Chapter 3 Special Techniques). Laplace 3. Laplace s Equation) (3.. Introduction) Lapla

Size: px
Start display at page:

Download "Chapter 3 Special Techniques). Laplace 3. Laplace s Equation) (3.. Introduction) Lapla"

Transcription

1 2 25

2 Chapter 3 Special Techniques). Laplace 3. Laplace s Equation) (3.. Introduction) Laplace 3..2 Laplace s Equation in One Dimension) Laplace 3..3 Laplace s Equation in Two Dimensions) Laplace (3..4 Laplace s Equation in Three Dimensions) Boundary Conditions and Uniqueness Theorems (3..6 Conductors and the Second Uniqueness Theorem) Neumann (3.2 The Method of Images) (3.. The Classic Image Problem) (Sec Induced Surface Charge) (Sec Force and Energy) (3.2.4 Other Image Problems) Separation of Variables Cartesian Coordinates Spherical Coordinates Multipole Expansion Approximate Potential at Large Distance The Monopole and Dipole Terms The Electric Field of a Dipole Chapter 4 Electric Fields in Matter Polarization Dielectrics Induced Dipoles Alignment of Polar Molecules Polarization The Field of a Polarized Object Bound Charges Physical Interpretation of Bound Charges The Electric Displacement Gauss 4.3. Gauss s Law in the Presence of Dielectrics A Deceptive Parallel Boundary Conditions Linear Dielectrics Susceptibility, Permittivity, Dielectric Constant Boundary Value Problems with Linear Dielectrics Energy in Dielectric Systems i

3 Forces on Dielectrics Chapter 6 Magnetic Fields in Matter Magnetization Multipole Expansion of the Vector Potential Diamagnets, Paramagnets, Ferromagnets Torques and Forces on Magnetic Dipoles Magnetization The Field of a Magnetized Object Bound Currents Physical Interpretation of Bound Currents H 6.3 The Auxiliary Field H Ampère Linear and Nonlinear Media Magnetic Susceptibility and Permeability A Deceptive Parallel Boundary Conditions Chapter 7 Electrodynamics Maxwell Maxwell s Equations Maxwell Maxwell s Equations in Matter Boundary Conditions ii

4 Chapter 3 Special Techniques) Sec.. Poisson Laplace Laplace Earnshaw Sec..2 Sec..3 Laplace Sec..4. Laplace 3. Laplace s Equation).. (3.. Introduction) ρ(r) Coulomb E(r) E(r) = r r 4πɛ 0 r r 3 ρ(r )dτ (dτ = dx dy dz ) (.) (.) (.) Gauss E da = Q enc ɛ 0 S V E = V E V (r) = 4πɛ 0 r r ρ(r )dτ (.2) (.2) (.) ρ Gauss Gauss V E = ρ ɛ 0 (.3) 2 V = ɛ 0 ρ (.4) Poisson Poisson (.2) (ρ = 0)

5 ρ =0 ρ =0 V =0 ) Poisson Laplace x, y, z 2 V x V y 2 2 V =0 (.5) + 2 V =0 (.6) z2 Laplace Laplace Laplace Laplace Laplace..2 Laplace 3..2 Laplace s Equation in One Dimension) V x Laplace d 2 V dx 2 =0 V (x) =mx + b (.7) m, b Laplace. x,x 2 V V (x )=V, V(x 2 )=V 2 m =(V V 2 )/(x x 2 ), b =(V 2 x V x )/(x x 2 ) (.8) 2. x V dv/dx(= E) V (x )=V, dv/dx x=x = E m = V + E x (.9). V (x) a V (x + a) V (x a) V (x) = [V (x + a) V (x a)] 2 2. Laplace () x = x 0 V (x) V (x 0 ) x 0 V (x) V (x 0 ) V (x 0 ) < 0 Laplace V (x) =0, V (x) =x 4 x =0 (.7) Laplace 2

6 ..3 Laplace 3..3 Laplace s Equation in Two Dimensions) V x, y Laplace 2 V x V =0 (.0) y2 Laplace V = x 2 y 2, V = xy, V = e kx cos ky, V = e ky cos kx (.). (x, y) V (x, y) R V V (x, y) = Vdl (.2) 2πR 2. V () (.) (.2) circle..4 Laplace (3..4 Laplace s Equation in Three Dimensions) Laplace () r V r R V V = 4πR 2 Vda (.3) (2) () V sphere V r 0 V (r 0 )=V max r 0 V V (r) <V max r 0 V 4πR 2 Vda< sphere 4πR 2 V max da = V max sphere 4πR 2 da = V max (.4) sphere r = r 0 V (r 0 )=V max () () q R q z (0, 0,z) r =(x,y,z ) r V = q (.5) 4πɛ 0 x 2 + y 2 +(z z) 2 x = R cos φ sin θ, y = R sin φ sin θ, z = R cos θ (.6) 3

7 .: x 2 + y 2 +(z z) 2 = z 2 + R 2 2zR cos θ (.7) V = q 4πɛ 0 z2 + R 2 2zR cos θ V da = R 2 sin θdθdφ V ave = q R 2 4πR 2 sin θdθdφ 4πɛ 0 z2 + R 2 2zR cos θ = [ q π 4πR 2 2πR 2 z2 + R 4πɛ 0 zr 2 2zR cos θ] 0 = q q [(z + R) (z R)] = 4πɛ 0 2zR 4πɛ 0 z (.8) (.9) q V V Gauss Gauss E da = Q enc =0 (.20) E da > 0 (.20) Earnshaw Earnshaw 4

8 ..5 境界条件と一意性の定理 3..5 Boundary Conditions and Uniqueness Theorems V を一意に決めるためには Laplace 方程式に適当な境界条件を課す必要がある ここで問題となるのは 解を決めるために必要かつ十分な境界条件とはどのようなものであるか ということである 一次元の場合 は一般解が具体的に分っているので 簡単であったが 二次元 三次元の Laplace 方程式は偏微分方程式で あるため 境界条件の与え方は自明ではない Laplace 方程式の解を一意に決めるための条件は 一意性の 定理によって表される 図.2:! 第一の一意性の定理 (First uniqueness theorem) " ある領域 V における Lapalce 方程式の解は 境界面 S におけるポテンシャル V を定めれば一意に決まる # $ 第一の一意性定理の証明 図..5 のように領域 V と境界面 S が与えられているものとする もしも Laplace 方程式が 二つの解 V, V2 を持つとしよう 2 V = 0, 2 V2 = 0 (.2) これら二つの解はどちらも境界 S において同じポテンシャルの値を持つものとする Laplace 方程式の解が 一意に定まることを示すには 必ず V = V2 であることを示せばよい そのために 二つの差 V3 V V2 (.22) を考える これもまた Laplace 方程式に従うことは容易にわかる 2 V 3 = 2 V 2 V 2 = 0 (.23) 境界面 S 上では V = V2 であるから ここでは V3 = 0 である しかし Laplace 方程式は極大も極小も許さ なず 最大値も最小値も境界でのみ取ることができる したがって V3 の最大値も最小値も両方とも 0 でな ければならない よって V の全ての領域において V3 = 0 でなければならない これより V = V2 (.24) であることが示された このように 境界面においてポテンシャルの値を定める境界条件の与え方をディリクレ Dirichlet の境 界条件という 5

9 V 0 V = V 0 ( Laplace Sec Poisson ρ V Poisson 2 V = ρ (.25) ɛ 0 V,V 2 2 V = ρ, 2 V 2 = ρ (.26) ɛ 0 ɛ 0 V 3 V V 2 Laplace ( 2 V 3 = V V 2 = ρ ) ρ =0 (.27) ɛ 0 ɛ 0 S V = V 2 V 3 =0 V 3 =0 V V (a) ρ (b) V..6 (3..6 Conductors and the Second Uniqueness Theorem) V Dirichlet V Q Q 2 (Seoncd uniqueness theorem) V ρ : Gauss E = ɛ 0 ρ, E 2 = ɛ 0 ρ, (.28) Gauss Gauss E da = Q i, E 2 da = Q i (.29) S i ɛ 0 S i ɛ 0 6

10 .3: S i i Gauss E da = Q tot, E 2 da = Q tot (.30) ɛ 0 ɛ 0 S S S E 3 = E E 2 (.3) E 3 =0 (.32) E 3 da =0 (.33) i Q i V 3 = V V 2 V V 2 V 3 =0 (V 3 E 3 )=V 3 ( E 3 )+E 3 ( V 3 )= (E 3 ) 2 (.34) E 3 =0 E 3 = V 3 (V 3 E 3 )dτ = V 3 E 3 da = (E 3 ) 2 dτ (.35) V S V V 3 V 3 =0 V 3 E 3 da = V 3 E 3 da (.36) V 3 V 3 (.33) 0 (E 3 ) 2 dτ =0 (.37) V (.37) 0 0 E 3 =0 E = E 2 7

11 .4:.4 ±Q Laplace.5: Green [T 2 U +( T ) ( U)]dτ = (T U) da (.38) V S T = U = V 3 Prob Neumann Laplace ρ E = V n Neumann Prob.3.4 8

12 .2 (3.2 The Method of Images) method of images) Sec (3.. The Classic Image Problem).6:.6 d q q V = q 4πɛ 0 r r q Coulomb (.) (.2) Poisson (0, 0,d) q z>0 ρ(r) =qδ(x)δ(y)δ(z d). z =0 V = V 0 Poisson Poisson Poisson Poisson.7 +q (0, 0,d) q (0, 0, d) [ ] V (x, y, z) = q 4πɛ 0 x2 + y 2 +(z d) q 2 x2 + y 2 +(z + d) 2 (.39) z >0 (0, 0,d) +q q Poisson (.39),2.7 9

13 .7: (.6) z 0 z <0 z 0 (.39) (a) (b) +q +q q.8: (a) (b).8 Poisson.2.2 (Sec Induced Surface Charge) σ = ɛ 0 V n (.40) V/ n V z σ = ɛ 0 V z (.4) z=0 0

