ëoã…éqä‘ëäå›çÏóp.pdf

Size: px
Start display at page:

Download "ëoã…éqä‘ëäå›çÏóp.pdf"

Transcription

1 a b c d e f Scheffler Person Ryberg Person Ryberg - 2 Coherent Potential Approximation own image SFG IRAS Own Image A. 42 B. image charge image dipole 44 C. image 47 D. image charge 49 E. 53 F. 54-1

2 m x(t) -κx β dx dt F(t) m d 2 x dt 2 = κx β dx dt + F (t) (1.1a) κ m = ω 2 0 β = 2γ F(t) = f (t) m m d 2 x dt 2 + 2γ dx dt + ω 2 0x = f (t) (1.1b) q Ecos(ωt) f (t) = qe m cosωt = qe m exp(iωt) + exp( iωt) 2 (1.1b) x(t) x(t) = qe 2m = qe m exp(iωt) ω 2 o ω 2 + 2iγω + exp( iωt) ω 2 o ω 2 2iγω 1 (ω 2 ω 0 2 ) 2 + (2γω ) 2 (ω 2 ω 0 2 ) cosωt (2γω) sinωt [ ] + q - q x q x qx - q + q - 2

3 p(t) = qx (t) = q 2 E 2m = q2 E m exp(iωt) ω 2 o ω 2 + 2iγω + exp( iωt) ω o 2 ω 2 2iγω (1.2a) 1 (ω 2 ω 0 2 ) 2 + (2γω ) 2 (ω 2 ω 0 2 ) cosωt (2γω) sinωt [ ] (1.2b) x(t) q m N N exp(+iωt) v.s. exp(-iωt) (1.2a) [ ] 2 cos(ωt) sin(ωt) exp(+iωt) exp(-iωt) cos(ωt) x(t) (1.2) (1.2b) (1.2b) Acosωt - Bsinωt = (A 2 +B 2 ) 1/2 cos(ωt + δ) tanδ = B/A δ = tan -1 [2γω/(ω 2 - ω 0 2 )] (1.2b) δ (1.2a) 2 +ω -ω +ω -ω * exp(+iωt) exp(-iωt) exp(+iωt) exp(-iωt) -iωt i j +iωt exp(-iωt) * (1.2a) exp(iωt) ω 2 0 ω 2 + 2iγω = [cos(ωt) + isin(ωt)][(ω 2 ω 2 ) 2iγω] 0 (ω 2 0 ω 2 ) 2 + 4γ 2 ω 2 [(ω 2 ω 0 2 ) cos(ωt) 2γωsin (ωt)] (ω 0 2 ω 2 ) 2 + 4γ 2 ω 2 -ω (1.2b) a = a + ia a* = a - ia (1/2)(a + a*) = a Re(a) = a - 3

4 1.2. (1.2) ω χ ij (1 ) (ω) = P i (1) (ω) / E j (ω) = N e2 h (r i ) ng (r j ) gn [ (r j) ng (r i ) gn ] ω + ω ng + iγ ng ω ω ng + iγ ρ ( 0), g ng gn [Y. R. Shen: "The Principles of Nonlinear Optics" (Wiley, 1984), Sec. 2.2] (1.3) Shen χ ij (1) (ω) (ω) χ ij (1) (ω) exp(-iωt) hω ng g n (E n - E g ) (1.3) exp(-iωt) (1.2a) [ ] 2 (r i ) ng (r j ) gn (1.3) [ (r ) (r ) j ng i gn ] 2 ω + ω ng + iγ ng ω ω ng + iγ ng q 2 r q 1 (ω + ω ng ) + iγ ng 1 (ω ω ng ) + iγ ng = 2ω ng (ω + iγ ng ) 2 (ω ng ) 2 2ω ng = ω 2 ω 2 2 ng + Γ ng ( ) + 2iωΓ ng (1.4) (1.2a) exp(iωt) ω 2 o ω 2 + 2iγω + exp( iωt) ω 2 o ω 2 2 exp(-iωt) 2iγω (1.2a) 2 (1.4) ω ω 2 0 = Γ 2 2 ng + ω ng 1.5 (1.4) (1.2a) 1 (1.4) (1.3) - 4

5 dρ dt [ ] 1 ( Γρ + ργ ) 2 (1.6) = 1 ih H, ρ (1.6) 1 (1.3) ( ) FID y v = i( ρ ng ρ gn ) (1.7) v + 2Γ ng v + ω 2 2 ( ng + Γ ng )v = 0 (1.8) e Γ ng t cos(ω ng t) (1.9) (ω ng ) ~ 7.5 Γ ng = Γ gn γ γ = 2Γ ng Bloembergen "Nonlinear Optics" (Benjamin Press) 2.1 ~ 2.2 C. P. Slichter Principles of Magnetic Resonance (Springer-Verlag, 2 nd Ed. 1978) 5.4 ~ 5.8 Liouville Y. R. Shen (2.1 ) ρ n,n ' t relax = Γ n,n ' ρ n,n' - 5

6 n" Γ n,n" ρ n",n Γρ (1/2)( Γρ + Γρ) (1.1b) e γt cos( ω 2 0 γ 2 t) (1.10) (1.9) (1.10) γ Γ ng (1.11) ω 2 0 Γ 2 2 ng + ω ng (1.12) ( ) (1.4) ω 2 = ω ( ng + Γ ng ) 2Γ ng (1.13) 1 ω 2 o ω 2 2iγω (1.14) ω ω 2 = ω 0 2 2γ 2 (1.15) (1.15) (1.11) (1.12) ω ω 0 ω + ω 0 2ω 0 1 (ω ω 0 ) iγ - 6

7 ω ω = ω 0 ω ω 0 ω 2 (ω 2 ng + Γ 2 ng ) ω 2 γ 2 ω 2 ng 2 2 γ Γ ng ω 0 ω ng + Γ ng 2 (1.1b) dx dt 2γ Γ ng ( ) dρ dt [ ] 1 ( Γρ + ργ ) 2 = 1 ih H, ρ ρ ng 1 ρ ng Γ ng Tr[ρx] e γt cos( ω 2 0 γ 2 t) γ Γ ng γ Γ ng 2ω ng α(ω) = α e + α v ω 2 ω 2 ng Γ 2 (1.16) ng + 2iωΓ ng (1.4) (1.3) ω e v e v ω ng 2 + Γ ng 2 ω 0, Γ ng γ (1.16) - 7

8 2ω α( ω) ng = α e + α V ω 2 ω iωγ = α 2ω ng e + α V ω 2 0 ω 2 2iωγ α V 2ω ng = α e + ω ω ω 0 [ ( ) 2 2i( ω ω 0 )( γ ω 0 )] = α e + 2 α V 2ω ng ω 0 1 ( ω ω 0 ) 2 2i ω ω 0 = α e + 2 α V 2ω ng ω 0 1 ( ω ω 0 ) 2 2i ω ω 0 α = α e + V 1 ( ω ω 0 ) 2 i γ ( ω ω 0 ) [ ( )( γ ω 0 )] [ ( )( γ ω 0 )] (1.17) α v 2ω ng /ω 0 2 α v 2γ /ω 0 γ 2 (1.3) (1.16) (1.3) 2 ω g n 1 2 ω - ω ng Γ (1.2a) (1.3) (1.2b) (1.4) 2 (1.2a) (1.3) (1.2a) (1.3) Hz ~ Hz 100 cm -1-8

