result; int main() { double integral; // double h; // n double x, da; int i; printf ("=[%f,%f] =%d\n", X_MIN, X_MAX, DIV_NUM); // === === h = (X_MAX - X_MIN) / DIV_NUM; // integral = 0.0; // x = X_MIN; // for (i=0; i<div_num; i++) { // A da = (function(x)+function(x+h))*h/2.0; integral += da; // 2

3 x += h; // === === printf ("= %lf\n", integral); printf (" ( )=%lf\n", (X_MAX-X_MIN)*function(X_MAX)/2.0); return(0); (3) f(x + h) f(x) y h = (b-a)/n y = f (x) h/2 h/2 a a+h a+(h/2) b a+{(2n-1)/2h x 2: f(x) [a, b] n h = (b a)/n [x i, x i+1 ] = [a + i h, a + (i + 1) h] x i + h/2 h A(x i ) A(x i ) = h f (x i + 12 ) ( h = h f a + 2i 1 ) h, (5) 2 3

4 a b n A(x i ) = h n f (x i + 12 ) h = h n ( f a + 2i 1 ) h 2, (6) 1 3 f(x) Simpson f(x) 2 3 (x 0, f(x 0 ))(x 1, f(x 1 ))(x 2, f(x 2 )) 3 g(x) g(x) = (x x 1)(x x 2 ) (x 0 x 1 )(x 0 x 2 ) f(x 0) + (x x 2)(x x 0 ) (x 1 x 2 )(x 1 x 0 ) f(x 1) + (x x 0)(x x 1 ) (x 2 x 0 )(x 2 x 1 ) f(x 2) (7) 2 f (x) f (x) x 0 x 2 x 0 x 1 x 2 3: () () 4

5 g(x) [x 0, x 2 ] x2 [ (x x1 )(x x 2 ) g(x)dx = x 0 2(x 0 x 1 )(x 0 x 2 ) f(x (x x 1 ) 3 0) 6(x 0 x 1 )(x 0 x 2 ) f(x 0) + (x x 2)(x x 0 ) 2(x 1 x 2 )(x 1 x 0 ) f(x 1) (x x 2 ) 3 6(x 1 x 2 )(x 1 x 0 ) f(x 1) + (x x 0)(x x 1 ) 2(x 2 x 0 )(x 2 x 1 ) f(x (x x 0 ) 3 2) 6(x 2 x 0 )(x 2 x 1 ) f(x 2) = (x 2 x 0 ) 2 (x 2 x 1 ) 2(x 2 x 0 )(x 2 x 1 ) f(x (x 2 x 0 ) 3 2) 6(x 2 x 0 )(x 2 x 1 ) f(x 2) + (x 0 x 1 )(x 0 x 2 ) 2 2(x 0 x 1 )(x 0 x 2 ) f(x (x 0 x 2 ) 3 0) + 6(x 0 x 1 )(x 0 x 2 ) f(x 0) (x 0 x 2 ) 3 + 6(x 1 x 2 )(x 1 x 0 ) f(x 1) (8) x 1 x 0 = x 2 x 1 = (x 2 x 0 )/h (8) x2 x 0 g(x)dx = (2h)2 h 2(2h)h f(x 2) (2h)3 6(2h)h f(x 2) ( h)( 2h)2 2( h)( 2h) f(x 0) + ( 2h)3 6( h)( 2h) f(x 0) + ( 2h)3 6( h)h f(x 1) =hf(x 2 ) 4 6 hf(x 2) + hf(x 0 ) 4 6 hf(x 0) hf(x 1) = h 3 [f(x 0) + 4f(x 1 ) + f(x 2 )] (9) f(x) [a, b] n A(x i ) = h 3 [f(x 0) + 4f(x 1 ) + f(x 2 )] + h 3 [f(x 2) + 4f(x 3 ) + f(x 4 )] + + h 3 [f(x 2n 2) + 4f(x 2n 1 ) + f(x 2n )] = h 3 [f(x 0) + 4f(x 1 ) + 2f(x 2 ) + 4f(x 3 ) + 2f(x 4 ) + 2f(x 2n 2 ) + 4f(x 2n 1 ) + 2f(x 2n )] = h 3 [f(x 0) + 4f(x 1 ) + f(x 3 ) + + 2f(x 2 ) + f(x 4 ) + + f(x n )] [ ] = h n n 1 f(a) + 4 fa + (2i 1)h + 2 fa + 2ih + f(b) (10) 3 2 Simpson 5 ] x2 x 0

6 f (x) f (x) h da 1 da 2 da n-1 da n a b x x 0 x 1 x 2 x 3 x 4 x 2n-2 x 2n-1 x 2n 4: // === Simpson ( === h = (X_MAX - X_MIN) / (2.0*DIV_NUM); // x = X_MIN; // integral = function(x); // for (; i<div_num; i++) { da = 4.0*function(x+h) + 2.0*function(x+2.0*h); integral += da; // x += 2.0*h; integral += ( 4.0*function(x+h) + function(x+2.0*h) ); integral *= h/3.0; // === Simpson ( === 4 V N x 1, x 2,, x n V f fdv V V (11) V f Monte Carlo C rand() 3 6