14 (.39) V z = 4πɛ 0 { } q(z d) [x 2 + y 2 +(z d) 2 ] + q(z + d) 3/2 [x 2 + y 2 +(z + d) 2 ] 3/2 (.42) σ(x, y) = qd 2π(x 2 + y 2 + d 2 ) 3/2 (.43) q >0.9 x = y =0 0! / (q / d 2 ) r / d (r=(x 2 +y 2 ) /2 ).9: Q = σ(x, y)dxdy (.44) x = r cos φ,y = r sin φ dxdy = rdrdφ Q = 2π dφ 0 0 [ ] qd rdr 2π(r 2 + d 2 ) = qd 3/2 r2 + d 2 0 = q (.45) q.2.3 (Sec Force and Energy) q q E = V q q Coulomb F = 4πɛ 0 q 2 (2d) 2 ẑ (.46).6).7) 2d +q, q W = 4πɛ 0 q 2 2d (.47)

15 (a) (b) +q +q F q.0: (a) (b) W = 4πɛ 0 q 2 4d (.48) W = ɛ 0 2 E 2 dτ (.49) z <0 z>0 z <0 E =0 q F (.46) 2 W = d F dl = d 4πɛ 0 q 2 4z 2 dz = 4πɛ 0 ] d [ q2 = q 2 4z 4πɛ 0 4d (.50) q 0 0 q q q.2.4 (3.2.4 Other Image Problems) Ex.3.2.(a) R a q q.(b) q = R a q (.5) Griffiths (.49) (.47) 2 2

16 P r r 2 O a (a) (b).: b = R2 a P V = ( ) q + q 4πɛ 0 r r 2 r q r 2 q (.52) (.53) r 2 = r 2 + a 2 2ar cos θ, r 2 2 = r 2 + b 2 2br cos θ (.54) [ V = 4πɛ 0 = q 4πɛ 0 [ q r2 + a 2 2ar cos θ R a ] q r2 +(R 2 /a) 2 2(R 2 /a)r cos θ ] r2 + a 2 2ar cos θ a2 r 2 /R 2 + R 2 2ar cos θ (.55) r = R θ V =0 0 (.55) (.52) b<r Poisson q q q Coulomb F = 4πɛ 0 qq (a b) 2 = 4πɛ 0 qr a(a R 2 /a) 2 = 4πɛ 0 qra (a 2 R 2 ) 2 (.56) 3

17 Separation of Variables Laplace Schrödinger V σ Laplace V (x, y, z) V (x, y, z) =X(x)Y (y)z(z) (r, θ, φ) V (r, θ, φ) =R(r)Y (θ, φ) Sec..3. Sec Cartesian Coordinates.2 xz y =0 y = a x =0 z V 0 (y).2: : z V z x, y Laplace 2 V x V =0 (.57) y2 Laplace (i) V =0 when y =0 (ii) V =0 when y = a (iii) V = V 0 (y) when x =0 (iv) V 0 as x (.58) (iv) 0 Laplace V (x, y) =X(x)Y (y) (.59) 4

18 (.58) (.59) (.59) (.59) Lapalce (.57) V = XY Y d2 X dx 2 d 2 X X dx 2 + Y + X d2 Y =0 (.60) dy2 d 2 Y =0 (.6) dy2 x y f(x)+g(y) =0 (.62) f g (.6) d 2 X X dx 2 = C, Y d 2 Y dy 2 = C 2, C + C 2 =0 (.63) C,C 2 C > 0,C 2 < 0 C = k 2 = C 2 k>0 d 2 X dx 2 = k2 X, d 2 Y dy 2 = k2 Y (.64) X(x) =Ae kx + Be kx, Y(x) =C sin ky + D cos ky (.65) V V (x, y) =(Ae kx + Be kx )(C sin ky + D cos ky) (.66) (iv) x X 0 A =0 (i) Y (0) = 0 D =0 (ii) Y (a) =C sin ka =0 sin ka =0 k k = nπ a, (n =, 2, 3 ) (.67) n =0 (.68) k =0 y V =0 k n BC C V (x, y) =Ce kx sin ky (.68) k (.67) C > 0,C 2 < 0 C < 0,C 2 > 0 Laplace (.66) x y V (x, y) =(Asin kx + B cos kx)(ce ky + De kx ) (.69) (iii) x V =0 (i) (ii) V (x, 0) = V (x, a) =0 C > 0,C 2 < 0 5

19 Laplace (.68) k (.67) (.68) V n (x, y) =e nπx/a sin(nπy/a), (n =, 2, 3, ) (.70) (iii) V 0 (y) sin(nπy/a) n V 0 (y) (.68) Laplace V,V 2 2 (α V + α 2 V 2 )=α 2 V + α 2 2 V 2 (.7) α, α 2 Laplace Laplace V,V 2,V 3, V = α V + α 2 V 2 + α 3 V 3 + Laplace α, α 2, 2 V = 2 (α V + α 2 V 2 + α 3 V 3 + )=α 2 V + α 2 2 V 2 + α 3 2 V 3 + =0 (.72) (.68) V (x, y) = C n e nπx/a sin(nπy/a) (.73) n= (i),(ii),(iv) C n (iii) V (0,y)= C n sin(nπy/a) =V 0 (y) (.74) n= (.74) V 0 (y) Fourier 2 Fourier (.73) C n V 0 (y) C n Griffith Fourier s trick ) (.74) sin(n πy/a) n 0 a a a C n sin(nπy/a)sin(n πy/a)dy = V 0 (y)sin(n πy/a)dy (.75) n= 0 (.75) a 0, (n n) sin(nπy/a)sin(n πy/a)dy = (.76) 0 a 2, (n = n) n n = n (.75) =(a/2)c n C n = 2 a a 0 0 V 0 (y)sin(nπy/a)dy (.77) V 0 (y) Laplace V 0 y x =0 (.77) C n = 2V 0 a a 0 sin(nπy/a)dy = 2V 0 ( cos nπ) = nπ 6 0, (n ) 4V 0 nπ (n ) (.78)

20 (.73) V (x, y) = 4V 0 π n=,3,5, n e nπx/a sin(nπy/a) (.79).3.4 (.79) x =0 Fourier n = n = V/V x/a y/a.3: V (x, y).2 V / V y / a.4: V (0,y) Fourier (.79 sin x =Im ( e ix) (.79) ( ) { } 4V 0 V (x, y) =Im π n e nπx/a e inπy/a 4V 0 =Im [e π( x+iy)/a] n π n n=,3,5, ln( + z) =z 2 z2 + 3 z2 + = n=,3,5, ( ) n zn n n= (.80) (.8) 7

21 n=,3,5, n zn = +z ln 2 z [ ] 2V0 +eπ( x+iy)/a V (x, y) =Im ln π e π( x+iy)/a u, v Im [ln(u + iv)] = tan (v/u) (.82) (.83) +e π( x+iy)/a e = [ + eπ( x+iy)/a ][ e π( x iy)/a ] π( x+iy)/a [ e π( x+iy)/a ][ e π( x iy)/a ] = +2ie πx/a sin(πy/a) e 2πx/a 2e πx/a cos(πy/a)+e 2πx/a = sinh(πx/a)+i sin(πx/a) cosh(πx/a) cos(πy/a) Im [ln ] eπ( x+iy)/a +e π( x+iy)/a V (x, y) = 2V 0 π tan [ ] sin(πx/a) = tan sinh(πx/a) [ ] sin(πy/a) sinh(πx/a) (.84) (.85) (.86).3 {f n } f n(x)f m (x)dx =0 (n m) (.87) {f n } {f n } ψ(x) {f n } f n(x)f m (x)dx = δ nm (.88) ψ(x) = n c n f n (x) (.89) {f n } {f n } c n (.89) f m (.88) fm(x)ψ(x)dx = c n fm(x)f n (x)dx = c m (.90) n (.89) [ ] ψ(x) = fn(x )f n (x) ψ(x )dx (.9) n ψ(x) fn(x )f n (x) =δ(x x ) (.92) n (.92) 8

22 Spherical Coordinates.5: Laplace 2 V = ( r 2 r 2 V ) + r r x = r cos φ sin θ, y = r sin φ sin θ, z = r cos θ (.93) r 2 sin θ ( sin θ V ) + θ θ r 2 sin 2 θ 2 V =0 (.94) φ2 (.94) z V φ Laplace r 2 ( r 2 V ) + r r r 2 sin θ (.96) (.95) V ( d r 2 dr ) + R dr dr Θ sin θ d R dr ( sin θ V ) =0 (.95) θ θ V (r, θ) =R(r)Θ(θ) (.96) d dθ ( r 2 dr ) = dr Θ sin θ ( sin θ dθ ) =0 (.97) dθ ( d sin θ dθ ) dθ dθ (.98) r θ l(l + ) ( d r 2 dr ) = l(l + ), R dr r ( d sin θ dθ ) = l(l + ) (.99) Θ sin θ dθ dθ R d R dr ( r 2 dr ) = l(l + ) (.00) dr 9

23 R = Ar l + B r l+ (.0) A, B A, B (.0) (.00) r 2 dr dr = r2 [lar r (l + ) B r l+2 ]=larl+ (l + ) B r l (.02) ( d r 2 dr ) = d [lar l+ (l + ) Br ] dr dr dr = l(l + )Ar l + l(l + ) B = l(l + )R rl+ (.03) ( d sin θ dθ ) = l(l + ) (.04) Θ sin θ dθ dθ l 0 θ 2π Legendre Θ(θ) =P l (cos θ) (.05) Legendre φ 2 Legendre Legendre Rodorigues Legendre P l (x) = ( ) l d 2 l (x 2 ) l (.06) l! dx P 0 (x) = P (x) =x P 2 (x) =(3x 2 )/2 P 3 (x) =(5x 3 3x)/2 P 4 (x) = (35x 4 30x 2 + 3)/8 P 5 (x) = (63x 5 70x 3 + 5x)/8 (.07) P l (x) x l l l (.06) (/2 l l!) P l () = Legendre P l (x) x P l (x)p l (x)dx = π Laplace ( V (r, θ) = Ar l + 0 P l (cos θ)p l (cos θ)sinθdθ = 2 2l + δ ll (.08) B r l+ ) P l (cos θ) (.09) (.09) V (r, θ) = l=0 ( A l r l + B ) l r l+ P l (cos θ) (.0) A l Legendre (.08) 20