9 = Hz = Hz 2 (1.3) Maxwell-Schroedinger (ω - ω 0 ) (ω + ω 0 ) (ω + ω 0 ) (ω - ω 0 ) (ω - ω 0 ) (ω - ω 0 ) 1 - (ω /ω 0) 0 ω ω 0 (ω /ω 0) (ω /ω 0) 2 = (1 + ω /ω 0)(1 - ω /ω 0) 2(1 - ω /ω 0) (1.17) α( ω) α e + α V / 2 1 (ω /ω 0 ) i γ / 2 = α e + ω 0 α V / 2 ω 0 ω ω 0 iγ /2 α V 2ω ng ω 0 2 α V 2γ ω 0 γ ω ng ω 0 α α( ω) α e + V ( ω 0 ω) iγ (1.18) (1.3) 2 (1.2a) (1.2a) - 9

10 N. Bloembergen "Nonlinear Optics" (Benjamin, 3rd Ed.:1977) 1 e m x ω 0 +Vx 2 ω 1 ω 2 (1.1b) d 2 x dt 2 + 2Γ dx dt + ω 2 0x + Vx 2 = 2e m Re [ E 1 exp(ik 1 z iω 1 t) + E 2 exp(ik 2 z iω 2 t) ] (1.19) Y. R. Shen, "The Principles of Nonlinear Optics" (John Wiley & Sons, 1984) ) Maxwell-Schrödinger ( ) - 10

11 2 E(t) = E 0 cos(ωt) x(t) = x 0 cos(ωt) ωt -π/2 +π/2 -π/2 0 x(t) 0 +π/2 x(t) = x 0 cos(ωt + π/2) = x 0 sin(ωt) ωt -π/2 +π/2 x(t) x(t) = x c cos(ωt) + x s sin(ωt) x s sin(ωt) x(t) = Re[A 0 exp(-iωt)] A 0 A 0 = x c + ix s x(t) = Re{(x c + ix s )[cos(ωt) isin(ωt)]} = x c cos(ωt) + x s sin(ωt) A 0 x s E q Eqx qx (Bloembergen's textbook ) E P W W = 1 T T 0 P(t) [E(t) ]dt t (1.20) - 11

12 ω exp(+iωt) exp(-iωt) (1.3) (1.16) exp(-iωt) E(ω; t) = E 0 (ω)[exp(-iωt) + exp(+iωt)], P(ω; t) = P 0 (ω)exp(-iωt) + P 0 (ω)* exp(+iωt) = [P 0 (ω) + P 0 (ω)*]cosωt + i[p 0 (ω) - P 0 (ω)*]sinωt (1.21) E(ω; t) E 0 (ω) P(ω; t) P(ω; t) P 0 (ω)* P 0 (ω) P 0 (ω) P(ω; t) / t = -iω[p 0 (ω)exp(-iωt) - P 0 (ω)* exp(+iωt)] W = -iωe 0 (ω)(1/t) 0 T dt{p 0 (ω)[exp(-2iωt) 1} - P 0 (ω)* [exp(+2iωt) 1)] W = -iωe 0 (ω)[p 0 (ω) - P 0 (ω)*] = ωe 0 (ω)im[p 0 (ω)] = ωim[α(ω)] E 0 (ω) 2 = ωim[α(ω)]i 0 (ω) (1.22) (1.22) 90 E 90 P α(ω) 2 mv 2 /2 kx 2 /

13 ω Im[P 0 (ω)] P 0 (ω) (1.22) SFG IR VIS UV UV IR VIS SFG IR + VIS UV Bloembergen SFG 1 SFG I SFG (ω SF ) β SFG (ω SF ) 2 (1.23) SFG VIS IR SFG SFG χ (2) SFG E S E L 2 E S + E L = ISFG + I L + ( E S E L + c.c. ) - 13

14 E L E L SFG E L E S SFG SFG SFG SFG SFG E L E L E S E L E L E L E L SFG SFG α e SFG α e (ω SFG ) SFG 2 1 R. A. Hammaker et al., Spectrochim. Acta 21, 1295(1965); Crossley and King, Surf. Sci. 68, 528(1977); Scheffler, Surf. Sci. 81, 562 (1979) Persson Ryberg Phys. Rev. B, 24, 6954 (1981) A B ~ D Persson & Ryberg E F p d f CO H 2 O H 2 CO 2 CH 4-14

15 1 1 J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, 2nd Ed., 1975)

16 - ( ) a. 1 1 m κ β F(t) m d 2 x dt 2 = κx β dx + F (t) (2.1.1) dt κ m = ω 2 0, β F(t) = 2γ, = f (t) q Ecos(ωt) m m f (t) = qe m cosωt = qe m exp(iωt) + exp( iωt) d 2 x dt 2 + 2γ dx dt + ω 2 0x = f (t) (1.2a) (1.2b) - 16

17 p(t) = qx (t) = q 2 E 2m = q2 E m exp(iωt) ω 2 o ω 2 + 2iγω + exp( iωt) ω o 2 ω 2 2iγω (ω 2 ω 0 2 ) 2 + (2γω ) 2 (ω 2 ω 0 2 ) cosωt (2γω) sinωt [ ] p(t) exp(-iωt) 1 α e p(t) = α (ω )E exp( iωt) ˆ 2 α α( ω) α e + V ω 0 α ˆ ω 2 0 ω 2 iωω 0 γ ˆ = α e + V 1 ω ω ω 0 + iγ ˆ ω (2.1.7) 2γ γ ˆ ω 0 q 2 2m 2 α ˆ V ω 0 α(ω) α e + α e + α ˆ V ω 0 2(ω 0 ω) iω 0 γ ˆ = α e + α V ( ω 0 ω) iγ ω ~ ω 0 α ˆ V ω 0 2 ( ω 0 ω) iω 0 γ ˆ α V ˆ α V ω 0 2 = q 2 (4mω 0 ), (2.1.9) (1.17) (2.1.9) γ (2.1.3) γ α e (1) (2) (3) (3a) π * (3b) π/2 * (3c) * (2.1.9) (3) (2.1.9) ω (3) P & R - 17

18 F 0 cos(ωt) ωt = 0, 2π, ωt = π/2, 3π/2, x(t) = x 0 sin ωt = x 0 cos(ωt - π/2) π/2 x(t) = -x 0 cos ωt = x 0 cos(ωt - π) π x(t) = x 0 cos(ωt - δ) δ (3a) (3b) (3c) π π/2 (a) π (b) π/2 π/2 2.1.b. 2 1 p 1 = q 1 x 1 x 1 m d 2 x 1 dx dt 2 = κ 1 x 1 β F dt 1 (t) + C 12 x (2.1.1) p 2 = q 2 x 2 1 q 1 A 2 E r r p = 2 d 3 C 12 x 2 = q 1 E = q 1 q 2 x 2 d 3 C 12 = q 1q 2 d 3 C 12 = C 21 = -C C * x 2 x 1 x 1 * (1) (2) - 18