7 A f (x)dx 5: A f f A #include <stdio.h> #include <stdlib.h> // rand #define N 400 // #define D 10.0 // main() { unsigned long i; unsigned long in=0,out=0; float ratio,x,y,r,square; square=d*d; // r=d/2.0; // for(i=0; i<n; ++i) { // x x= (double)rand()/(double)rand_max*r; // y y= (double)rand()/(double)rand_max*r; // (x,y) if ((x*x+y*y)<=r*r) ++in; else ++out; printf("=%d =%d =%d x=%5.2f y=%5.2f\n", i,in,out,x,y); // (x,y) ratio=(float)in/(float)(in+out); printf("= %d = %d\n",in,out); printf("%f\n",square); printf(" %f\n",square*ratio); printf("3.14*r*r%f\n",3.14*r*r); 7

8 5 dy dx = 2x, x = 1 y = 1 (12) y = x 2 ) y dy/dx = 2x x = 1 y 1 2 x, 2 x = 1.1y x(0.1)x = 1 y x = 1 y x = 1.1 y y = 0.2 y (1.1)2 = 1.21 x = 1 y(x + x) = y(x) + dy dx x (13) x y x 2 1 x x = 1.0 y = 1.0 h = dy dx #include <stdio.h> #define XSTART 1.0 // x #define XEND 6.0 // x #define YSTART 1.0 // y #define H 0.02 // x main() { double x, y, dy; y = YSTART; x = XSTART; = 2x 8

9 while(x<6.0) { dy = 2.0*x*H; y += dy; x += H; printf("x=%lf y=%lf\n",x,y); return(0); x= y= x= y= x= y= x= y= x= y= x= y= x= y= x= y= x= y= x= y= dy dx = 2x #include <stdio.h> #include <glut.h> // OpenGL #define XSTART 1.0 // x #define XEND 6.0 // x #define YSTART 1.0 // y #define H 0.02 // x void display(void) // { double x, y, dy; glclear(gl_color_buffer_bit); // glbegin(gl_line_strip); // ( y = YSTART; x = XSTART; while(x<6.0) { // Eular dy = 2.0*x*H; y += dy; x += H; printf("x=%lf y=%lf\n",x,y); glvertex2d(x* , y* ); // 9

10 glend(); // ( glbegin(gl_line_strip); // ( glvertex2d(-0.9, 0.9); glvertex2d(-0.9, -0.9); // glvertex2d( 0.9, -0.9); glend(); // ( glflush(); // 6: Runge-Kutta A da dt = f(a) (14) f(a) t = 0 A A(0) t = dt A A(dT ) Euler 7 t = 0 1 f(a(0)) dt A(dT ) f(a(0))dt 10

11 x x(t+dt) x(t) t t+dt 7: 8 2 Runge-Kutta Euler dt A k 1 0 dt dt/2 A f(a(0)) + k 1 /2 A(dT ) k 1 = f(a(0))dt (15) A(dT ) = A(0) + f(a(0) + k 1 /2)dT (16) Taylor dt 2 Runge-Kutta 9 4 Runge- Kutta (15) (16) 4 Runge-Kutta 3 A(dT ) k 1, k 2, k 3, k 4 A(dT ) Taylor dt 4 k 1 = f(a(0))dt (17) k 2 = f(a(0) + k 1 /2)dT (18) k 3 = f(a(0) + k 2 /2)dT (19) k 4 = f(a(0) + k 3 /2)dT (20) A(dT ) = A(0) (k 1 + 2k 2 + 2k 3 + k 4 ) (21) Runge-Kutta 4 Runge-Kutta Runge-Kutta qx, qy, px, py RungeKutta() 6 Runge-Kutta // === Runge-Kutta === 11

12 x x(t+dt) t x(t) t+dt/2 t+dt k 1 8: 2 Runge-Kutta x x(t+dt) x(t) k 1 k 2 k 3 k 4 t t+dt 9: 4 Runge-Kutta void RungeKutta(double qx, double qy, double px, double py, double *qxk, double *qyk, double *pxk, double *pyk) { double q, qi3; q = hypot( qx, qy ); qi3 = 1.0/(q*q*q); *qxk = px/m*dt; *qyk = py/m*dt; *pxk = -GM*M*qx*qi3*dT; *pyk = -GM*M*qy*qi3*dT; Runge-Kutta Euler 10 Euler 12

x(t) + t f(t, x) = x(t) + x (t) t x t Tayler x(t + t) = x(t) + x (t) t + 1 2! x (t) t ! x (t) t 3 + (15) Eular x t Teyler 1 Eular 2 Runge-Kutta

x(t) + t f(t, x) = x(t) + x (t) t x t Tayler x(t + t) = x(t) + x (t) t + 1 2! x (t) t ! x (t) t 3 + (15) Eular x t Teyler 1 Eular 2 Runge-Kutta 6 Runge-KuttaEular Runge-Kutta Runge-Kutta A( ) f(t, x) dx dt = lim x(t + t) x(t) t 0 t = f(t, x) (14) t x x(t) t + dt x x(t + dt) Euler 7 t 1 f(t, x(t)) x(t) + f(t + dt, x(t + dt))dt t + dt x(t + dt)

More information

C による数値計算法入門 ( 第 2 版 ) 新装版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 新装版 1 刷発行時のものです.

C による数値計算法入門 ( 第 2 版 ) 新装版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.  このサンプルページの内容は, 新装版 1 刷発行時のものです. C による数値計算法入門 ( 第 2 版 ) 新装版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009383 このサンプルページの内容は, 新装版 1 刷発行時のものです. i 2 22 2 13 ( ) 2 (1) ANSI (2) 2 (3) Web http://www.morikita.co.jp/books/mid/009383

More information

1 28 6 12 7 1 7.1...................................... 2 7.1.1............................... 2 7.1.2........................... 2 7.2...................................... 3 7.3...................................