24 Example 3.6 () R V 0 (θ) r =0 (.0) l B l =0 V (r, θ) = V (R, θ) = A l r l P l (cos θ) (.) l=0 A l R l P l (cos θ) =V 0 (θ) (.2) l=0 Legendre A l V 0 (θ) A l (.2) P l (cos θ)sinθ θ π A l R l dθ sin θp l (cos θ)p l (cos θ) = l=0 Legendre (.08) 0 A l R l 2Rl 2l + = A l = 2l + 2R l π π (.) 0 0 π 0 dθ sin θp l (cos θ)v 0 (θ) (.3) V 0 (θ)p l (cos θ)sinθdθ (.4) V 0 (θ)p l (cos θ)sinθdθ (.5) V 0 (θ) =k sin 2 (θ/2) (.6) sin 2 (θ/2) = ( cos θ)/2 P 0 (x) =,P (x) =x (.6) V 0 (θ) = k 2 ( cos θ) =k 2 [P 0(cos θ) P (cos θ)] (.7) A l (.5) Legendre (.08) A 0 = k 2, A = k 2R, A l =0(l 0, ) (.8) (.) V (r, θ) = k [ P 0 (cos θ) ] 2 R P (cos θ) = k ( R ) 2 cos θ (.9) Example 3.7 (2) R V 0 (θ) 0 r V =0 l A l =0 B l V (r, θ) = r l+ P l(cos θ) (.20) l=0 2

25 V (R, θ) = (.2) P l (cos θ)sinθ θ B l = 2l + 2 l=0 (.20) B l R l+ P l(cos θ) =V 0 (θ) (.2) π R l+ V 0 (θ)p l (cos θ)sinθdθ (.22) 0 Example 3.8 E = E 0 ẑ R.6 z z.6: V (R, θ) =V 0 E = E 0 ẑ V E 0 z + C (.23) C xy V (z = 0) 0 C =0 3 (i) V = V 0 when r = R (ii) V E 0 r cos θ for r R (iii) 0 (.24) (iii) (i)-(iii) (.0) A l,b l 3 Griffiths V 0 =0 xy 0 xy C = V 0 =0 V 0 22

26 (ii) r B l A l r l P l (cos θ) = E 0 r cos θ (.25) l=0 P (x) =x (.25) A l r l P l (cos θ) = E 0 rp (cos θ) (.26) l=0 P l (cos θ)sinθ θ l = l (i) V (R, θ) = A = E 0, A l =0(l ) (.27) l=0 Legendre B 0 ( A l R l + B ) l R l+ P l (cos θ) =V 0 (.28) R = V 0, A l R l + B l =0(l 0) (.29) Rl+ (.27) A 0 =0 (.27) B 0 = RV 0, B = A R 3 = E 0 R 3, B l =0(l 0, ) (.30) (.27) (.30) (.0) V (r, θ) = RV 0 r ( ) E 0 r R3 r 2 cos θ (.3) (iii) V 0 ) V σ(θ) = ɛ 0 RV 0 r = ɛ 0 r=r r 2 + ɛ 0 E 0 (+2 R3 r 3 cos θ V 0 = ɛ 0 r=r R +3ɛ 0E 0 cos θ (.32) da =2πR 2 π sin θdθ (.32) 0 Q = daσ =4πRɛ 0 V 0 (.33) Q =0 V 0 =0 ( ) V (r, θ) = E 0 r R3 r 2 cos θ (.34) σ(θ) ==3ɛ 0 E 0 cos θ (.35) (0 θ π/2) (π/2 θ π) (.34) V = V ex + V sphere V ex = E 0 r cos θ, V sphere = E 0 R 3 cos θ (.36) r2 V ex V sphere 23

27 Q (.3) V (r, θ) = Q ) 4πɛ 0 r E 0 (r R3 r 2 cos θ (.37) Q Laplacian (.93) Laplacian 2 V = r 2 ( r 2 V ) + r r r 2 sin θ gradient ( sin θ V ) + θ θ 2 V r 2 sin 2 θ φ 2 (.38) V = V r ˆr + V r θ ˆθ + V r sin θ φ ˆφ (.39) ˆr, ˆθ, ˆφ r, θ, φ ˆr = ˆθ = r r r r r θ r θ = cos φ sin θˆx +sinφsin θŷ + cos θẑ (.40) = cos φ cos θˆx +sinφcos θŷ sin θẑ (.4) ˆφ = r φ r φ (.39) V/ r = sin φˆx + cos φŷ (.42) V r = V x x r + V y y r + V z r = V z r r (.43) (.40) V r r/ r = = V ˆr r r = V ˆr (.44) V θ = V x x θ + V y y θ + V z r = V z θ θ (.45) (.4) r/ θ = r V θ = V ˆθ r θ = r V ˆθ (.46) V φ = V x x φ + V y y φ + V z z r = V φ φ (.47) (.42) r/ φ = r sin θ V = V ˆφ r φ φ = r sin θ V ˆφ (.48) ˆr, ˆθ, ˆφ V =( V ˆr)ˆr +( V ˆφ)ˆφ +( V ˆθ)ˆθ (.49) 24

28 (.44),(.46),(.48) (.39) Laplace = ˆr r + ˆθ r θ + ˆφ r sin θ φ (.50) 2 V = V (.5) (.50) 2 V = ( ˆr r + ˆθ r = 2 V r 2 + r V θ θ + ˆφ r sin θ ) ( V φ 2 V φ 2 + V r ) + 2 V r 2 θ 2 + r 2 sin 2 θ ( r ˆθ ˆθ θ + r sin θ ˆφ ˆθ φ r ˆr + V r θ ˆθ + ) V r sin θ φ ˆφ ( r ˆθ ˆr θ + r sin θ ˆφ ˆr ) φ + V r sin θ φ ( r ˆθ ˆφ θ + r sin θ ˆφ ˆφ φ ) (.52) (ˆr, ˆθ, ˆφ) r 0 (.40)-(.42) (.52) = 2 V r 2 = r 2 r (.38) ˆθ ˆr θ =, ˆθ ˆθ θ =0, ˆθ ˆφ θ =0, ˆr ˆφ =sinθ (.53) φ ˆθ ˆφ = cos θ (.54) φ ˆφ ˆφ φ + 2 V r 2 θ V r 2 sin 2 θ φ V r r + ( r 2 V ) ( + r r 2 sin θ V ) + sin θ θ θ =0 (.55) cos θ V r 2 sin θ θ 2 V r 2 sin 2 θ φ 2 (.56) Ledengre V V (r, θ, φ) =Y (θ, φ)r(r) (.57) Y (θ, φ) [ ( sin θ ) + 2 ] V sin θ θ θ sin 2 θ φ 2 Y (θ, φ) = l(l + )Y (θ, φ) (.58) Y (θ, φ) =Θ(θ)Φ(φ) (.59) d 2 Φ Φ dφ 2 = Θ sin θ d ( sin θ dθ ) + l(l + ) sin 2 θ (.60) dθ dθ 25

29 φ θ m 2 Φ Θ Φ sin θ ( d sin θ dθ dθ dθ Φ φ m d 2 Φ dφ 2 = m2 Φ(φ) (.6) ) ] + [l(l + ) m2 Θ =0 (.62) sin 2 θ Φ(φ) =e ±imφ (.63) Φ(φ +2pi) =Φ(φ) e im(φ+2π) = e im(φ) (.64) Θ θ z = cos θ m =0, ±, ±2, (.65) Θ(θ) =P (cos θ) =P (z) (.66) dz = sin θdθ P [ d ( z 2 ) dp ] ] + [l(l + ) m2 dz dz z 2 P =0 (.67) Legendre z m =0 P (z) [ d ( z 2 ) dp ] + l(l + )P =0 (.68) dz dz Legendre Legendre (.68) P (z) =z α j=0 a j z j (.69) { (α + j)(α + j )aj z α+j 2 [(α + j)(α + j + ) l(l + )] a j z α+j} =0 (.70) j=0 z z z 0 ( ) z α 2,z α 0 α(α )a 0 =0 (.7) (α + )αa =0 (.72) a 0 0 α =0 α = (.73) a 0 α =0 α = (.74) 26

30 a j+2 = [ ] (α + j)(α + j + ) l(l + ) a j (.75) (α + j + )(α + j + 2) (.73) (.74) a 0 a 0 a 0 0,a =0 α α =0 α = (.76) (.75) α =0 α = α =0, α = (i)l z 2 < (ii) z = ± l =0, α = a 0 = P (z) =z + 3 z3 + 5 z5 + (.77) Q 0 (z) = 2 ln +z z (.78) z = ± l z = ± z (.75) j = j max 0 (α + j max )(α + j max + ) = l(l + ) (.79) j j max a j =0 α j max 0 l 0 (.79) α =0 j max = l α = j max = l P (z) z l Legendre P l (z) Legendre P 0 (z) = P (z) =z P 2 (z) =(3z 2 )/2 P 3 (z) =(5z 3 3z)/2 P 4 (z) = (35z 4 30z 2 + 3)/8 P 5 (z) = (63z 5 70z 3 + 5z)/8 (.80) P l (z) z l l l P l () = Legendre Rodorigues (.8) (/2 l l!) P l () = Legendre P l (z) z P l (z)p l (z)dx = P l (z) = ( ) l d 2 l (z 2 ) l (.8) l! dz π 0 P l (cos θ)p l (cos θ)sinθdθ = 2 2l + δ ll (.82) 27

31 m 0 Legendre (.67) Legendre (m = 0) n l, m ()l 0 (2)m l, l +,, 0,,l,l Legendre Pl m (z) m >0 Pl m (z) =( ) m ( z 2 m/2 dm ) dz m P l(z) = ( )m 2 l l! ( z 2 m/2 dl+m ) dz l+m (z2 ) l (.83) (.67) m 2 m Pl m (z) = P m l (z) m Legendre Pl m (z)pl m (z)dz = 2 2l + (l + m)! (l m)! δ ll (.84) Y lm (θ, φ) =( ) (m+ m )/2 (2l + )(l m )!4π(l + m )!P m l (cos θ)e imφ (.85) l =0,, 2,, m = l, l +,,l,l (.86) Y ml π 0 sin θdθ 2π l =0,, 2 l =0 : Y 00 = 4π 0 dφy l m (θ, φ)y lm(θ, φ) =δ ll δ mm (.87) 3 3 l = : Y ± = 8π sin θe±iφ, Y 0 = 4π cos θ 5 l =2 : Y 2±2 = 32π sin2 θe ±2iφ, Y 2± = 5 Y 20 = 6π (3 cos2 θ ) 5 sin θ cos θe±iφ 8π (.88) 28