19 m κ β 2 m d 2 x 1 dt 2 = κx 1 β dx 1 dt + F (t) Cx m d 2 x 2 dt 2 = κx 2 β dx 2 + F (t) Cx dt (2.1.12) (2.1.13) x 1 x 2 3 x 1 x 2 x + = x 1 + x 2 x = x 1 x 2 (2.1.12) (2.1.13) x + x - m d 2 x + dt 2 = ( κ + C) x + β dx + dt + 2F(t) m d 2 x dt 2 = ( κ C) x β dx dt ( ) (2.1.15) (1) CO 2 CO (2) ( κ + C) m ( κ C) m (3) ω 0 = κ m 2 ω 0 C m ω 0 C κ ( ) C d 2 (4) (2.1.14) x + 2 (2.1.15) x - (5) x + ω 0 (ω 0 / 2)C κ 1 (4) (5) x

20 in-phase x - 2 out-of-phase 2 (1) 2 (2) ω 0,± 2 = m 1 + m 2 2m 1 m 2 κ ± 1 2 m 1 m 2 m 1 m 2 κ C m 1 m (3) 2 (4) (5) (6) c 2 A i i E i E i 2 B j p j i -U ij p j p i = α A [E i - U ij p j ] a α A A U ij = 1/ r i - r j 3 = 1/d 3 ( B) 1 ( A) p j = α B [E j - U ji p i ] b j E j j B U ij = U ji u 2 p j p i = α A [E i - uα B [E j - up i ]] - 20

21 = α A E i - α A α B ue j + α A α B u 2 p i p i = (α A E i - α A α B ue j )(1 - α A α B u 2 ) i j E i p i = (α A - α A α B u)e i (1 - α A α B u 2 ) -1 = α A E i (1 - α B u)(1 - α A α B u 2 ) α A = α B p i = α A E i (1 - α A u)(1 - α A 2 u 2 ) -1 = α A E i (1 + α A u) α A α B 2 2 (2.1.20) P = p 1 + p 2 = [α A (1 - α B u) + α B (1 - a A u)](1 - α A α B u 2 ) -1 E i = [(α A + α B ) - 2α A α B u](1 - α A α B u 2 ) -1 E i (2.1.21) P = p 1 + p 2 = [α A (1 - α A u) + α A (1 - α A u)](1 - α A 2 u 2 ) -1 E i = 2α A (1 - α A u)](1 - α A 2 u 2 ) -1 E i = 2α A (1 + α A u) -1 E i (2.1.23) 1 α A α 0 = α A 1 + α A u ( SCF Self-consistent Field SCF CPA Coherent Potenshal Approximation ) 2.1.a 2.1.b 2.1.a ω - 21

22 p(t) = qx (t) = q 2 E 2m exp( iωt) ω 2 A ω 2 2iγω α A = q 2 1 α 2m ω 2 A ω 2 = V 2iγω 1 ω ω A ( ) 2 i ( ) γ ω ω A α q 2 V = mω A 2.1.b E = q 2 x 2 d 3 = C 12 x 2 q 1 = C x 2 q 1 E = C x 2 q 1 = C q 2 x 2 ( ) ( q 2 q 1 ) = C p 2 ( q 1 q 2 ) = up 2 i 1 j 2 q 1 = q 2 = q u = C /q 2 α q 2 V = 2 = C u 2 2mω A 2mω A = C u 2κ (2.1.24) (2.1.29) P & R Ω 2 = ω A 2 (1+ α V u) ) u P & R P & R (2.1.28) (2.1.29) Ω 2 = ω A 2 (1+ α V u) = ω A 2 (1+ C 2κ ) b SCF 2 (2.1.17a) p i = α A [E i - U ij p j ] p = α A [E i - up] c - 22

23 p p + α A up = (1 + α A u)p =α A E i α 0 = α A 1 + α A u (2.1.24) (2.1.24) p (2.1.17c) (1) (CPA) (2) 2 p A = α A [E i - U Aj p j ] = α A [E i - U Aj α j (E j U ja p A )] = α A {E i - U Aj α j [E j - U ja α A (E i - U Aj )] = α A {E i [1 + U Aj U ja α j α A + + (U Aj U ja α j α A ) n ]+ (U Aj U ja α j α A ) n +1 α n A p A - U Aj α j {E j [1 + U Aj U ja α j α A + + (U Aj U ja α j α A ) n ] - (U Aj U ja α j α A ) n+1 α n j p j } p j (U Aj U ja α j α A ) n+1 n α j U Aj U ja α j α A < 1 U Aj = U ja p A = [α A /(1 - U Aj 2 α j α A )](E i - U Aj α j E j ) 2.131a) p j = [α j /(1 - U Aj 2 α j α A )](E j - U Aj α A E i ) b) U Aj 2 α j α A 1 (2.1.24) - 23

24 2.1.d H = r=1,f [ 1 2 mx 2 r kx 2 r + ( qx r )E] x r H dd = 1 2 ( qx r )( qx s ) r,s 1 r r r s x r x s (2.1.33) x r x s r s 3 2 1/8 d d 2 1/4 (2.31) d 3 21.e N N j sin jnπ /N ( ) (j = 1,, N) j = 1 j = 2 n = 1 ~ N/2 n = N/2 ~ N j = 3-24

25 2/3 1/3 1/3 1, 0, 1/3, 0.1/5, 0, 1/7, sin -1 (ω - ω ) 2.1.f CPA(coherent potential approximation) Scheffler 2.1 Scheffler M. Scheffler Surf. Sci., 81, 562(1975) R i ω p(r i, ω, t) = p st + α(ω)e local (R i, ω, t) (2.2.1) p st 1 α(ω) 2 E local (R i, ω, t) i 1 exp[+iωt] E(r, ω, t) = E 0 exp[i(ωt - k r)], k = 2π/λ 1 E local E - 25