More information

C 2 / 21 1 y = x 1.1 lagrange.c 1 / Laglange / 2 #include <stdio.h> 3 #include <math.h> 4 int main() 5 { 6 float x[10], y[10]; 7 float xx, pn, p; 8 in

C 2 / 21 1 y = x 1.1 lagrange.c 1 / Laglange / 2 #include <stdio.h> 3 #include <math.h> 4 int main() 5 { 6 float x[10], y[10]; 7 float xx, pn, p; 8 in C 1 / 21 C 2005 A * 1 2 1.1......................................... 2 1.2 *.......................................... 3 2 4 2.1.............................................. 4 2.2..............................................

More information

A

A A05-132 2010 2 11 1 1 3 1.1.......................................... 3 1.2..................................... 3 1.3..................................... 3 2 4 2.1............................... 4 2.2

More information

‚æ4›ñ

‚æ4›ñ ( ) ( ) ( ) A B C D E F G H I J K L M N O P Q R S T U V W X Y Z a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9 (OUS) 9 26 1 / 28 ( ) ( ) ( ) A B C D Z a b c d z 0 1 2 9 (OUS) 9

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

c-all.dvi

c-all.dvi III(994) (994) from PSL (9947) & (9922) c (99,992,994,996) () () 2 3 4 (2) 2 Euler 22 23 Euler 24 (3) 3 32 33 34 35 Poisson (4) 4 (5) 5 52 ( ) 2 Turbo 2 d 2 y=dx 2 = y y = a sin x + b cos x x = y = Fortran

More information

P06.ppt

P06.ppt p.130 p.198 p.208 2 1 double weight[num]; double min, max; min = max = weight[0]; for( i= 1; i < NUM; i++ ) if ( weight[i] > max ) max = weight[i]: if ( weight[i] < min ) min = weight[i]: weight 3 maxof(a,

More information

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0. () 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >

More information

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4 20 20.0 ( ) 8 y = ax 2 + bx + c 443 ax 2 + bx + c = 0 20.1 20.1.1 n 8 (n ) a n x n + a n 1 x n 1 + + a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 444 ( a, b, c, d

More information

1 4 2 EP) (EP) (EP)

1 4 2 EP) (EP) (EP) 2003 2004 2 27 1 1 4 2 EP) 5 3 6 3.1.............................. 6 3.2.............................. 6 3.3 (EP)............... 7 4 8 4.1 (EP).................... 8 4.1.1.................... 18 5 (EP)

More information

d dt A B C = A B C d dt x = Ax, A 0 B 0 C 0 = mm 0 mm 0 mm AP = PΛ P AP = Λ P A = ΛP P d dt x = P Ax d dt (P x) = Λ(P x) d dt P x =

d dt A B C = A B C d dt x = Ax, A 0 B 0 C 0 = mm 0 mm 0 mm AP = PΛ P AP = Λ P A = ΛP P d dt x = P Ax d dt (P x) = Λ(P x) d dt P x = 3 MATLAB Runge-Kutta Butcher 3. Taylor Taylor y(x 0 + h) = y(x 0 ) + h y (x 0 ) + h! y (x 0 ) + Taylor 3. Euler, Runge-Kutta Adams Implicit Euler, Implicit Runge-Kutta Gear y n+ y n (n+ ) y n+ y n+ y n+

More information

スライド 1

スライド 1 数値解析 平成 24 年度前期第 7 週 [2012 年 5 月 30 日 ] 静岡大学創造科学技術大学院情報科学専攻工学部機械工学科計測情報講座 三浦憲二郎 講義アウトライン [5 月 30 日 ] 数値積分 ニュートン コーツ公式 台形公式 シンプソン公式 多積分 数値積分の必要性 p.135 初等関数 ( しょとうかんすう ) とは 複素数を変数とする多項式関数 指数関数 対数関数主値の四則演算

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p 2012 IA 8 I 1 10 10 29 1. [0, 1] n x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 2. 1 x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 1 0 f(x)dx 3. < b < c [, c] b [, c] 4. [, b] f(x) 1 f(x) 1 f(x) [, b] 5.

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

error_g1.eps

error_g1.eps Runge-Kutta Method Runge-Kutta Method x n+ = x n +hf(t n x n ) dx dt dx x(t+h) x(t) (t) = lim dt h h t = t n h > dx dt (t x(t n +h) x(t n ) n) = lim x(t n+) x(t n ) h h h x = f(tx) x(t n+ ) x(t n ) f(t

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa 1 2 21 2 2 [ ] a 11 a 12 A = a 21 a 22 (1) A = a 11 a 22 a 12 a 21 (2) 3 3 n n A A = n ( 1) i+j a ij M ij i =1 n (3) j=1 M ij A i j (n 1) (n 1) 2-1 3 3 A A = a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33

More information

1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 5 3. 4. 5. A0 (1) A, B A B f K K A ϕ 1, ϕ 2 f ϕ 1 = f ϕ 2 ϕ 1 = ϕ 2 (2) N A 1, A 2, A 3,... N A n X N n X N, A n N n=1 1 A1 d (d 2) A (, k A k = O), A O. f

More information

Chap11.dvi

Chap11.dvi . () x 3 + dx () (x )(x ) dx + sin x sin x( + cos x) dx () x 3 3 x + + 3 x + 3 x x + x 3 + dx 3 x + dx 6 x x x + dx + 3 log x + 6 log x x + + 3 rctn ( ) dx x + 3 4 ( x 3 ) + C x () t x t tn x dx x. t x