32 Multipole Expansion Approximate Potential at Large Distance V Q/4πɛ 0 r Q 0 Example ±q d (electric dipole) +q d/2 θ r + r d/2 q r.7: +q r +, q r V (r) = ( q q ) 4πɛ 0 r + r ( r ± = r 2 +(d/2) 2 rd cos θ = r 2 d ) d2 cos θ + r 4r 2 r d (d/r) 2 ( d ) /2 r ± r r cos θ ( ± d2r ) r cos θ (.89) (.90) (.9) d cos θ (.92) r + r r2 V (r) qd cos θ (.93) 4πɛ 0 r2 29

33 .8: /r 2 /r monopole quadrupole /r 3 octopole /r 4.8 z z P P r r ẑ r r r q r θ r q r (a) (b).9: z q. 4.9(a) z r q r P r >r r θ V (r, θ) = q 4πɛ 0 n=0 r n r n+ P n(cos θ) (.94) z φ Laplace φ 4 Griffiths 30

34 (.0) 0 A n =0 B n V (r, θ) = r n+ P n(cos θ) (.95) n=0 B n P z θ =0 Legendre P n () = r r = r (.99) (.96) V (r, 0) = V (r, 0) = V (r, 0) = n=0 B n r n+ (.96) q 4πɛ 0 r r (.97) ) ( r = r r q 4πɛ 0 r ( ) r n (.98) n=0 r ( ) r n (.99) B n = qr n 4πɛ 0 (.200) (.200) (.96) θ (.94) n=0 r P q r θ rr r.20: q z (.94).20 P r q r θ rr P V (r) = q 4πɛ 0 V (r) = n=0 r n r n+ P n(cos θ rr ) (.20) q 4πɛ 0 r r ( r r ) r>r 5 (.202) r r = r n r n+ P n(cos θ rr ) (.203) n=0 5 (.203) Legendre r r =(r 2 + r 2 2rr cos θ rr ) /2 r /r (.203) P (cos θ rr ) r r Legendre 3

35 P r r dτ r r θ rr.2: ρ(r) ρ(r).2 r V (r) = 4πɛ 0 (.203) V (r) = 4πɛ 0 n=0 r n+ r r ρ(r )dτ (.204) r n P n (cos θ rr )ρ(r )dτ (.205) [ V (r) = ρ(r )dτ + 4πɛ 0 r r 2 + r 3 r 2 ( 3 2 cos2 θ rr 2 r cos θ rr ρ(r )dτ ) ] ρ(r )dτ + (.206) (.205) /r multipole expansion (n = 0) (monopole) ( /r) (n = ) (dipole) ( /r 2 ) (n = 2) (quadrupole) ( /r 3 ) (n = 3) (octopole) ( /r 4 ) The Monopole and Dipole Terms (.205) V mon (r) = Q 4πɛ 0 r (.207) Q = ρdτ (.207) V dip (r) = 4πɛ 0 r 2 r cos θ rr ρ(r )dτ (.208) 32

36 r cos θ rr = ˆr r V dip (r) = 4πɛ 0 r ˆr 2 r ρ(r )dτ (.209) p r ρ(r )dτ (.20) (.209) V dip (r) = 4πɛ 0 p ˆr r 2 = 4πɛ 0 p r r 3 (.2).22: N ρ(r) = N i= q iδ(r r i ) r i i (.20) p = N q i r i (.22).22 ±q i= p = qr + qr = q(r + r )=qd (.23) d = r + r (.2) V dip (r) = 4πɛ 0 qd ˆr r 2 = 4πɛ 0 qd cos θ r 2 (.24) θ d r (.93) (.93) (.2) pure dipole p = qd d The Electric Field of a Dipole (.2) E dip = V dip = ( ) p r 4πɛ 0 r 3 = [ ( )] (p r) 4πɛ 0 r 3 + p r r 3 (.25) 33

37 (p r) = (p x x + p y y + p z z)=p (.26) ( ) r 3 = [(x 2 + y 2 + z 2 ) 3/2 ]= 3r r 5 (.27) E dip = [3(p ˆr)ˆr p] (.28) 4πɛ 0 r3 p z V dip = E dip (r, θ) = ˆr p 4πɛ 0 r 2 = p cos θ 4πɛ 0 r 2 (.29) E r = V 2p cos θ = r 4πɛ 0 r 3 (.220) E θ = V r θ = p sin θ 4πɛ 0 r 3 (.22) E φ = V =0 r sin θ φ (.222) p 4πɛ 0 r 3 (2 cos θˆr +sinθˆθ) (.223) /r 3 /r 2 /r 4 /r 5 /r /r 2 /r 3 /r 4.23:.23(a) p ẑ.23(b) r d 34

38 2 Chapter 4 Electric Fields in Matter Polarization Dielectrics conductors insulators) dielectrics 2..2 Induced Dipoles E atomic polarization E p p = αe (2.) α atomic polarizability 2. H He Li Be C Ne Na Ar K Cs α/4πɛ 0 [0 30 m 3 ] Handbook of Chemistry and Physics, 79th ed. (Boca Raton: CRC Press, Inc., 997) Example 4. 2.(a) +q a q 35

39 (a) (b) 2.: 2.(b) d Prob.2.2 q q E e = 4πɛ 0 qd a 3 (2.2) E qe e = qe E = 4πɛ 0 qd a 3 (2.3) p = qd =(4πɛ 0 a 3 )E (2.4) α =4πɛ 0 a 3 (2.5) Bohr a 0 = m a a 0 α/4πɛ 0 = m 3 (2.6) CO 2 α = C 2 m/n α = C 2 m/n p = α E + α E (2.7) E E p E p x = α xx E x + α xy E y + α xz E z p y = α yx E x + α yy E y + α yz E z (2.8) p z = α zx E x + α zy E y + α zz E z 36

40 α ij α ij principal axis α xy, α yz, α xx, α yy, α zz 2.2: CO Alignment of Polar Molecules 2.3: H 2 O p 2.3 p = C m polar moleculde 2.4 ±q F + = qe(r + ) F = qe(r ) F = q[e(r + ) E(r )] (2.9) r ± ±q r ± = ±d/2 E F + = qe F = qe F =0, N =(r + F + )+(r F )=[(d/2) (qe)] + [( d/2) ( qe)] = qd E (2.0) 37

41 2.4: E p = qd N = p E (2.) N p E F + F (2.9) F = q[e(r + ) E(r )] = q(e + E ) (2.2) E ± = E(r ± )=E(±d/2) d E + E (d )E (2.3) F =(p )E (2.4). E ρ(r) F = ρ(r)e(r)dτ (2.5) ρ 0 E E(r) E(0) + (r )E (2.6) F = E(0) [( ρ(r)dτ + ) ] rρ(r)dτ E = QE(0) + (p )E (2.7) F =(p )E ( ) N = r ρ(r )Edτ = r ρ(r )dτ E = p E (2.8) (2.4) F = (p E) r (p )p 38

42 E(r) ρ(r) U = ρ(r)v (r)dτ (2.9) V V (r) V (0) + r V (2.20) U V (0) ρ(r)dτ + V rρ(r)dτ = QV (0) p E(0) (2.2) U = p E (2.22) p 2 r p 2.5: p p 2 r p p 2 (.28) (2.22) - E = 4πɛ 0 r 3 [3(p ˆr)ˆr p ] (2.23) U = 4πɛ 0 r 3 [p p 2 3(p ˆr)(p 2 ˆr)] (2.24) Polarization

43 E E =0 2.6: E E =0 2.7: polarization P (2.25) dielectric polarization N p i (i =, 2, N) V P N i= P = p i (2.26) V (freeze in) Sec.2.2 Sec.2.3 P P 40

44 The Field of a Polarized Object Bound Charges P r r r O r p V 2.8: P = r p r V (r) = 4πɛ 0 (r r ) p r r 3 (2.27) 2.8) dτ p = Pdτ (2.28) V (r) = 4πɛ 0 ( ) r r = r r r r 3, ( ) P r r V (r) = 4πɛ 0 ( A)dτ = A da V (r) = 4πɛ 0 r r P da 4πɛ 0 S V V (r r ) P r r 3 dτ (2.28) ( ˆx x + ŷ y + ẑ ) z (2.29) ( ) P r r dτ (2.30) ( ) ( ) = P r r + r r P (2.3) V r r ( P)dτ (2.32) σ b = P ˆn (2.33) 4

45 ρ b = P (2.34) V (r) = 4πɛ 0 S σ b r r da + 4πɛ 0 V ρ b r r dτ (2.35) P O r r r ρ b r dτ V r da S r r σ b 2.9: (2.35) σ b ρ b (2.33),(2.34) bound charges polarization charge (2.28) ρ b, σ b Gauss Example 4.2 R 2.0: 42

46 2.0 z P ρ b σ b = P ˆn = P cos θ (2.36) θ.3.2 Griffiths Ex.3.9 V (r, θ) = P 3ɛ 0 r cos θ, P R 3 cos θ, 3ɛ 0 r2 for P P r, 3ɛ 0 V (r, θ) = P ˆr R 3 3ɛ 0 r 2, for r R r R for r R for r R (2.37) (2.38) E = V = 3ɛ 0 P, for r<r (2.39) p 2. V = p ˆr, for r R (2.40) 4πɛ 0 r2 p = 4 3 πr3 P (2.4) 2.: 43

47 2.2.2 Physical Interpretation of Bound Charges +q q ±q 2.2: (a) (b) 2.3: P σ b 2.3 P 2.3(a) d, A p = P (Ad) ±q d p = qd q = PA (2.42) σ b = q A = P (2.43) 2.3(b) A end A = A end cos θ σ b = q A end = P cos θ = P ˆn (2.44) (2.33) 44

48 p p p 2 q +q q +q q 2 +q 2 q 2 +q 2 q = q q 2 p 2 2.4: 2.5: P 2.4 P ρ b A d P P 2 q =(P P 2 )A (2.45) Ad ρ = q Ad = P P 2 d (2.46) d 0 x ρ = P x x (2.47) 2.6 (2.47) ρ = P (2.48) ρ b (2.34) 45

49 2.6: S P V 2.7: ρ b σ b σ b da + ρ b dτ =0 (2.49) S V σ b = P ˆn σ b da = P ˆnda = P da (2.50) S S S (2.50) σ b da = ( P)dτ (2.5) S V ρ b = P (2.49) 46

50 Example 4.3 R Example 4.2 q q 2.8 z z d σ b 2.8: ρ r 0 E(r) = ρ 3ɛ 0 (r r 0 ) (2.52) r + r q q q E(r) = 4πR 3 (r r + ) /3 3ɛ 0 4πR 3 (r r )= /3 3ɛ 0 4πR 3 (r r + )= qd /3 3ɛ 0 4πɛ 0 R 3 (2.53) p = qd =( 4 3 πr3 )P E = 3ɛ 0 P (2.54) ±q V = 4πɛ 0 p ˆr r 2 (2.55) 47