26 1 E local E i own E image i other E dipole i other E image i i E local i = E i + E i own image + E i other dipole + E i other image (2.2.2) Persson & Ryberg A ( ) (2.2.1) p(r i, ω, t) = p st /[1 + α(ω)(s(θ) - 1/4d 3 )] + α(ω)e j (R i, ω, t)/[1 + α(ω)(s(θ) - 1/4d 3 )] (2.2.3) S(θ) = k i 1/ R k - R i 3 + 1/( R k - R i 2 +4d 2 ) 3/2-12d 2 /( R k - R i 2 +4d 2 ) 5/2 (2.2.4) (2.2.3) 1 2 p(ω) = E 0 j(ω)α(ω)/[1 + α(ω)(s(θ) - 1/4d 3 ) (2.2.5) IRAS far field R R = <[Re(r p E 0 + E dipole + E images )] 2 > - <[Re(r p E 0 )] 2 > = 2<Re(r p E 0 (ω, t))(e dipole (ω, t) + E images (ω, t))> + <Re(ω dipole (ω, t) + E images (ω, t)) 2 > (2.2.6) < > r p E 0 p(r i, ω, t) r -{d 2 /dt 2 [p(r i, ω, t - r - R i /c)]}/(c 2 r - R i ) + [{d 2 /dt 2 [p(r i, ω, t - r - R i /c)]}(r - R i )](r - R i )/(c 2 r - R i 3 ) (2.2.6) 1 R ~ nω 2 [Re(p(ω))Re(r p ) - Im(p(ω))Im(r p )] (grazing angle) Re(r p ) ~ 0-26

27 R ~ -nω 2 Im(p(ω))Im(r p ) Im(p(ω)) (2.2.7) (2.2.5) (2.2.7) Scheffler α(ω) = α e + α v /[ω - ω ng + iγ] (2.2.8) α(ω)/[1 + α(ω)(s(θ) - 1/4d 3 )] = [1/( S(θ) - 1/4d 3 )]{1 - (S(θ) - 1/4d 3 )/[ α(ω) + 1/( S(θ)- 1/4d 3 )] (2.2.9) [1/(1 + α e (S(θ) - 1/4d 3 )] {α e + [α v /(1 + α e (S(θ) - 1/4d 3 )]/[ ω - ω ng + α v (S(θ) - 1/4d 3 )/(1 + α e (S(θ) - 1/4d 3 )) + iγ]} (2.2.10) (2.2.8) α(ω) ω = ω n 2 α e ω n (2.2.9) ω ω n α v (S(θ) 1/4d 3 )/(1+α e (S(θ) 1/4d 3 )) IRAS S(θ) SFG SFG Persson & Ryberg - 1 Persson Ryberg B. N. J. Persson and R. Ryberg, Phys. Rev. B 24, 6954(1981) 100 % (1)

28 (2) SCF (own image) real dipole image dipole P & R U(q) (a) (b) own image P & R SCF SCF P & R i p i j p j (2.17a) p i p j p i = α A [E i U ij p j ] (2.3.1) j i α A A, B U ij j p j p j * i p i p i,z p i,r A -p i,z / r i - r j 3 +2p i,r / r i - r j 3 (2.3.2) r i r j i j 2.3.e image dipole p j * r i - r j P & R U ij - 28

29 p j p j * r i -U ij p j P & R q- p i = q p q exp(iq r i - iωt), E i = q E q exp(iq r i - iωt) (2.3.3) exp(-iωt) q q (2.32) (2.3.3) exp(-iωt) p i = q p q exp[ iq x i ], E i = E q q exp[ iq i x ] (2.3.4) (2.3.1) p q e iq x i = α A E q e iq x i U ij p q e iq x i q q j q = α A E q U ij p q exp[ i(q x i q x j )] q j e iq x i U ij (2.3.3) U q r [ ] = U ij exp iq (x i x j ) (2.3.5) ( ) = U ij exp i(q x i q x j ) j j [ ] exp(iq x i ) p q = α A [ E q U ( q ) p q ], (2.3.6)

30 (2.3.6) (1) 1 q q (2) 2 q q q q SCF p q α A p q = 1+ α A U q ( ) E q α 0 q,ω ( )E q (2.3.5) U(q) q U ij i (2.3.5) U(q) q q = 0 U(0) 2.1.a ˆ 2 α α( ω) α e + V ω 0 α ˆ ω 2 0 ω 2 iωω 0 γ ˆ = α e + V 1 ω ω ω 0 + iγ ˆ ω 0 (1) ω A ω A 1+ α VU ( 0) 1+α e U (0) ω α A 1+ 1 V U ( 0) 2 1+α ω A α V U 0 e U (0) [ ( )]

31 α V U ( 0) <<1 α e U ( 0) << (2) (3) α v U/(1 + α e U) 2 U U TPD Clausius-Mossoti 2.4 Persson & Ryberg - 2 Coherent Potential Approximation Persson & Ryberg (1) (2) q = 0 1 P & R 2.1.c 2 2 (1) 3 (2) coherent potential approximation (CPA ) CPA (1) i α i α i (2) (stochastic) P & R CPA (1) i r i (2) i A B i A B (a) i - 31

32 i (b) c A :c B (c A + c B = 1) (c) (d) iteration P & R CPA CPA p A p B c A p A + c B p B r i p P & R p A p B A, B r i (1) (2) 12 CO 13 CO Pd(110) 12 CO 30 % 2 ( M. W. Urban, "Vibrational Spectroscopy of Molecules and Macromolecules on Surfaces", John Wiley & Sons, 1993, Sec. 2.4 ) q Q P & R c 2 2 CO/Cu(100) U(q) = U 0 [1 + A(q/q 0 ) + B(q/q 0 ) 2 ] CO Q = 1 α {1 ξ 0.2 [ln(ξ 1.2 ξ + 1 ) + 1 ξ 1) ln((ζ )]} (2.4.1) (ζ + 1) ξ = 1 αu 0, ζ = 0.2 ξ 1.2 (2.4.2) c 2 2 CO/Cu(100) A Q = 1 α {1 ξ + 1+ A + B [ln(ξ ) A 1 (ζ 1 B ξ + 1 2B ξ ln( 2B )(ζ + A 2B ) (ζ + 1+ A 2B )(ζ A )]} (2.4.3) 2B ) ξ = 1, ζ = 1 αu 0 B ( A 2 1 ξ) (2.4.4) 4B - 32

33 (2.4.1) (2.4.2) c 2 2 CO/Cu(100) U 0 = 0.3 Å -3 A = -2.4 B = 1.2 (2.4.3) (2.4.4) q a = 3.6 Å [πq 2 0 = (2π/a) 2 ] d = 0.8 Å Ni(111) U(q) 2 SFG P & R (1) Cu(100) 2π/a q 0 (2) q = (1, 0) q = (1, 1) U(q) U 0 A B (3) U/(1 + au) q x z detailed balance 2.4 A B A 2 P & R intensity borrowing intensity suppression 2.6 own image own image P & R explicit

34 p A kp A r i Xkp A p A p A = α A {E i [1 + Xkα A + + (Xkα A ) n ]+ (Xkα A ) n+1 p A } (2.6.1) Xkα A < 1 p A = [α A /(1 - Xkα A )]E i (2.6.2) A k = 1, X = 1/4d 3 k = -1, X = -1/8d 3 p A, z = [α A /(1 - α A /4d 3 )]E i, p A, r = [α A /(1 - α A /8d 3 )]E i k = -(ε 1 - ε 2 )/(ε 1 + ε 2 ) X = +1/4d 3 k = +(ε 1 - ε 2 )/(ε 1 + ε 2 ) X = -1/8d 3 α A = α e + α v /[ω - ω A + iγ] (2.6.2) p A (ω) = (1/(1 - kxα e )){ α e + [α v /(1 - kxα e )]/[ ω - ω A - kxα e /(1 - kxα e ) + iγ]}e i (2.6.3) (1) 1 kxα e /(1 - kxα e ) (2) RAS kxα e /(1 - kxα e ) 2 (2.3.1) U ij j p j p j * i A (A.1a) p i p i,z p i,r -p i,z / r i - r j 3 +2p i,r / r i - r j 3 r i r j i j image dipole p j * r i - r j P & R p j p j * r i p j E j - 34