More information

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a 9 203 6 7 WWW http://www.math.meiji.ac.jp/~mk/lectue/tahensuu-203/ 2 8 8 7. 7 7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa,

More information

[1] #include<stdio.h> main() { printf("hello, world."); return 0; } (G1) int long int float ± ±

[1] #include<stdio.h> main() { printf(hello, world.); return 0; } (G1) int long int float ± ± [1] #include printf("hello, world."); (G1) int -32768 32767 long int -2147483648 2147483647 float ±3.4 10 38 ±3.4 10 38 double ±1.7 10 308 ±1.7 10 308 char [2] #include int a, b, c, d,

More information

( ) 1 1: 1 #include <s t d i o. h> 2 #include <GL/ g l u t. h> 3 #include <math. h> 4 #include <s t d l i b. h> 5 #include <time. h>

( ) 1 1: 1 #include <s t d i o. h> 2 #include <GL/ g l u t. h> 3 #include <math. h> 4 #include <s t d l i b. h> 5 #include <time. h> 2007 12 5 1 2 2.1 ( ) 1 1: 1 #include 2 #include 3 #include 4 #include 5 #include 6 7 #define H WIN 400 // 8 #define W WIN 300 // 9

More information

j x j j j + 1 l j l j = x j+1 x j, n x n x 1 = n 1 l j j=1 H j j + 1 l j l j E

j x j j j + 1 l j l j = x j+1 x j, n x n x 1 = n 1 l j j=1 H j j + 1 l j l j E 8 9 7 6 4 2 3 5 1 j x j j j + 1 l j l j = x j+1 x j, n x n x 1 = n 1 l j j=1 H j j + 1 l j l j E a n 1 H = ae l j, j=1 l j = x j+1 x j, x n x 1 = n 1 j=1 l j, l j = ±l l > 0) n 1 H = ϵ l j, j=1 ϵ e x x

More information

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b)

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b) CALCULUS II (Hiroshi SUZUKI ) 16 1 1 1.1 1.1 f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b) lim f(x, y) = lim f(x, y) = lim f(x, y) = c. x a, y b

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

joho09.ppt

joho09.ppt s M B e E s: (+ or -) M: B: (=2) e: E: ax 2 + bx + c = 0 y = ax 2 + bx + c x a, b y +/- [a, b] a, b y (a+b) / 2 1-2 1-3 x 1 A a, b y 1. 2. a, b 3. for Loop (b-a)/ 4. y=a*x*x + b*x + c 5. y==0.0 y (y2)

More information

2014 S hara/lectures/lectures-j.html r 1 S phone: ,

2014 S hara/lectures/lectures-j.html r 1 S phone: , 14 S1-1+13 http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r 1 S1-1+13 14.4.11. 19 phone: 9-8-4441, e-mail: hara@math.kyushu-u.ac.jp Office hours: 1 4/11 web download. I. 1. ϵ-δ 1. 3.1, 3..

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t) =(x(t),y(t),z(t)) ( dp dx dt = dt, dy dt, dz ) dt f () > f x

y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t) =(x(t),y(t),z(t)) ( dp dx dt = dt, dy dt, dz ) dt f () > f x I 5 2 6 3 8 4 Riemnn 9 5 Tylor 8 6 26 7 3 8 34 f(x) x = A = h f( + h) f() h A (differentil coefficient) f f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t)

More information

/* do-while */ #include <stdio.h> #include <math.h> int main(void) double val1, val2, arith_mean, geo_mean; printf( \n ); do printf( ); scanf( %lf, &v

/* do-while */ #include <stdio.h> #include <math.h> int main(void) double val1, val2, arith_mean, geo_mean; printf( \n ); do printf( ); scanf( %lf, &v 1 http://www7.bpe.es.osaka-u.ac.jp/~kota/classes/jse.html kota@fbs.osaka-u.ac.jp /* do-while */ #include #include int main(void) double val1, val2, arith_mean, geo_mean; printf( \n );

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

sim0004.dvi

sim0004.dvi 4 : 1 f(x) Z b a dxf(x) (1) ( Double Exponential method=de ) 1 DE N = n T n h h =(b a)=n T n = b a f(a) +f(b) n f + f(a + j b a n )g n j=1 = b a f(a) +f(b) n f + f(a +j b a )g; n n+1 j=1 T n+1 = b a f(a)

More information

mugensho.dvi

mugensho.dvi 1 1 f (t) lim t a f (t) = 0 f (t) t a 1.1 (1) lim(t 1) 2 = 0 t 1 (t 1) 2 t 1 (2) lim(t 1) 3 = 0 t 1 (t 1) 3 t 1 2 f (t), g(t) t a lim t a f (t) g(t) g(t) f (t) = o(g(t)) (t a) = 0 f (t) (t 1) 3 1.2 lim

More information

(search: ) [1] ( ) 2 (linear search) (sequential search) 1

(search: ) [1] ( ) 2 (linear search) (sequential search) 1 2005 11 14 1 1.1 2 1.2 (search:) [1] () 2 (linear search) (sequential search) 1 2.1 2.1.1 List 2-1(p.37) 1 1 13 n

More information

#define N1 N+1 double x[n1] =.5, 1., 2.; double hokan[n1] = 1.65, 2.72, 7.39 ; double xx[]=.2,.4,.6,.8,1.2,1.4,1.6,1.8; double lagrng(double xx); main