51 The Electric Displacement 2.3. Gauss 4.3. Gauss s Law in the Presence of Dielectrics ρ b = P σ b = P ˆn free charge true chage) ρ = ρ b + ρ f (2.56) E Gauss ɛ 0 E = ρ = ρ b + ρ f = P + ρ f (2.57) (2.57) P divergence electric displacement Gauss (ɛ 0 E 0 + P) =ρ f (2.58) D ɛ 0 E + P (2.59) D = ρ f (2.60) Gauss D da = Q fenc (2.6) S Q fenc = V ρ f dτ Gauss ρ f ρ b (2.60) σ b ρ b Gauss (2.6) Example 4.4 : 2.9 λ a D 2.9 Gauss s L Gauss (2.6) D(2πsL) =λl (2.62) D = λ 2πsŝ (2.63) P =0 2.9: E = D = λ for s>a (2.64) ɛ 0 2πɛ 0 sŝ, P 48

52 A Deceptive Parallel (2.60) Gauss ρ ρ f ɛ 0 E D D E D Coulumb D(r) r r 4π r r 3 ρ f (r )dτ (2.65) 2.20: D E A A A E =0 Gauss E = ρ/ɛ 0 D D = ɛ 0 ( E)+( P) = P (2.66) P P = P P P dl 0 Stokes P 0 P D 0 D Gauss (2.6) D P =0 D D Boundary Conditions D above σ f σ f Dabove D below D below 2.2: 2.22: E Griffiths Sec E above E below = ɛ 0 σ (2.67) E above E below =0 (2.68) D above = ɛe above + P above (2.69) 49

53 D below = ɛe below + P below, (2.70) (2.67) (2.68) D Dabove Dbelow = ɛ(eabove Ebelow)+P above Pbelow (2.7) (2.67) D above D below = σ + P above P below (2.72) P above = P above ˆn above = σ b,above (2.73) Pbelow = P above ˆn below = σ b,below (2.74) ˆn above, ˆn below σ b,above, σ b,below σ b = σ b,above + σ b,below Pabove Pbelow = (σ b,above + σ b,below )= σ b (2.75) D above D below = σ σ b (2.76) σ = σ b + σ f Dabove Dbelow = σ f (2.77) D above D below = ɛ 0(E above E below )+P above P below (2.78) (2.68) D above D below = P above P below (2.79) Gauss 2.2 Gauss Gauss (2.6) D da = Q fenc = σ f A (2.80) S ɛ 0 (2.77) 2.22 D E dl D dl = ɛ 0 E dl + ɛ 0 (2.79) P dl = P dl (2.8) Linear Dielectrics Susceptibility, Permittivity, Dielectric Constant D Guass Gauss 50

54 P P = ɛ 0 χ e E (2.82) χ e electric susceptibility χ e (2.82) linear dielectrics (2.82) E E 0 P (2.82) E 0 P E ρ f D D D = ɛ 0 E + P = ɛ 0 E + ɛ 0 χ e E = ɛ 0 ( + χ e )E (2.83) D E ɛ D = ɛe (2.84) ɛ = ɛ 0 ( + χ e ) (2.85) (permittivity) χ e =0 ɛ = ɛ 0 ɛ 0 (2.85) ɛ 0 ɛ r =+χ e = ɛ ɛ 0 (2.86) (relative permittivity) (dielectric constant) Material Dielectric Constant Material Dielectric Constant Vacuum Benzene 2.28 Helium Diamond 5.7 Neon.0003 Salt 5.9 Hydrogen Silicon.8 Argon Methanol 33.0 Air (dry) Water 80. Nitrogen Ice ( 30 C) 99 Water vapor (00 C) KTaNbO 3 (0 C) 34, C Handbook of Chemistry and Physics, 79th ed. (Boca Raton: CRC Press, Inc., 997) 5

55 Example 4.5 : 2.23 a Q b ɛ 2.23: Gauss (2.6) D E = D = E = P = D =0 (2.84) E Q 4πɛr ˆr, 2 for a<r<b Q ˆr (r >a) (2.87) 4πr2 Q 4πɛ 0 r 2 ˆr, for r>b (2.88) V = = Q 4π 0 E dl = b ( ɛ 0 b + ɛa ɛb ( Q 4πɛ 0 r ) 2 ) dr a b ( ) Q 4πɛr 2 dr 0 a (0)dr (2.89) E P = ɛ 0 χ e E = ɛ 0χ e Q ˆr (2.90) 4πɛr2 ρ b = P =0 (2.9) ɛ 0 χ e Q 4πɛb 2 = χ e Q 4π( + χ e )b 2 σ b = P ˆn = ɛ 0χ e Q 4πɛ 0 a 2 = χ e Q 4π( + χ e )a 2 (2.92) /4πɛ 0 (Q/r 2 ) /4πɛ(Q/r 2 ) a<r<b a<r<b 52

56 2.24: Q b = χ e +χ e Q (2.93) Q b Q a Q Q b =/( + χ e )Q =(ɛ 0 /ɛ)q b Q b 2.24 r >b Q a <r<b Q Q b =(ɛ 0 /ɛ)q (2.88) E D D E D =0 D = ɛ(r)e = ɛ(r)( E)+ ɛ(r) E = ɛ(r) E (2.94) 2.20 D 0 ɛ Guass D = ɛ( E) =0 (2.95) D = ɛ E = ρ f (2.96) ρ f E vac E vac ɛ 0 ɛ 2.25: E = ɛ 0 ɛ E vac = ɛ r E vac (2.97) 53

57 q E = q ˆr (2.98) 4πɛ r Example 4.6 ɛ r 2.26: /ɛ r V /ɛ r C = Q/V C = ɛ r C vac (2.99) (2.82) P x = ɛ 0 (χ exx E x + χ exy E y + χ exz E z ) P y = ɛ 0 (χ eyx E x + χ eyy E y + χ eyz E z ) P z = ɛ 0 (χ ezx E x + χ ezy E y + χ ezz E z ) (2.00) χ exx, χ exy, susceptibility tensor (2.82) isotropic 54

58 Boundary Value Problems with Linear Dielectrics ρ b ( χ ) e ρ b = P = ɛ 0 ɛ D = ( χe +χ e ) ρ f (2.0) ρ f 2 ρ b =0 ρ = ρ f + ρ b =0 Laplace Laplace (2.77) ɛ above E above ɛ below E below = σ f (2.02) ɛ above V above n ɛ below V below n = σ f (2.03) V above = V below (2.04) Example R E 0 Chapter 3 Example 3.8 E 0 0 E 0 V in (r, θ) (r R) V out (r, θ)(r R) Laplace (i)v in = V out, at r = R (ii)ɛ V in V out = ɛ 0 r r, at r = R (iii)v out E 0 r cos θ, for r R (2.05) 2.27: (ii) (2.03) σ f =0 Laplace V in (r, θ) = A l r l P l (cos θ) (2.06) l=0 2 σ b χ e 55

59 (iii) V out (r, θ) = E 0 r cos θ + (i) A l B l 3 l=0 l=0 B l r l+ P l(cos θ) (2.07) A l R l B l P l (cos θ) = E 0 R cos θ + R l+ P l(cos θ) (2.08) l=0 A l R l = B l R l+, A = E 0 R + B R 2 for l (ii) ɛ r la l R l = (l + )B l R l+2, for l ɛ r A = E 0 2B R 3 A l = B l =0, for l, A = 3 ɛ r +2 E 0, B = ɛ r ɛ r +2 R3 E 0 (2.09) (2.0) (2.) V in (r, θ) = 3E 0 ɛ r +2 r cos θ = 3E 0 ɛ r +2 z (2.2) E = 3 ɛ r +2 E 0 (2.3) Example xy z <0 ɛ = ɛ 0 ( + χ e ) d (0, 0,d) q xy E σ b σ b (x, y) =P ˆn = P z = ɛ 0 χ e E z (x, y, 0 ) (2.4) E z (x, y, 0 ) z =0 z 0 q 2.28: 3 P (cos θ) =cosθ l Legendre V in V out 56

60 Coulomb q (x, y, 0) z z E (x, y) = qd (2.5) 4πɛ 0 (x 2 + y 2 + d 2 ) 3/2 E (x, y) = σ b(x, y) 2ɛ 0 (2.6) E(x, y, 0 )=E (x, y)+e (x, y) = qd 4πɛ 0 (x 2 + y 2 + d 2 ) σ b(x, y) (2.7) 3/2 2ɛ 0 (2.4) [ σ b = ɛ 0 χ e qd 4πɛ 0 (x 2 + y 2 + d 2 ) σ ] b 3/2 2ɛ 0 (2.8) σ b σ b (x, y) = 2π ( χe ) χ e +2 qd (x 2 + y 2 + d 2 ) 3/2 (2.9) q σ b Coulumb σ b z>0 (0, 0, d) q b = (χ e /χ e + 2)q 2.29(b) z <0 (0, 0,d) q b 2.29(c) (a) (b) (c) 2.29: (a) (b)z >0 (0, 0, d) q b (c)z <0 (0, 0,d) q b [ ] V above (x, y, z) = q 4πɛ 0 x2 + y 2 +(z d) + q b 2 x2 + y 2 +(z + d) 2 (z >0) (2.20) 57

61 [ ] V below (x, y, z) = q + q b 4πɛ 0 x2 + y 2 +(z d) 2 (z <0) (2.2) z =0 (i) V above (x, y, 0) = V below (x, y, 0) V above (ii) ɛ 0 z = ɛ V below (2.22) z=0 z z=0 (i) (ii) V above z = z=0 { } q(z d) 4πɛ 0 [x 2 + y 2 +(z d) 2 ] + q b (z + d) = 3/2 [x 2 + y 2 +(z + d) 2 ] z=0 d (q q b ) 3/2 4πɛ 0 (x 2 + y 2 + d 2 ) 3/2 (2.23) = { } (q + q b )(z d) = z=0 4πɛ 0 [x 2 + y 2 +(z d) 2 ] z=0 d (q + q b ) (2.24) 3/2 4πɛ 0 (x 2 + y 2 + d 2 ) 3/2 V below z ( ɛ(q + q b )=ɛ χ e ɛ 0 (q q b )=ɛ 0 ( + χ e χ e +2 (ii) χ e +2 ) ( ) 2 q = ɛ χ e +2 (2.25) ) q =2ɛ 0 χ e + χ e +2 q = ɛ 2 χ e +2 q (2.26) ( Vabove σ b = ɛ 0 z V ) below z=0 z = d [q q b (q + q b )] z=0 4πɛ 0 (x 2 + y 2 + d 2 ) = q bd (2.27) 3/2 2πɛ 0 (x 2 + y 2 + d 2 ) 3/2 dxdyσ(x, y) = q b (2.28) χ e χ e /(χ e + 2) 58