35 U ij p j p j * r i -U ij p j 1/10 ( ) SFG 3.1 IRAS IRAS SFG 2 SFG SFG SFG 3 (1) (2) IRAS SFG SFG (3) SFG (a) - 35

36 p i = α i (E i - U ij p j ) 1 SFG SFG (b) SFG 3.2 ω 1 ω 2 E ext ext 1 E 2 ω 1 ω 2 1, 2 SFG ω 3 = ω 1 + ω 2 3 i p i,1 p i, 2 i A α A,1 p i,1 = α 1 E i,1 U ij,1 p j,1 (3.1a) j p i,2 = α 2 E i,2 U ij,2 p j,2 (3.1b) j i modify E ext ext i,1, E i,2 E i,1 = E ext i,1 U ij,1 p j,1 j (3.2a) E i,2 = E ext i,2 U ik,2 p k,2 k (3.2b) SFG E i,3 SFG E i,3 = U il,3 p l,3 l (3.3) i SFG p i,3 ω 1 + ω 2 2 SFG i p i,3 = β 3 E i,1 E i,2 + α 3 E i,3 (3.4) (3.2a) (3.2b) (3.3) p i,3 = β 3 E ext ext i,1 U ij,1 p j,1 E i,2 j U ik,2 p k,2 k + α 3 U il,3 p l,3 (3.5) l 2 n = 1,2,3 p i,n = m = 1,2 E ext i,m = q p q,n e i( qr i ωt) E ext q',me i( q 'r i ωt) q ' - 36

37 (3.5) p q,3 e i( qr i ω 3 t) = β 3 E ext q',1e i( q'r i ω 1 t) U ij p q,1 e i(qr j ω 1 t) q q' j q E ext q',2e i( q'r i ω 2 t) U ik p q,2 e i( qr k ω 2 t) + α 3 U il p q,3 e i( qr l ω 3 t ) q' k q l q (3.6) U q = U ij e i( qr i qr j ) j U (q) n j q p q,1 e i( qr j ωt) = U ij e i( qr i qr j ) e +i(qr i qr j ) p q,1 e i( qr j ωt) U ij j q q j = ( U ij e i( qr i qr j ) ) p q,1 e i( qr i ωt ) = U q p q,1 e i( qr i ωt ) q j q (3.7) q 1 q 1 p q,3 e i( qr i ω 3 t) = β 3 E ext q,1e i( qr i ω 1 t) U q p q,1 e i( qr i ω 1 t) q q q E ext q',2e i( q'r i ω 2 t) U q' p q ',2 e i( q 'r i ω 2 t) + α 3 U q p q,3 e i( qr i ω 3 t) q' q' q (3.8) ω 1 + ω 2 = ω 3 ext E q,1e i(qr i ) E ext q ',2e i(q 'r i ) E ext q,1e i(qr i ) U q' p q ',2 e i( q 'r i ) p q,3 e i( qr i ) q q' q q' = β 3 q U q p q,1 e i( qr i ) E ext q',2e i( q'r i ) + U q p q,1 e i( qr i ) U q' p q ',2 e i( q'r i ) q q ' q q' + α 3 U q p q,3 e i( qr i ) q (3.9) e i( qr i ) E ext q 0,1e i( q 0r ) i E ext q', 2e i (q'r i ) E ext q 0,1e i (q 0r i ) U q' p q',2 e i(q'r i ) q' q' p q0,3 = β 3 U q0 p q 0,1e i (q 0r i ) E ext q', 2e i (q'r i ) + U q 0 p q0,1e i (q 0r i ) U q' p q',2 e i(q'r i ) q' q' +α 3 U q 0 p q0, 3e i( q 0r i ) ( ) (3.10) exp[-iq 0 r i ] q δ exp (argument) - 37

38 q e i( q 0 r i ) e i(q 'r i ) 1 p 0,3 = β 3 [ E ext 0,1 E ext 0,2 E ext 0,1U 0 p 0,2 U 0 p 0,1 E ext 0,2 + U 0 p 0,1 U 0 p 0,2 ] + α 3 ( U 0 p 0,3 ) (3.11) E p 0 p 3 +α 3 U 0 p 3 ( ) = [ 1+ α 3 U 0 ] p 3 = β 3 [ E ext 1 E ext 2 E ext 1U 0 p 2 U 0 p 1 E ext 2 +U 0 p 1 U 0 p 2 ] 3.12 (2.1.23) (2.1.24) p n = α 0,n E n ext, α 0,n = α n 1+ α n U 0 (n = 1, 2) 3.13 SFG [ 1+ α 3 U 0 ] p 3 ext ext ext ext = β 3 E ext 1 E ext 2 E ext α 1U 2 E 2 0 E ext α 2U 1 E 1 α 1 + α 2 U 0 + U 1 E 1 α 0 1+ α 1 U 0 U 2 E α 1 U α 2 U 0 = β 3 1 α U 1 0 α U α U 1 0 α 2 U 0 E ext 1 E ext α 1 U α 2 U α 1 U 0 1+ α 2 U 0 = β α 1 U 0 = β 3 ( )( 1 + α 2 U 0 ) α 2 U 0 ( 1+ α 1 U 0 ) α 1 U 0 ( 1 + α 2 U 0 ) + α 1 U 0 α 2 U 0 ( 1 + α 1 U 0 )( 1+ α 2 U 0 ) ( 1 + α 1 U 0 + α 2 U 0 + α 1 U 0 α 2 U 0 ) ( α 2 U 0 + α 1 U 0 α 2 U 0 ) ( α 1 U 0 + α 1 U 0 α 2 U 0 ) + α 1 U 0 α 2 U 0 ( 1 + α 1 U 0 )( 1 + α 2 U 0 ) 1 = β α 1 U 0 E ext 1 E ext 2 E ext 1 E ext 2 ( )( 1 + α 2 U 0 ) E ext 1 E ext 2 (3.14) 1 p 3 = β 3 1+ α 1 U 0 ( )( 1+ α 2 U 0 )( 1+ α 3 U 0 ) E ext 1 E ext E ext n /(1+ α n U 0 ) SFG [E ext 1 / (1+ α 1 U 0 )][E ext 2 / (1+ α 2 U 0 )]β 3 SFG 1/(1+α 3 U 0 ) Y. R. Shen (2.52) - 38