#define N1 N+1 double x[n1] =.5, 1., 2.; double hokan[n1] = 1.65, 2.72, 7.39 ; double xx[]=.2,.4,.6,.8,1.2,1.4,1.6,1.8; double lagrng(double xx); main =1= (.5, 1.65), (1., 2.72), (2., 7.39).2,.4,.6,.8, 1., 1.2, 1.4, 1.6 1 1: x.2 1.4128.4 1.5372.6 1.796533.8 2.198 1.2 3.384133 1.4 4.1832 1.6 5.1172 8 7 6 5 y 4 3 2 1.5 1 1.5 2 x 1: /* */ #include

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

body.dvi

body.dvi ..1 f(x) n = 1 b n = 1 f f(x) cos nx dx, n =, 1,,... f(x) sin nx dx, n =1,, 3,... f(x) = + ( n cos nx + b n sin nx) n=1 1 1 5 1.1........................... 5 1.......................... 14 1.3...........................

More information

PowerPoint Presentation

PowerPoint Presentation p.130 p.198 p.208 2 double weight[num]; double min, max; min = max = weight[0]; for( i= 1; i i < NUM; i++ ) ) if if ( weight[i] > max ) max = weight[i]: if if ( weight[i] < min ) min = weight[i]: weight

More information

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n 1, R f : R R,.,, b R < b, f(x) [, b] f(x)dx,, [, b] f(x) x ( ) ( 1 ). y y f(x) f(x)dx b x 1: f(x)dx, [, b] f(x) x ( ).,,,,,., f(x)dx,,,, f(x)dx. 1.1 Riemnn,, [, b] f(x) x., x 0 < x 1 < x 2 < < x n 1

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

2017 p vs. TDGL 4 Metropolis Monte Carlo equation of continuity s( r, t) t + J( r, t) = 0 (79) J s flux (67) J (79) J( r, t) = k δf δs s( r,

2017 p vs. TDGL 4 Metropolis Monte Carlo equation of continuity s( r, t) t + J( r, t) = 0 (79) J s flux (67) J (79) J( r, t) = k δf δs s( r, 27 p. 47 7 7. vs. TDGL 4 Metropolis Monte Carlo equation of continuity s( r, t) t + J( r, t) = (79) J s flux (67) J (79) J( r, t) = k δf δs s( r, t) t = k δf δs (59) TDGL (8) (8) k s t = [ T s s 3 + ξ

More information

$ ls -l $ ls -l -a $ ls -la $ ls -F $ ls <dirname> <dirname> $ cd <dirname> <dirname> $ cd $ pwd $ cat <filename> <filename> $ less <filename> <filena

$ ls -l $ ls -l -a $ ls -la $ ls -F $ ls <dirname> <dirname> $ cd <dirname> <dirname> $ cd $ pwd $ cat <filename> <filename> $ less <filename> <filena $ pwd /home1/t0/t0903 / / /home1/t0/t0903 / / /home1/t0/t0903 / /... ~ $ ls $ ls -a $ ls -l $ ls -l -a $ ls -la $ ls -F $ ls $ cd $ cd $ pwd $ cat

More information

- II

- II - II- - -.................................................................................................... 3.3.............................................. 4 6...........................................

More information

数値計算:常微分方程式

数値計算:常微分方程式 ( ) 1 / 82 1 2 3 4 5 6 ( ) 2 / 82 ( ) 3 / 82 C θ l y m O x mg λ ( ) 4 / 82 θ t C J = ml 2 C mgl sin θ θ C J θ = mgl sin θ = θ ( ) 5 / 82 ω = θ J ω = mgl sin θ ω J = ml 2 θ = ω, ω = g l sin θ = θ ω ( )

More information

4 R f(x)dx = f(z) f(z) R f(z) = lim R f(x) p(x) q(x) f(x) = p(x) q(x) = [ q(x) [ p(x) + p(x) [ q(x) dx =πi Res(z ) + Res(z )+ + Res(z n ) Res(z k ) k

4 R f(x)dx = f(z) f(z) R f(z) = lim R f(x) p(x) q(x) f(x) = p(x) q(x) = [ q(x) [ p(x) + p(x) [ q(x) dx =πi Res(z ) + Res(z )+ + Res(z n ) Res(z k ) k f(x) f(z) z = x + i f(z). x f(x) + R f(x)dx = lim f(x)dx. R + f(x)dx = = lim R f(x)dx + f(x)dx f(x)dx + lim R R f(x)dx Im z R Re z.: +R. R f(z) = R f(x)dx + f(z) 3 4 R f(x)dx = f(z) f(z) R f(z) = lim R

More information

(, ) (, ) S = 2 = [, ] ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) ( ) (

(, ) (, ) S = 2 = [, ] ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) ( ) ( B 4 4 4 52 4/ 9/ 3/3 6 9.. y = x 2 x x = (, ) (, ) S = 2 = 2 4 4 [, ] 4 4 4 ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, 4 4 4 4 4 k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) 2 2 + ( ) 3 2 + ( 4 4 4 4 4 4 4 4 4 ( (

More information

1 return main() { main main C 1 戻り値の型 関数名 引数 関数ブロックをあらわす中括弧 main() 関数の定義 int main(void){ printf("hello World!!\n"); return 0; 戻り値 1: main() 2.2 C main