62 Energy in Dielectric Systems W = ɛ 0 2 E 2 dτ (2.29) 2.30 C Q W = 2 CV 2 (2.30) +Q ɛ V V = Q/C W = Q 0 ( q ) dq = Q 2 C 2 C = 2 CV 2 (2.3) Q 2.30: ɛ C = ɛ r C vac W = 2 ɛ rc vac V 2 (2.32) V W = ɛ r W vac (2.33) ɛ r W = ɛ 0 2 ɛ r E 2 dτ = 2 D Edτ (2.34) (2.34) q ɛ 2.3: 59

63 2.3 ρ f ρ f + ρ f W = ( ρ f )Vdτ (2.35) D = ρ f, ρ f = ( D) D D W = [ ( D)]Vdτ (2.36) [( D)V ]=[ ( D)]V +[( D)] V (2.37) W = { [( D)V ] [( D)] V }dτ = { [( D)V ]+[( D)] E}dτ (2.38) { [( D)V ]dτ = ( DV ) da (2.39) D = ɛe W = ( D) Edτ (2.40) 2 (D E) = (ɛe E) =ɛ( E) E =( D) E (2.4) 2 ( W = 2 ) D Edτ (2.42) W = D Edτ (2.43) 2 (2.29) (2.29) (2.43) (2.29) (2.43) (2.43) (2.40) (2.43) (2.4) 60

64 Forces on Dielectrics 2.32 w l d ±Q 2.32: 2.33 (fringing region) 2.33 E (fringing field) W dx dw = Fdx (2.44) F x F = dw dx (2.45) 6

65 Q F Q F 2.33: 2.34: W = 2 CV 2 = Q 2 2 C Q Q 2 F = dw dx = dc 2 C 2 dx = 2 V 2 dc dx (2.46) (2.47) x l x 2.35 C = ɛ 0wx d, C ɛw(l x) 2 = d C = C + C 2 = ɛ 0wx d + ɛ 0ɛ r w(l x) d (2.48) = ɛ 0w d [x + ɛ r(l x)] = ɛ 0w d [ɛ rl +( ɛ r )x] = ɛ 0w d (ɛ rl χ e x) (2.49) dc dx = ɛ 0χ e w (2.50) d F = ɛ 0χ e w 2d V 2 (2.5) x dw/dx V F = 2 V 2 dc dx (2.52) (2.47) (2.44) dw = Fdx+ VdQ (2.53) VdQ F = dw dx + V dq dx = 2 V 2 dc dx + V 2 dc dx = 2 V 2 dc dx (2.54) 62

66 x l x d ɛ : (2.47) Q F =(p )E F = [P(r) ]E(r)dτ (2.55) x F = F ˆx F = (P(r) )E x (r)dτ = (P ) V dτ (2.56) x V x = ( V )= x x E (2.57) F = P ( ) E dτ (2.58) x P = ɛ 0 χ e E P =0 x x = X (2.58) X+l F = ɛ 0 χ e dx X d 0 dy X x X + l, 0 y d, 0 w z (2.59) w x F = ɛ 0χ e 2 0 d 0 dze dy ( ) E = ɛ 0χ e x 2 w 0 X+l X dx d 0 dy w 0 dz x (E2 ) (2.60) dz[e 2 (X + l, y, z) E 2 (X, y, z)] (2.6) 63

67 E = V/d x = X x = X + l E(X, y, z) V/d, E(X + l, y, z) 0 (2.62) F = ɛ 0χ e wd 2 ( ) 2 V = ɛ 0χ e w d 2d V 2 (2.63) (2.58) (2.59) χ e r χ e (r) χ e (r) =χ e Θ(x X)Θ(X + l x)θ(y)θ(d y)θ(z)θ(w z) (2.64) Θ(x) ( ) E F = ɛ 0 χ e E dτ = ɛ 0 χ e x 2 x (E2 )dτ = ɛ 0 χe 2 x E2 dτ (2.65) dθ(x)/dx = δ(x) (2.65) x χ e(x, y, z) =χ e [δ(x X) δ(x X l)]θ(y)θ(d y)θ(z)θ(w z) (2.66) F = ɛ 0χ e 2 (2.6) d 0 dy w 0 dz[e 2 (X, y, z)] E 2 (X + l, y, z)] (2.67) 64

68 3 Chapter 6 Magnetic Fields in Matter Magnetization Multipole Expansion of the Vector Potential θ rr r r 3.: 3. A(r) = µ 0I 4π r r dl (3.) r r = ( ) r n P n (cos θ rr ) (3.2) r r A(r) = µ 0I 4π n=0 n=0 r n+ (r ) n P n (cos θ rr )dl (3.3) A(r) = µ [ 0I dl + 4π r r 2 r cos θ rr dl + ( 3 r 3 (r ) 2 2 cos2 θ rr ) ] dl + 2 (3.4) 65

69 dl =0 (3.5) monopole term Maxwell B =0 A dip (r) = µ 0I 4πr 2 r cos θ rr dl = µ 0I 4πr 2 (ˆr r )dl (3.6) (c r)dl = c da c a (3.7) A dip (r) = µ 0 m ˆr 4π r 2 (3.8) m magnetic dipole moment m I da = Ia (3.9) a R m = IπR 2 B dip (r) = A dip = µ 0 [3(m ˆr)ˆr m] (3.0) 4π r3 3.2(a) (3.0) (3.0) 3.2(b) (3.0) a Ia = 3.2: Diamagnets, Paramagnets, Ferromagnets magnetism U 66

70 magnetic dipoles magnetization E B paramagnets B diamagnets ferromagnets Torques and Forces on Magnetic Dipoles 3.3: C D B A 3.4:

71 3.4 z BC DA x AB CD N = af sin θˆx (3.) F F = IbB (3.2) N = IabB sin θˆx = mb sin θˆx (3.3) N = m B (3.4) m = Iab (3.4) Prob.6.2 (3.4) N = p E paramagnetism (a) (b) 3.5: ( ) F = I (dl B = I dl B =0 (3.5) 3.5(a) R I B 3.5(b) F = 2πIRBcos θ (3.6) 68

72 B m F = (m B) (3.7) Prob.6.4 (3.7) F = (p E) : 3.6 v R T =2πR/v I = e T = ev 2πR (3.8) m = I(πR 2 )ẑ = evrẑ (3.9) 2 e 2 4πɛ 0 R 2 = m v 2 e R (3.20) e(v B) B 3.7 v e 2 4πɛ 0 R 2 + e vb = m v 2 e R m e (3.2) 69

73 v = v v e 2 4πɛ 0 R 2 + evb + e vb = m v 2 e R + m 2v v e R (3.20) v B 2 (3.22) v = erb 2m e (3.23) 3.7 m = 2 e( v)rẑ = e2 R 2 4m e B (3.24) m B diamagnetism 3.7: Magnetization () (2) M (3.25) M magnetization vector P M 70

74 The Field of a Magnetized Object Bound Currents P r r r O r m dτ V 3.8: M(r) r m r A(r) = µ 0 m (r r ) 4π r r 3 (3.26) r dτ M(r )dτ 3.8 A(r) = µ 0 4π M(r ) (r r ) r r 3 dτ (3.27) A(r) = µ 0 4π r r = r r r r 3 ( ) M(r ) r r dτ (3.28) [ M(r ] ( ) ) r r = r r [ M(r )] + r r M(r ) (3.29) A(r) = µ 0 4π r r [ M(r )]dτ µ 0 4π ( v)dτ = A(r) = µ 0 4π V r r [ M(r )]dτ + µ 0 4π S [ M(r ] ) r r dτ (3.30) v da (3.3) r r [M(r ) da ] (3.32) J K A(r) = µ 0 J(r ) 4π r r dτ, A(r) = µ 0 K(r ) 4π r r da (3.33) J b = M (3.34) 7

75 K b = M ˆn (3.35) ˆn A(r) = µ 0 J b (r ) 4π r r dτ + µ 0 4π V S K b (r ) r r da (3.36) (3.36) J b = M K b = M ˆn J b K b bound currents magnetization currents) (3.27) 3.9 P O r r r r r r dτ V r J b S K b 3.9: Physical Interpretation of Bound Currents J b K b 3.0(a) 3.0(b) I (a) (b) 3.0: 3.: I M 3. a t m = Mat I m = Ia 72

76 I = Mt K b = I/t = M ˆn 3.0(b) K b K b = M ˆn (3.37) bound) 3.2: 3.2(a) y x I x =[M z (y + dy) M z (y)]dz = M z dydz (3.38) y (J b ) x = M z y (3.39) 3.2(b) z M y 3.2(a) x I x = [M y (z + dz) M y (z)]dy = M y dydz (3.40) z (J b ) x = M y z (3.4) (J b ) x = M z y M y z (3.42) J b = M (3.43) ρ ρ + J =0 (3.44) t 73

77 ρ/ t =0 J =0 A ( A) =0 J b = ( M) =0 (3.45) (3.29) (3.29) product rule [ (fa) = y (fa z) ] z (fa y) (fa) = f A + f( A) (3.46) [ ˆx + z (fa x) ] [ x (fa z) ŷ + x (fa y) ] y (fa x) ẑ (3.47) y (fa z) z (fa y)= f y A z + f A z y f z A y f A y z =( f A) x + f( A) x (3.48) z (fa x) x (fa z)= f z A x + f A x z f x A z f A z x =( f A) y + f( A) y (3.49) x (fa y) y (fa x)= f x A y + f A y x f y A x f A x y =( f A) z + f( A) z (3.50) (3.46) (3.3) (3.32) (3.3) V vdτ = S v da v v ˆx = v zŷ v y ẑ (v ˆx) = v z y v y z =( v) x (3.5) (v ˆx) da = v z da y v y da z = (v da) x (3.52) V V ( v) x dτ = (v da) x (3.53) S ˆx ŷ,ẑ ( v) y dτ = (v da) y (3.54) V S ( v) z dτ = (v da) z (3.55) V S ( v)dτ = (v da) (3.56) S 74