39 SFG ω 1 E 1 ω 2 E 2 SFG ω 3 E 3 SFG 1) α 1 = α e (ω 1 ) 2) SFG α 3 = α e (ω 3 ) ω 3 α 1 α 3 3 α 3 3) IR 2.1 α 2 α e ( ω 2 ) + α V ( ) iγ ω A ω 2 (3.16) β 3 = β background + β A (ω A ω 2 ) iγ (3.17) SFG β p 3 = β background + A (ω A ω 2 ) iγ ( 1 +α e (ω 1 )U 0 ) 1 +α e ω 2 1 α V ( ) + ( ) iγ U 0 ( 1 + α (ω )U 3 0) ω A ω 2 = β A β background + (ω A ω 2 ) iγ 1 +α e ( ω 2 ) + α V ( ) iγ U 0 ω A ω 2 E ext 1 E ext 2 ( 1+ α e (ω 1 )U 0 )1 ( +α (ω 3 )U 0 ) 3.18 IR SFG 1 β background 2 p 3 2 SFG SFG β e (3) p 3 2 P & R - 39

40 derivation 3.3 (5.7) 2.4 SFG 2c SFG 3.5 own image 2.6 SFG negative entropy system A α A SFG β A α A (ω) = α e α v ω ω v + iγ v = α e + β v α v ω v ω iγ v β A (ω ) = β e = β ω ω v + iγ e + v ω v ω iγ v β v α A0 (ω) = (1 + k)α A α = (1 + k) α A e + Av ω 0 ω iγ V - 40

41 β β A0 (ω) = A (ω) [1- k SF Xα A,SF (ω)][1- k vis Xα A,vis (ω vis )][1- k IR Xα A,IR (ω IR )] = 1 (1- k SF Xα e,sf )(1- k vis Xα e,vis )(1 - k IR Xα e,ir ) β e + [β α β / (1- k Xα )] v v e IR e,ir α ω ω v v + iγ 1- k IR Xα v e,ir k = -(ε 1 - ε 2 )/( ε 1 + e 2 ) k = +(ε 1 - ε 2 )/( ε 1 + ε 2 ) ε 2 k = +1 k = -1 2 SFG f ( ) φ kp p // = p(1 - k)cosφ p = p (1 + k)sinφ α A0 (ω) = α A (ω ) 1 +α A (ω) 1 = 1 +α e U α + α v /(1+α e U) e ω ω v α vu 1+α e U + iγ v β β A0 (ω) = A (ω) [1 + α A,SF U][1 + α A,vis U ][1 + α A,IR (ω IR )U] 1 = [ [1 + α e,sf U ][1 + α e,vis U][1 + α e,ir U ] ] β + [β α β /(1+ α U)] v v e e,ir e α ω ω v v 1+ α e,ir U + iγ v - 41

42 U 2 2 α A (ω) A α B (ω) B α(ω) α(ω) c α(ω) = A α A (ω ) 1+ [α A (ω) α (ω)]q + c B α B (ω ) 1+ ([α B (ω) α (ω )]Q Q = U 1 +α(ω)u Q α (ω) α 0 (ω) = 1+α (ω )U = c Aα A (ω ) 1+α A (ω )U + c Bα B (ω) 1+α B (ω)u SFG SFG suppression IRAS U A (1) r' p(r') r E(r; p(r )) E(r; p(r' )) = p(r') 3(r r')[ p(r') (r r')] r r' 3 + r r' 5 (A.1a) (2) r p(r) r' E(r ; p(r)) - 42

43 E(r'; p(r)) = p(r) 3(r r')[ p(r) (r r')] r r' 3 + r r' 5 (A.1b) (3) r p(r) r = 0 E(0;p(r)) = p(r) 3r[ p(r) r] r 3 + r 5 (A.1c) (electrostatics) d 2 +q -q 2 qd r r' d qd B (x, y.z) z (0, 0, d) p (own image) p* (0, 0, d) ρ φ [ (rcosφ, rsinφ, d) ] (other dipole) p' (other image) p'* p p* p = p ρ + p z, p* = p* ρ + p* z x xz the dipole (0, 0, d) p ρ : (p ρ, 0, 0), p z ; (0, 0, p z ) own image (0, 0, -d) p* ρ : (p* ρ, 0, 0), p* z ; (0, 0, p* z ) other dipole (rcosφ, rsinφ, d) p' ρ : (p ρ, 0, 0), p' z ; (0, 0, p z ) other image (rcosφ, rsinφ, -d) p'* ρ : (p * ρ, 0, 0), p'* z ; (0, 0, p * z ) (A.2) p p* p* ρ = p ρ, p* z = -p z insulator surface: 0 < p* z < p z, -p ρ < p* ρ < 0 (when p ρ, p z > 0) own image p* other dipole p' other image p'* (0, 0, d) E own image = p* z /4d 3 - p* ρ /8d 3, [on ideal metal; E own im = p z /4d 3 + p ρ /8d 3 ) (A.3) E other dipole = -(p' z + p' ρ )/ρ 3 + 3p' ρ e r cosφ/ρ 3 (A.4) (e r = (cosφ, sinφ, 0), unit vector from (0, 0, d) to p') - 43

44 E other image = -(p'* z + p'* ρ )/(ρ 2 + 4d 2 ) 3/2 + (-6dp'* z + 3ρp'* ρ cosφ)e' r /(ρ 2 + 4d 2 ) 3 (e' r = (1/(ρ 2 + 4d 2 ) 1/2 )(ρcosφ, ρsinφ, 2d), unit vector from (0, 0, d) to p'*) [on ideal metal; E other image = -(p' z - p' ρ )/(ρ 2 + 4d 2 ) 3/2 + (-6dp' z - 3ρp' ρ cosφ)e' r /(ρ 2 + 4d 2 ) 3 ] (A.5) other dipoles z C 3 z (A.4) other dipoles cosφ sinφ p 1 p 2 2 V = p 1 p 2 r 3 ( )( p 2 r) + 3 p 1 r r 5 p 1 p 2 θ 1 p 1 r θ 2 p 2 r p 1 r p 2 φ θ 1 r θ 2 r V = p 1 p 2 r 3 ( 2 cosθ 1 cosθ 2 sinθ 1 sinθ 2 cos φ) B image charge image dipole (J. D. Jackson, Classical Electrodynamics, John Wiley and Sons Inc., NY, 2nd Ed., 1975, Chaps. 1~4 ) q image charge (1) (2) (2a) (2b) (Dirichlet (Neumann) - 44

45 image charge ε ε 1 1 q d 2 ε 2 q d q' 1 ε 1 q q' q' q (B.1a) 2 q (B.1b) q" ε 2 q" Sect. 4.4 of Jackson's textbook q' = [(ε 1 - ε 2 )/(ε 1 + ε 2 )]q q" = [2ε 2 /(ε 1 + ε 2 )]q (B.1a) (B.1b) cgs esu MKSA ε 1 ε 2 ε 1 q q q" Z d (ε 1 ) (ε 2 ) q' ε 2 1 (1) (B.1b) (2) ε 2 ε 1 q' = -q image charge Jackson