1 return main() { main main C 1 戻り値の型 関数名 引数 関数ブロックをあらわす中括弧 main() 関数の定義 int main(void){ printf(hello World!!\n); return 0; 戻り値 1: main() 2.2 C main C 2007 5 29 C 1 11 2 2.1 main() 1 FORTRAN C main() main main() main() 1 return 1 1 return main() { main main C 1 戻り値の型 関数名 引数 関数ブロックをあらわす中括弧 main() 関数の定義 int main(void){ printf("hello World!!\n"); return

More information

C言語によるアルゴリズムとデータ構造

C言語によるアルゴリズムとデータ構造 Algorithms and Data Structures in C 4 algorithm List - /* */ #include List - int main(void) { int a, b, c; int max; /* */ Ÿ 3Ÿ 2Ÿ 3 printf(""); printf(""); printf(""); scanf("%d", &a); scanf("%d",

More information

18 C ( ) hello world.c 1 #include <stdio.h> 2 3 main() 4 { 5 printf("hello World\n"); 6 } [ ] [ ] #include <stdio.h> % cc hello_world.c %./a.o

18 C ( ) hello world.c 1 #include <stdio.h> 2 3 main() 4 { 5 printf(hello World\n); 6 } [ ] [ ] #include <stdio.h> % cc hello_world.c %./a.o 18 C ( ) 1 1 1.1 hello world.c 5 printf("hello World\n"); 6 } [ ] [ ] #include % cc hello_world.c %./a.out Hello World [a.out ] % cc hello_world.c -o hello_world [ ( ) ] (K&R 4.1.1) #include

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information

スライド 1

スライド 1 数値解析 2019 年度前期第 13 週 [7 月 11 日 ] 静岡大学創造科学技術大学院情報科学専攻工学部機械工学科計測情報講座 三浦憲二郎 講義アウトライン [7 月 11 日 ] 関数近似と補間 最小 2 乗近似による関数近似 ラグランジュ補間 T.Kanai, U.Tokyo 関数近似 p.116 複雑な関数を簡単な関数で近似する 関数近似 閉区間 [a,b] で定義された関数 f(x)

More information

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1 1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

I. Backus-Naur BNF S + S S * S S x S +, *, x BNF S (parse tree) : * x + x x S * S x + S S S x x (1) * x x * x (2) * + x x x (3) + x * x + x x (4) * *

I. Backus-Naur BNF S + S S * S S x S +, *, x BNF S (parse tree) : * x + x x S * S x + S S S x x (1) * x x * x (2) * + x x x (3) + x * x + x x (4) * * 2015 2015 07 30 10:30 12:00 I. I VI II. III. IV. a d V. VI. 80 100 60 1 I. Backus-Naur BNF S + S S * S S x S +, *, x BNF S (parse tree) : * x + x x S * S x + S S S x x (1) * x x * x (2) * + x x x (3) +

More information

スライド 1

スライド 1 数値解析 平成 24 年度前期第 13 週 [7 月 11 日 ] 静岡大学創造科学技術大学院情報科学専攻工学部機械工学科計測情報講座 三浦憲二郎 講義アウトライン [7 月 11 日 ] 関数近似と補間 最小 2 乗近似による関数近似 ラグランジュ補間 形状処理工学の基礎 点列からの曲線の生成 T.Kanai, U.Tokyo 関数近似 p.116 複雑な関数を簡単な関数で近似する関数近似 閉区間

More information

橡CompSimmAllcpct.PDF

橡CompSimmAllcpct.PDF 3 1 M dx 1 dx/ 1/ x P 0 (x) x dx x P 0 (x) x+dx P 0 (x+dx) x dx P 0 (x+dx)=p 0 (x)(1-dx/ dx/) x P 0 (x) P 0 (x+dx)=p 0 (x)(1-dx/ dx/) Tayler (dx) P 0 (x)+(dp 0 /dx)dx (dp 0 (x)/dx)dx= -P 0 (x) dx/

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

USB 0.6 https://duet.doshisha.ac.jp/info/index.jsp 2 ID TA DUET 24:00 DUET XXX -YY.c ( ) XXX -YY.txt() XXX ID 3 YY ID 5 () #define StudentID 231

USB 0.6 https://duet.doshisha.ac.jp/info/index.jsp 2 ID TA DUET 24:00 DUET XXX -YY.c ( ) XXX -YY.txt() XXX ID 3 YY ID 5 () #define StudentID 231 0 0.1 ANSI-C 0.2 web http://www1.doshisha.ac.jp/ kibuki/programming/resume p.html 0.3 2012 1 9/28 0 [ 01] 2 10/5 1 C 2 3 10/12 10 1 2 [ 02] 4 10/19 3 5 10/26 3 [ 03] 6 11/2 3 [ 04] 7 11/9 8 11/16 4 9 11/30

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

:30 12:00 I. I VI II. III. IV. a d V. VI

:30 12:00 I. I VI II. III. IV. a d V. VI 2018 2018 08 02 10:30 12:00 I. I VI II. III. IV. a d V. VI. 80 100 60 1 I. Backus-Naur BNF N N y N x N xy yx : yxxyxy N N x, y N (parse tree) (1) yxyyx (2) xyxyxy (3) yxxyxyy (4) yxxxyxxy N y N x N yx

More information

DOPRI5.dvi

DOPRI5.dvi ODE DOPRI5 ( ) 16 3 31 Runge Kutta Dormand Prince 5(4) [1, pp. 178 179] DOPRI5 http://www.unige.ch/math/folks/hairer/software.html Fortran C C++ [3, pp.51 56] DOPRI5 C cprog.tar % tar xvf cprog.tar cprog/