78 3.3 H 6.3 The Auxiliary Field H 3.3. Ampère J b = M K b = M ˆn [ free current J f ] Ampère J = J f + J b (3.57) µ 0 ( B) =J = J f + J b = J f + M (3.58) ( ) B M = J f (3.59) µ 0 H µ 0 B M (3.60) Ampère H = J f (3.6) H dl = I fenc (3.62) I fenc = J f da Ampèrian loop Ampère (3.6) (3.62) Ampère H Linear and Nonlinear Media Magnetic Susceptibility and Permeability B H (3.60) M M = χ m H (3.63) χ m χ m > 0 χ m < 0 (3.63) linear media B H (3.60) B = µ 0 (H + M) =µ 0 ( + χ m )H (3.64) B H B = µh (3.65) 75

79 µ µ µ 0 ( + χ m ) (3.66) permeability χ m =0 µ = µ 0 µ 0 permeability of free space Example (a) n χ m I Ampèrian loop 3.3(b) Ampère H dl = I fenc B H Griffiths Example 5.9 H = niẑ (3.67) B = µ 0 ( + χ m )niẑ (3.68) χ m > 0 B χ m < 0 B (a) (b) 3.3: K b = M ˆn = χ m (H ˆn) =χ m ni ˆφ (3.69) K b I : A Deceptive Parallel Ampère Ampère J J f B µ 0 H µ 0 H J f B B = J µ 0 (3.70) B =0 (3.7) 76

80 B Ampère (3.70) (3.7) Ampère B (3.7) H H = J f (3.72) H ( ) H = B M = M (3.73) µ 0 M B µ 0 H M Griffiths Prob.6.9 Prob.6.4 H =0 B =0 B = µ 0 M H =0 H =0 M M =0 M M B H Ampère H M =0 H H H = Boundary Conditions B above, H above l B above,h above K K B below, H below B below,h below 3.5: 3.6: K B Griffiths Sec B 3.5,3.6 Babove Bbelow =0 (3.74) B above B below = µ 0(K ˆn) (3.75) H (3.74) H above H below = ( ) ( ) Babove Mabove Bbelow Mbelow µ 0 µ 0 (3.76) = µ 0 (B above B below) (M above M below) (3.77) = (M above M below) (3.78) 77

81 H above H below = (M above M below) (3.79) (3.75) H above H below = µ 0 (B above B below ) (M above M below ) (3.80) = K ˆn (M above M below ) (3.8) K b =(M below M above ) ˆn (3.82) [ ] K b ˆn = (M above M below ) ˆn ˆn (3.83) A (B C) =B(A C) C(A B) [ ] K b ˆn = (M above M below ) ˆn ˆn +(M above M below )(ˆn ˆn) (3.84) = (Mabove Mbelow)ˆn +(M above M below )=M above M below (3.85) (3.8) H above H below =(K K b) ˆn (3.86) K = K f + K b H above H below = K f ˆn (3.87) 78

82 4 Chapter 7 Electrodynamics 4. Maxwell Maxwell s Equations Maxwell E = ɛ 0 ρ Gauss (4.) B =0 (4.2) E = B t Faraday (4.3) E B = µ 0 J + µ 0 ɛ 0 t Maxwell Ampère (4.4) 4.2 Maxwell Maxwell s Equations in Matter Maxwell ρ b P M ρ b = P (4.5) J b = M (4.6) J p 4. 4.: ±σ b = ±P ˆn P P P + dp σ b σ b + dσ b dσ b = dp ˆn a da dσ b = da dp da = da ˆn di = σ b t da = P t da (4.7) di = J da J p = P t polarization current J p = P t = t ( P) = ρ b t 79 (4.8) (4.9)

83 ρ = ρ f + ρ b = ρ f P (4.0) Gauss J = J f + J b + J p = J f + M + P t (4.) E = ɛ 0 (ρ f P) (4.2) D D ɛ 0 E + P (4.3) D = ρ f (4.4) Ampère ( B = µ 0 J f + M + P ) E + µ 0 ɛ 0 t t (4.5) H (B µ 0 M)=µ 0 J f + µ 0 t (P + ɛ 0E) (4.6) H µ 0 B M (4.7) H = J f + D (4.8) t Faraday B =0 ρ J Maxwell D = ρ f Gauss (4.9) B =0 (4.20) E = B t Faraday (4.2) H = J f + D t Maxwell Ampère (4.22) P = ɛ 0 χ e E, M = χ m H (4.23) D, H E, B D = ɛe, H = µ B (4.24) ɛ = ɛ 0 ( + χ e ),µ= µ 0 ( + χ m ) 80

84 Boundary Conditions σ K E, B, D, H Maxwell (i) D da = Q fenc S S (ii) B da =0 (iii) (iv) S E dl = d P dt S P H dl = I fenc + d dt B da P S D da Gauss 4.2 (i) S D a D 2 a = σ f a (4.25) a D D D 2 = σ f (4.26) (ii) B B 2 =0 (4.27) (iii) 4.3 Amperian loop E l E 2 l = d dt S B da (4.28) Amperian loop E dl E E 2 =0 (4.29) E (iv) H l H 2 l = I fenc + d D = I fenc (4.30) dt I fenc Amperian loop ˆn (ˆn l) Amperian loop l loop I fenc K f I fenc = K f (ˆn l) =(K f ˆn) l (4.3) H H 2 = K f ˆn (4.32) S H 8

85 4.2: 4.3: (4.26),(4.27),(4.29),(4.32) E, B (i) ɛ E ɛ 2 E 2 = σ f (ii) E E 2 =0 (ii) B B 2 =0 (iii) B µ B 2 µ = K f ˆn 2 (i) ɛ E ɛ 2 E 2 =0 (ii) E E 2 =0 (ii) B B 2 =0 (iii) (4.33) B µ (4.34) B 2 µ =

A Deceptive Parallel (2.60) Gauss ρ ρ f ɛ 0 E D D E D Coulumb D(r) 1 r r 4π r r 3 ρ f (r )dτ (2.65) 2.20: D E A A A E =0 Gauss E = ρ/ɛ 0 D

A Deceptive Parallel (2.60) Gauss ρ ρ f ɛ 0 E D D E D Coulumb D(r) 1 r r 4π r r 3 ρ f (r )dτ (2.65) 2.20: D E A A A E =0 Gauss E = ρ/ɛ 0 D 2.3 4.3 The Electric Displacement 2.3.1 Gauss 4.3.1 Gauss s Law in the Presence of Dielectrics ρ b = P σ b = P ˆn free chargetrue chage) ρ = ρ b + ρ f (2.56) E Gauss ɛ 0 E = ρ = ρ b + ρ f = P + ρ f (2.57)

More information

R = Ar l B r l. A, B A, B.. r 2 R r = r2 [lar r l B r l2 ]=larl l B r l.2 r 2 R = [lar l l Br ] r r r = ll Ar l ll B = ll R rl.3 sin θ Θ = ll.4 Θsinθ

R = Ar l B r l. A, B A, B.. r 2 R r = r2 [lar r l B r l2 ]=larl l B r l.2 r 2 R = [lar l l Br ] r r r = ll Ar l ll B = ll R rl.3 sin θ Θ = ll.4 Θsinθ .3.2 3.3.2 Spherical Coorinates.5: Laplace 2 V = r 2 r 2 x = r cos φ sin θ, y = r sin φ sin θ, z = r cos θ.93 r 2 sin θ sin θ θ θ r 2 sin 2 θ 2 V =.94 2.94 z V φ Laplace r 2 r 2 r 2 sin θ.96.95 V r 2 R

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2 9 E B 9.1 9.1.1 Ampère Ampère Ampère s law B S µ 0 B ds = µ 0 j ds (9.1) S rot B = µ 0 j (9.2) S Ampère Biot-Savart oulomb Gauss Ampère rot B 0 Ampère µ 0 9.1 (a) (b) I B ds = µ 0 I. I 1 I 2 B ds = µ 0

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb r 1 r 2 r 1 r 2 2 Coulomb Gauss Coulomb 2.1 Coulomb 1 2 r 1 r 2 1 2 F 12 2 1 F 21 F 12 = F 21 = 1 4πε 0 1 2 r 1 r 2 2 r 1 r 2 r 1 r 2 (2.1) Coulomb ε 0 = 107 4πc 2 =8.854 187 817 10 12 C 2 N 1 m 2 (2.2)

More information

notekiso1_09.dvi

notekiso1_09.dvi 39 3 3.1 2 Ax 1,y 1 Bx 2,y 2 x y fx, y z fx, y x 1,y 1, 0 x 1,y 1,fx 1,y 1 x 2,y 2, 0 x 2,y 2,fx 2,y 2 A s I fx, yds lim fx i,y i Δs. 3.1.1 Δs 0 x i,y i N Δs 1 I lim Δx 2 +Δy 2 0 x 1 fx i,y i Δx i 2 +Δy

More information

1 B () Ver 2014 0 2014/10 2015/1 http://www-cr.scphys.kyoto-u.ac.jp/member/tsuru/lecture/... 1. ( ) 2. 3. 3 1 7 1.1..................................................... 7 1.2.............................................

More information

3 filename=quantum-3dim110705a.tex ,2 [1],[2],[3] [3] U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h

3 filename=quantum-3dim110705a.tex ,2 [1],[2],[3] [3] U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h filename=quantum-dim110705a.tex 1 1. 1, [1],[],[]. 1980 []..1 U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h i z (.1) Ĥ ( ) Ĥ = h m x + y + + U(x, y, z; t) (.) z (U(x, y, z; t)) (U(x,

More information

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b 23 2 2.1 n n r x, y, z ˆx ŷ ẑ 1 a a x ˆx + a y ŷ + a z ẑ 2.1.1 3 a iˆx i. 2.1.2 i1 i j k e x e y e z 3 a b a i b i i 1, 2, 3 x y z ˆx i ˆx j δ ij, 2.1.3 n a b a i b i a i b i a x b x + a y b y + a z b

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

sin.eps

sin.eps 9 ( 9 4 7 ) : 3. 3 5 ( ). 3 ( ) (Maxwell).3 (= ) 4.4 x y(x) dy =3 y(x) =3x dx y(x) =3x + y(x) =3x + y(x) =3x + /m OK.5 .6. 5 3 ( ).6 5 5 ( ) +3 m+3kg m 3kg ( ) I(MKA ) m,kg,s(sec),a 4 4 ( ) m kg s 3 A

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

i E B Maxwell Maxwell Newton Newton Schrödinger Newton Maxwell Kepler Maxwell Maxwell B H B ii Newton i 1 1.1.......................... 1 1.2 Coulomb.......................... 2 1.3.........................