46 ε q R Φ E D cgs esu Φ = q/(εr) E = Φ D = ee = E + 4πP MKSA Φ = q/(4πεr) E = Φ D = εe = ε 0 E + P E 1 2 E 2 ρ z cgs esu MKSA ε 1 E 1z = -ε 2 E 2z (D 1z = -D 2z = D z ) E 1ρ = E 2ρ (= E ρ ) (B.2a) (B.2b) P = [(ε -1)/4π]E cgs esu P = [ε - ε 0 ]E MKSA P 0 cgs esu P 1z = [(ε 1-1)/4π]D z /ε 1, P 2z = -[(ε 2-1)/4π]D z /ε 2 (B.3a) P 1ρ = [(ε 1-1)/4π]E ρ /ε 1, P 2ρ = [(ε 2-1)/4π]E ρ /ε 2 (B.3b) MKSA 1 ε 0 4π 1 D = 4πρ D = E + 4πP P 1 E = 4πρ E = 4π[ρ - P] ρ - P (B.3a) (B.3b) polarization surface charge density σ pol n σ pol = -(P 1 - P 2 ) n 21 (B.4) P 2 n P q σ pol 1 q σ pol image charge q σ pol 2 d q - 46

47 -d -q +q -q = (-d, -q) ( ) cgs esu σ pol = -(q/2π)[(ε 2 ε 1 )/{ε 1 (ε 2 + ε 1 )}][d/(ρ 2 + d 2 ) 3/2 ] (B.5a) MKSA σ pol = -(q/2π)[(ε 2 ε 1 )/{(ε 1 /ε 0 ) (ε 2 + ε 1 )}][d/(ρ 2 + d 2 ) 3/2 ] (B.5b) σ pol q q' ε 1 2 q q" ε 2 C image 2 (1) (2) p 1 p 1 E D p 2 p 1 + p

48 ( ) p r r local 1 = α A 2 p r 1 = p r 1,// + r p 1, p r 2,// = kp r 1,// r p 2, = +kp r 1, E 1i k = ε 1 ε 2 ε 1 +ε 2 = ε 2 ε 1 ε 2 +ε 1 (C.1) r p 1 d A.1 p r 2 p r 1 r r p E 1 2 = 2 r + 3 r ( p r 2 r ) = ( r p 2,// + r p 2, ) + 3(2d r n )(( p r 2,// + r p 2, ) (2dn r )) 3 r 5 (2d) 3 (2d) 5 = (r p 2,// + p r 2, ) + 3(2d r r n )( p 2, 2d) = ( r p 2,// + p r 2, ) + 3( r r n )( p 2, ) (2d) 3 (2d) 5 (2d) 3 (2d) 3 = (r p 2,// + p r 2, ) + 3( r n ) r (C.2) ( p 2, ) = 1 [ p r (2d) 3 (2d) 3 8d 3 2,// + 2p r 2, ] = k 8d 3 r p 1,// + 2 r [ p 1, ] p r r 1 p 1 = α A ( E r ext + E r 1 2 ) 2 r p 1,// + p r 1, = α A ( E r ext + k r [ 8d 3 p 1,// + 2p r 1, ]) (C.3) 1 kα A 8d 3 r p 1,// + 1 kα A 4d 3 r r p 1, = α A E ext // + r ext ( E ) (C.4) α A α A α A,// = 1 k, α 8d α A, = 3 A 1 k 4d α 3 A (C.5) - 48

49 1 r P = r p 1 + r p 2 = (1 k) r p 1,// + (1 + k) r p 1, = (1 k)α A 1 k 8d α 3 A r E // ext + (1+ k)α A 1 k 4d α 3 A r E ext (C.6) ε 2 i k = ε 1 ε 2 ε 1 + ε 2 +1 r P = r p 1 + v p 2 = 2 v p 1, = 2α A 1 1 4d α 3 A r E ext (C.7) s 0 2α A 2 2α A 1 + α A (4d 3 ) 1 D. 3 2 image charge - 49

50 Born & Wolf 3 h ε* SFG image charges d q ε 1 d q ε* h ε 2 1 q 1 σ pol (1) 1 q' q" 2 q" 2 σ pol (2) q 1 * 2 q 1 ** 3 q 1 * 1 σ pol '(1) q 2 ' 1 q 2 " 4 q 2 ' 2 σ pol '(2) q 3 * 2 q 3 ** z 1 z = 0 α 12 = (ε 1 - ε*)/(ε 1 + ε*), α 21 = (ε* - ε 1 )/(ε 1 + ε*), α 23 = (ε* - ε 2 )/(ε 2 + ε*) (D.1a) - 50

51 β 12 = 2ε*/(ε 1 + ε*), β 21 = 2ε 1 /(ε 1 + ε*), β 23 = 2ε 2 /(ε 2 + ε*) (D.1b) z 1 ε 1 q(d) = q q 1 '(-d) = α 12 q q 2 "(-d - 2h) = β 21 q 1 * = β 12 β 21 α 23 q q 3 "(-d - 4h) = β 21 q 2 * = α 12 α 21 β 12 β 21 α 23 q q 4 "(-d - 6h) = β 21 q 3 * = (α 12 α 21 ) 2 β 12 β 21 α 23 q q n "(-d - 2(n - 1)h) = β 21 q (n-1) * = (α 12 α 21 ) n-2 β 12 β 21 α 23 q (n 2) (D.2a) h 0 q*(-d) = (ε 1 - ε 2 )/(ε 1 + ε )q (D.2b) 2 ε 2 q 1 **(d) = β 23 q 1 " = β 12 β 23 q q 2 **(d + 2h) = β 23 q 2 ' = α 21 α 23 β 12 β 23 q q 3 **(d + 4h) = β 23 q 3 ' = (α 21 α 23 ) 2 β 12 β 23 q q n **(d + 2(n - 1)h) = β 23 q n * = (α 21 α 23 ) n-1 β 12 β 23 q (n 1) (D.3a) h 0 q*(d) = 2ε 2 /(ε 1 + ε 2 )q (D.3b) ε* q 1 "(d) = β 12 q q 1 *(-d - 2h) = α 23 q 1 " = β 12 α 23 q q 2 '(d + 2h) = α 21 q 1 * = α 21 β 12 α 23 q q 2 *(-d - 4h) = α 23 q 2 ' = α 21 β 12 α 2 23 q q 3 '(d + 4h) = α 21 q 2 * = α 2 21 β 12 α 2 23 q q 3 *(-d - 6h) = α 23 q 2 ' = α 2 21 β 12 α 3 23 q q n '(d + 2(n - 1)h) = α 21 q n-1 * = (α 21 α 23 ) n-1 β 12 q (n 2) - 51