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

PC Windows 95, Windows 98, Windows NT, Windows 2000, MS-DOS, UNIX CPU

PC Windows 95, Windows 98, Windows NT, Windows 2000, MS-DOS, UNIX CPU 1. 1.1. 1.2. 1 PC Windows 95, Windows 98, Windows NT, Windows 2000, MS-DOS, UNIX CPU 2. 2.1. 2 1 2 C a b N: PC BC c 3C ac b 3 4 a F7 b Y c 6 5 a ctrl+f5) 4 2.2. main 2.3. main 2.4. 3 4 5 6 7 printf printf

More information

Morse ( ) 2014

Morse ( ) 2014 Morse ( ) 2014 1 1 Morse 1 1.1 Morse................................ 1 1.2 Morse.............................. 7 2 12 2.1....................... 12 2.2.................. 13 2.3 Smale..............................

More information

Ver.2.2 20.07.2 3 200 6 2 4 ) 2) 3) 4) 5) (S45 9 ) ( 4) III 6) 7) 8) 9) ) 2) 3) 4) BASIC 5) 6) 7) 8) 9) ..2 3.2. 3.2.2 4.2.3 5.2.4 6.3 8.3. 8.3.2 8.3.3 9.4 2.5 3.6 5 2.6. 5.6.2 6.6.3 9.6.4 20.6.5 2.6.6

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

P05.ppt

P05.ppt 2 1 list0415.c forfor #include int i, j; for (i = 1; i

More information

第3章 OpenGL の基礎

第3章 OpenGL の基礎 3 OpenGL April 20, 2012 1 / 23 31 ( ) OpenGL OpenGL 2 / 23 32 OpenGL OpenGL OpenGL (Open Graphics Library) Silicon Graphics, Inc 2 3 API (Application Program Interface) [4] UNIX OS Windows Macintosh CAD

More information

text.dvi

text.dvi I kawazoe@sfc.keio.ac.jp chap. Fourier Jean-Baptiste-Joseph Fourier (768.3.-83.5.6) Auxerre Ecole Polytrchnique Napoleon G.Monge Isere Napoleon Academie Francaise [] [ ] [] [] [ ] [ ] [] chap. + + Fourier

More information

1 R n (x (k) = (x (k) 1,, x(k) n )) k 1 lim k,l x(k) x (l) = 0 (x (k) ) 1.1. (i) R n U U, r > 0, r () U (ii) R n F F F (iii) R n S S S = { R n ; r > 0

1 R n (x (k) = (x (k) 1,, x(k) n )) k 1 lim k,l x(k) x (l) = 0 (x (k) ) 1.1. (i) R n U U, r > 0, r () U (ii) R n F F F (iii) R n S S S = { R n ; r > 0 III 2018 11 7 1 2 2 3 3 6 4 8 5 10 ϵ-δ http://www.mth.ngoy-u.c.jp/ ymgmi/teching/set2018.pdf http://www.mth.ngoy-u.c.jp/ ymgmi/teching/rel2018.pdf n x = (x 1,, x n ) n R n x 0 = (0,, 0) x = (x 1 ) 2 +

More information

スライド 1

スライド 1 数値解析 平成 29 年度前期第 14 週 [7 月 10 日 ] 静岡大学工学研究科機械工学専攻ロボット 計測情報分野創造科学技術大学院情報科学専攻 三浦憲二郎 期末試験 7 月 31 日 ( 月 ) 9 10 時限 A : 佐鳴会議室 B : 佐鳴ホール 講義アウトライン [7 月 10 日 ] 関数近似と補間 最小 2 乗近似による関数近似 ( 復習 ) ラグランジュ補間 形状処理工学の基礎

More information

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f ,,,,.,,,. R f : R R R a R, f(a + ) f(a) lim 0 (), df dx (a) f (a), f(x) x a, f (a), f(x) x a ( ). y f(a + ) y f(x) f(a+) f(a) f(a + ) f(a) f(a) x a 0 a a + x 0 a a + x y y f(x) 0 : 0, f(a+) f(a)., f(x)

More information

第3章 OpenGL の基礎

第3章 OpenGL の基礎 3 OpenGL April 11, 2017 1 / 28 3.1 ( ) OpenGL OpenGL 2 / 28 3.2 OpenGL OpenGL OpenGL (Open Graphics Library) Silicon Graphics, Inc. 2 3 API (Application Program Interface) [4] UNIX OS Windows Macintosh

More information

2 : 2008/12/ /01/ G :

2 : 2008/12/ /01/ G : 2 : 2008/12/08 2008/01/16 075730G : 1 project draw main.cpp 1 draw main.cpp /* * main.cpp * draw * * Created by C-T on 08/12/08. * Copyright 2008 MyCompanyName. All rights reserved. * */ #include

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 常微分方程式の局所漸近解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/007651 このサンプルページの内容は, 初版 1 刷発行当時のものです. i Leibniz ydy = y 2 /2 1675 11 11 [6] 100 Bernoulli Riccati 19 Fuchs

More information

Bessel ( 06/11/21) Bessel 1 ( ) 1.1 0, 1,..., n n J 0 (x), J 1 (x),..., J n (x) I 0 (x), I 1 (x),..., I n (x) Miller (Miller algorithm) Bess