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

sec13.dvi

sec13.dvi 13 13.1 O r F R = m d 2 r dt 2 m r m = F = m r M M d2 R dt 2 = m d 2 r dt 2 = F = F (13.1) F O L = r p = m r ṙ dl dt = m ṙ ṙ + m r r = r (m r ) = r F N. (13.2) N N = R F 13.2 O ˆn ω L O r u u = ω r 1 1:

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30 2.4 ( ) 2.4.1 ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) I(2011), Sec. 2. 4 p. 1/30 (2) Γ f dr lim f i r i. r i 0 i f i i f r i i i+1 (1) n i r i (3) F dr = lim F i n i r i. Γ r i 0 i n i

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r 2 1 (7a)(7b) λ i( w w ) + [ w + w ] 1 + w w l 2 0 Re(γ) α (7a)(7b) 2 γ 0, ( w) 2 1, w 1 γ (1) l µ, λ j γ l 2 0 Re(γ) α, λ w + w i( w w ) 1 + w w γ γ 1 w 1 r [x2 + y 2 + z 2 ] 1/2 ( w) 2 x2 + y 2 + z 2

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

genron-3

genron-3 " ( K p( pasals! ( kg / m 3 " ( K! v M V! M / V v V / M! 3 ( kg / m v ( v "! v p v # v v pd v ( J / kg p ( $ 3! % S $ ( pv" 3 ( ( 5 pv" pv R" p R!" R " ( K ( 6 ( 7 " pv pv % p % w ' p% S & $ p% v ( J /

More information

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx i B5 7.8. p89 4. ψ x, tψx, t = ψ R x, t iψ I x, t ψ R x, t + iψ I x, t = ψ R x, t + ψ I x, t p 5.8 π π π F e ix + F e ix + F 3 e 3ix F e ix + F e ix + F 3 e 3ix dx πψ x πψx p39 7. AX = X A [ a b c d x

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

Quz Quz

Quz Quz http://www.ppl.app.keo.ac.jp/denjk III (1969). (1977). ( ) (1999). (1981). (199). Harry Lass Vector and Tensor Analyss, McGraw-Hll, (195).. Quz Quz II E B / t = Maxwell ρ e E = (1.1) ε E= (1.) B = (1.3)

More information

,2,4

,2,4 2005 12 2006 1,2,4 iii 1 Hilbert 14 1 1.............................................. 1 2............................................... 2 3............................................... 3 4.............................................

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

46 4 E E E E E 0 0 E E = E E E = ) E =0 2) φ = 3) ρ =0 1) 0 2) E φ E = grad φ E =0 P P φ = E ds 0

46 4 E E E E E 0 0 E E = E E E = ) E =0 2) φ = 3) ρ =0 1) 0 2) E φ E = grad φ E =0 P P φ = E ds 0 4 4.1 conductor E E E 4.1: 45 46 4 E E E E E 0 0 E E = E E E =0 4.1.1 1) E =0 2) φ = 3) ρ =0 1) 0 2) E φ E = grad φ E =0 P P φ = E ds 0 4.1 47 0 0 3) ε 0 div E = ρ E =0 ρ =0 0 0 a Q Q/4πa 2 ) r E r 0 Gauss

More information

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,, 01 10 18 ( ) 1 6 6 1 8 8 1 6 1 0 0 0 0 1 Table 1: 10 0 8 180 1 1 1. ( : 60 60 ) : 1. 1 e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1,

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) http://astr-www.kj.yamagata-u.ac.jp/~shibata f4a f4b 2 f4cone f4eki f4end 4 f5meanfp f6coin () f6a f7a f7b f7d f8a f8b f9a f9b f9c f9kep f0a f0bt version feqmo fvec4 fvec fvec6 fvec2 fvec3 f3a (-D) f3b

More information

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b.

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b. 2009 7 9 1 2 2 2 3 6 4 9 5 14 6 18 7 23 8 25 9 26 10 29 11 32 12 35 A 37 1 B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t),

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

d dt P = d ( ) dv G M vg = F M = F (4.1) dt dt M v G P = M v G F (4.1) d dt H G = M G (4.2) H G M G Z K O I z R R O J x k i O P r! j Y y O -

d dt P = d ( ) dv G M vg = F M = F (4.1) dt dt M v G P = M v G F (4.1) d dt H G = M G (4.2) H G M G Z K O I z R R O J x k i O P r! j Y y O - 44 4 4.1 d P = d dv M v = F M = F 4.1 M v P = M v F 4.1 d H = M 4.2 H M Z K I z R R J x k i P r! j Y y - XY Z I, J, K -xyz i, j, k P R = R + r 4.3 X Fig. 4.1 Fig. 4.1 ω P [ ] d d = + ω 4.4 [ ] 4 45 4.3

More information

B 1 B.1.......................... 1 B.1.1................. 1 B.1.2................. 2 B.2........................... 5 B.2.1.......................... 5 B.2.2.................. 6 B.2.3..................

More information

i

i 007 0 1 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................ 3 0.4............................................. 3 1

More information

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1 1 I 1.1 ± e = = - =1.602 10 19 C C MKA [m], [Kg] [s] [A] 1C 1A 1 MKA 1C 1C +q q +q q 1 1.1 r 1,2 q 1, q 2 r 12 2 q 1, q 2 2 F 12 = k q 1q 2 r 12 2 (1.1) k 2 k 2 ( r 1 r 2 ) ( r 2 r 1 ) q 1 q 2 (q 1 q 2

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

215 11 13 1 2 1.1....................... 2 1.2.................... 2 1.3..................... 2 1.4...................... 3 1.5............... 3 1.6........................... 4 1.7.................. 4

More information

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r) ( : December 27, 215 CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x f (x y f(x x ϕ(r (gradient ϕ(r (gradϕ(r ( ϕ(r r ϕ r xi + yj + zk ϕ(r ϕ(r x i + ϕ(r y j + ϕ(r z k (1.1 ϕ(r ϕ(r i

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

4/15 No.

4/15 No. 4/15 No. 1 4/15 No. 4/15 No. 3 Particle of mass m moving in a potential V(r) V(r) m i ψ t = m ψ(r,t)+v(r)ψ(r,t) ψ(r,t) = ϕ(r)e iωt ψ(r,t) Wave function steady state m ϕ(r)+v(r)ϕ(r) = εϕ(r) Eigenvalue problem

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

ëoã…éqä‘ëäå›çÏóp.pdf

ëoã…éqä‘ëäå›çÏóp.pdf 1 2 1.1 2 1.2 4 1.3 10 1.4 13 2 14 2.1 16 2.1.a 1 16 2.1.b 18 2.1.c 2 20 2.1.d 24 2.1.e 24 2.1.f 25 2.2 Scheffler 25 2.3 Person Ryberg - 1 27 2.4 Person Ryberg - 2 Coherent Potential Approximation 31 2.5

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

elemag.dvi

elemag.dvi II 2006 1 24 i 1 3 1.1... 3 1.2... 5 1.3... 6 1.4... 6 1.5 (Gauss)... 7 1.5.1... 8 1.5.2 (Green)... 9 1.6 (Stokes)... 9 2 11 2.1... 11 2.2... 12 2.3... 13 2.4... 14 2.4.1... 15 2.4.2... 15 2.4.3... 16

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d m v = mg + kv m v = mg k v v m v = mg + kv α = mg k v = α e rt + e rt m v = mg + kv v mg + kv = m v α + v = k m v (v α (v + α = k m ˆ ( v α ˆ αk v = m v + α ln v α v + α = αk m t + C v α v + α = e αk m

More information

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k 7 b f n f} d = b f n f d,. 5,. [ ] ɛ >, n ɛ + + n < ɛ. m. n m log + < n m. n lim sin kπ sin kπ } k π sin = n n n. k= 4 f, y = r + s, y = rs f rs = f + r + sf y + rsf yy + f y. f = f =, f = sin. 5 f f =.

More information

/Volumes/NO NAME/gakujututosho/chap1.tex i

/Volumes/NO NAME/gakujututosho/chap1.tex i 2012 4 10 /Volumes/NO NAME/gakujututosho/chap1.tex i iii 1 7 1.1............................... 7 2 11 2.1........................................... 11 2.2................................... 18 2.3...................................

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n

さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n 1 1.1 1.1.1 A 2 P Q 3 R S T R S T P 80 50 60 Q 90 40 70 80 50 60 90 40 70 8 5 6 1 1 2 9 4 7 2 1 2 3 1 2 m n m n m n n n n 1.1 8 5 6 9 4 7 2 6 0 8 2 3 2 2 2 1 2 1 1.1 2 4 7 1 1 3 7 5 2 3 5 0 3 4 1 6 9 1

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1 1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +

More information

/Volumes/NO NAME/gakujututosho/chap1.tex i

/Volumes/NO NAME/gakujututosho/chap1.tex i 2010 4 8 /Volumes/NO NAME/gakujututosho/chap1.tex i iii 1 5 1.1............................... 5 2 9 2.1........................................... 9 2.2................................... 16 2.3...................................

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

http://www1.doshisha.ac.jp/ bukka/qc.html 1. 107 2. 116 3. 1 119 4. 2 126 5. 132 6. 136 7. 1 140 8. 146 9. 2 150 10. 153 11. 157 12. π Hückel 159 13. 163 A-1. Laguerre 165 A-2. Hermite 167 A-3. 170 A-4.

More information

dynamics-solution2.dvi

dynamics-solution2.dvi 1 1. (1) a + b = i +3i + k () a b =5i 5j +3k (3) a b =1 (4) a b = 7i j +1k. a = 14 l =/ 14, m=1/ 14, n=3/ 14 3. 4. 5. df (t) d [a(t)e(t)] =ti +9t j +4k, = d a(t) d[a(t)e(t)] e(t)+ da(t) d f (t) =i +18tj

More information

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b) (5) 74 Re, bondar laer (Prandtl) Re z ω z = x (5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b) (5) 76 l V x ) 1/ 1 ( 1 1 1 δ δ = x Re x p V x t V l l (1-1) 1/ 1 δ δ δ δ = x Re p V x t V

More information