Bessel ( 06/11/21) Bessel 1 ( ) 1.1 0, 1,..., n n J 0 (x), J 1 (x),..., J n (x) I 0 (x), I 1 (x),..., I n (x) Miller (Miller algorithm) Bess Bessel 5 3 11 ( 6/11/1) Bessel 1 ( ) 1.1, 1,..., n n J (x), J 1 (x),..., J n (x) I (x), I 1 (x),..., I n (x) Miller (Miller algorithm) Bessel (6 ) ( ) [1] n n d j J n (x), d j I n (x) Deuflhard j= j=.1

More information

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y 017 8 10 f : R R f(x) = x n + x n 1 + 1, f(x) = sin 1, log x x n m :f : R n R m z = f(x, y) R R R R, R R R n R m R n R m R n R m f : R R f (x) = lim h 0 f(x + h) f(x) h f : R n R m m n M Jacobi( ) m n

More information

i 6 3 ii 3 7 8 9 3 6 iii 5 8 5 3 7 8 v...................................................... 5.3....................... 7 3........................ 3.................3.......................... 8 3 35

More information

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a,

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a, [ ] 8 IC. y d y dx = ( dy dx ( p = dy p y dx ( ( ( 8 ( s8. 3 A A = ( A ( A (3 A P A P AP.3 π y(x = { ( 8 ( s8 x ( π < x x ( < x π y(x π π O π x ( 8 ( s83.4 f (x, y, z grad(f ( ( ( f f f grad(f = i + j

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

A/B (2010/10/08) Ver kurino/2010/soft/soft.html A/B

A/B (2010/10/08) Ver kurino/2010/soft/soft.html A/B A/B (2010/10/08) Ver. 1.0 kurino@math.cst.nihon-u.ac.jp http://edu-gw2.math.cst.nihon-u.ac.jp/ kurino/2010/soft/soft.html 2010 10 8 A/B 1 2010 10 8 2 1 1 1.1 OHP.................................... 1 1.2.......................................

More information

Informatics 2010.key

Informatics 2010.key http://math.sci.hiroshima-u.ac.jp/ ~ryo/lectures/informatics2010/ 1 2 C ATM etc. etc. (Personal Computer) 3 4 Input Output Device Central Processing Unit I/O CPU Memory 5 6 (CPU),,... etc. C, Java, Fortran...

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 電気電子数学入門 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/073471 このサンプルページの内容は, 初版 1 刷発行当時のものです. i 14 (tool) [ ] IT ( ) PC (EXCEL) HP() 1 1 4 15 3 010 9 ii 1... 1 1.1 1 1.

More information

II

II II 16 16.0 2 1 15 x α 16 x n 1 17 (x α) 2 16.1 16.1.1 2 x P (x) P (x) = 3x 3 4x + 4 369 Q(x) = x 4 ax + b ( ) 1 P (x) x Q(x) x P (x) x P (x) x = a P (a) P (x) = x 3 7x + 4 P (2) = 2 3 7 2 + 4 = 8 14 +

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

1

1 1 1 7 1.1.................................. 11 2 13 2.1............................ 13 2.2............................ 17 2.3.................................. 19 3 21 3.1.............................

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

C ( ) C ( ) C C C C C 1 Fortran Character*72 name Integer age Real income 3 1 C mandata mandata ( ) name age income mandata ( ) mandat

C ( ) C ( ) C C C C C 1 Fortran Character*72 name Integer age Real income 3 1 C mandata mandata ( ) name age income mandata ( ) mandat C () 14 5 23 C () C C C C C 1 Fortran Character*72 name Integer age Real income 3 1 C 1.1 3 7 mandata mandata () name age income mandata () mandata1 1 #include struct mandata char name[51];

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy f f x, y, u, v, r, θ r > = x + iy, f = u + iv C γ D f f D f f, Rm,. = x + iy = re iθ = r cos θ + i sin θ = x iy = re iθ = r cos θ i sin θ x = + = Re, y = = Im i r = = = x + y θ = arg = arctan y x e i =

More information

関数のグラフを描こう

関数のグラフを描こう L05(2010-05-07) 1 2 hig3.net ( ) L05(2010-05-07) 1 / 16 #i n c l u d e double f ( double x ) ; i n t main ( void ){ i n t n ; i n t nmax=10; double x ; double s =0.0; } x = 1.0; s=s+x ;

More information

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( ( (. x y y x f y = f(x y x y = y(x y x y dx = d dx y(x = y (x = f (x y = y(x x ( (differential equation ( + y 2 dx + xy = 0 dx = xy + y 2 2 2 x y 2 F (x, y = xy + y 2 y = y(x x x xy(x = F (x, y(x + y(x 2

More information

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a 3 3.1 3.1.1 A f(a + h) f(a) f(x) lim f(x) x = a h 0 h f(x) x = a f 0 (a) f 0 (a) = lim h!0 f(a + h) f(a) h = lim x!a f(x) f(a) x a a + h = x h = x a h 0 x a 3.1 f(x) = x x = 3 f 0 (3) f (3) = lim h 0 (

More information

x ( ) x dx = ax

x ( ) x dx = ax x ( ) x dx = ax 1 dx = a x log x = at + c x(t) = e at C (C = e c ) a > 0 t a < 0 t 0 (at + b ) h dx = lim x(t + h) x(t) h 0 h x(t + h) x(t) h x(t) t x(t + h) x(t) ax(t) h x(t + h) x(t) + ahx(t) 0, h, 2h,

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b) 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h 0 f(a + h, b) f(a, b) h............................................................... ( ) f(x, y) (a, b) x A (a, b) x

More information