52 q n *(-d - 2nh) = α 23 q 2 ' = (α 21 α 23 ) n-1 β 12 α 23 q (n 1) (D.4a) h 0 q*(+d) = 2(ε* + ε 2 )/(ε 1 + ε )q q*(-d) = 2(ε* - ε 2 )/(ε 1 + ε )q (D.4b) 3-2 d q ε 1 d ε* q h ε 2 q q 1 "(-d), q 3 "(-2h - d), q 5 "(-4h - d),, q 2n+1 " = (α 21 α 23 ) n β 21 q,, (n 0) q 2 "(-2h + d), q 4 "(-4h + d), q 6 "(-6h + d),, q 2n " = (α 21 α 23 ) n-1 α 23 β 21 q,, (n 1) (D.5a) h 0 q*(+d) = 2[ε 1 (ε*-ε 2 )]/[ε*(ε 1 + ε )]q q*(-d) = 2[ε 1 (ε*+ε 2 )]/[ε*(ε 1 + ε )]q (D.5b) 2 q 1 **(-d), q 3 **(2h - d), q 5 **(4h - d),, q 2n+1 **= (α 21 α 23 ) n β 23 q,, (n 0) q 2 **(+d), q 4 **(2h + d), q 6 **(4h + d),, q 2n **= (α 21 α 23 ) n-1 α 21 β 21 q,, (n 1) (D.6a) - 52

53 h 0 q*(+d) = 2[ε 2 (ε*- ε 1 )]/[ε*(ε 1 + ε )]q q*(-d) = 2[ε 2 (ε*+ε 2 )]/[ε*(ε 1 + ε )]q (D.6b) q(-d) = q q 1 '(+d), q 3 '(3h + d), q 5 '(4h + d),, q 2n+1 ' = (α 21 α 23 ) n α 21 q,, (n 0) q 2 '(2h - d), q 4 '(4h - d), q 6 '(6h - d),, q 2n ' = (α 21 α 23 ) n q,, (n 1) q 1 *(-2h + d), q 3 *(-4h + d), q 5 *(-6h + d),, q 2n+1 *= (α 21 α 23 ) n α 23 q,, (n 0) q 2 *((-2h - d), q 4 *(-4h - d), q 6 *(-6h - d),, q 2n *= (α 21 α 23 ) n q,, (n 1) (D.7a) h 0 q*(+d) = 2(ε* 2 - ε 1 ε 2 )/[ε*(ε 1 + ε )]q q*(-d) = 2(ε* - ε 1 )(ε* - ε 2 )/[ε*(ε 1 + ε )]q (D.7b) E δ(ax) = δ (x) a δ(x 2 a 2 ) = [δ (x a) + δ (x + a)] 2 a 1 α δ(x) = lim α 0 π α 2 + x 2 δ( x) = δ(x) xδ (x) = 0 (def): δ + (x) = δ * (x) = 1 2iπ lim 1 α 0 x iα, δ + (x) + δ (x) = δ(x) δ + (x) δ (x) = 1 iπ lim x α 0 α 2 + x 2 then δ(x)dx = 1 F(x)δ (x a)dx = F(a) - 53

54 1 + r + r r n = 1 r n+1 1 r F SCF(self-consistent field) MFA(mean field approximation) molecular field approximation CPA(coherent field approximation) P.Soven (1967 ) CPA CPA, A x B 1-x (x A ) A B 1 x H 1 H A ( B ) H A ( B ) A A x B B (1 - x) 0 H CPA Clausius-Mosotti s relation - 54

55 F F = E + P/(3ε o ) (E. P ) ε α ε 1 ε + 2 = 1 Nα 3ε 0 N. ε ( ) (M/ρ) n 2 1 n M ρ = 1 N 3ε A α R 0 0 n M ρ N A R 0 local field F E 0 ( ) F E 0 3 E 1 E 2 E 3 F = E 0 + E 1 + E 2 + E 3 E 1 E 1i = -N i P i /ε 0 (i = x, y, z N i P ε 0 ) E 2 E 2 = P/(3ε 0 ) E 3 E 3 = 0 E E 0 F E = E 0 + E 1 F = E + E 2 + E 3 (E 3 = 0) F = E + P/(3ε 0 ) F = E +γ P γ E E 1 F - 55

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

SFGÇÃÉXÉyÉNÉgÉãå`.pdf SFG 1 SFG SFG I SFG (ω) χ SFG (ω). SFG χ χ SFG (ω) = χ NR e iϕ +. ω ω + iγ SFG φ = ±π/, χ φ = ±π 3 χ SFG χ SFG = χ NR + χ (ω ω ) + Γ + χ NR χ (ω ω ) (ω ω ) + Γ cosϕ χ NR χ Γ (ω ω ) + Γ sinϕ. 3 (θ) 180

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2 9 E B 9.1 9.1.1 Ampère Ampère Ampère s law B S µ 0 B ds = µ 0 j ds (9.1) S rot B = µ 0 j (9.2) S Ampère Biot-Savart oulomb Gauss Ampère rot B 0 Ampère µ 0 9.1 (a) (b) I B ds = µ 0 I. I 1 I 2 B ds = µ 0

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx i B5 7.8. p89 4. ψ x, tψx, t = ψ R x, t iψ I x, t ψ R x, t + iψ I x, t = ψ R x, t + ψ I x, t p 5.8 π π π F e ix + F e ix + F 3 e 3ix F e ix + F e ix + F 3 e 3ix dx πψ x πψx p39 7. AX = X A [ a b c d x

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

4 R f(x)dx = f(z) f(z) R f(z) = lim R f(x) p(x) q(x) f(x) = p(x) q(x) = [ q(x) [ p(x) + p(x) [ q(x) dx =πi Res(z ) + Res(z )+ + Res(z n ) Res(z k ) k

4 R f(x)dx = f(z) f(z) R f(z) = lim R f(x) p(x) q(x) f(x) = p(x) q(x) = [ q(x) [ p(x) + p(x) [ q(x) dx =πi Res(z ) + Res(z )+ + Res(z n ) Res(z k ) k f(x) f(z) z = x + i f(z). x f(x) + R f(x)dx = lim f(x)dx. R + f(x)dx = = lim R f(x)dx + f(x)dx f(x)dx + lim R R f(x)dx Im z R Re z.: +R. R f(z) = R f(x)dx + f(z) 3 4 R f(x)dx = f(z) f(z) R f(z) = lim R

More information

Microsoft Word - 信号処理3.doc

Microsoft Word - 信号処理3.doc Junji OHTSUBO 2012 FFT FFT SN sin cos x v ψ(x,t) = f (x vt) (1.1) t=0 (1.1) ψ(x,t) = A 0 cos{k(x vt) + φ} = A 0 cos(kx ωt + φ) (1.2) A 0 v=ω/k φ ω k 1.3 (1.2) (1.2) (1.2) (1.1) 1.1 c c = a + ib, a = Re[c],

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v 12 -- 1 4 2009 9 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 c 2011 1/(13) 4--1 2009 9 3 x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2

More information

êUìÆã§ñ¬ÅEÉtÉFÉãÉ~ã§ñ¬.pdf

êUìÆã§ñ¬ÅEÉtÉFÉãÉ~ã§ñ¬.pdf SFG SFG SFG Y. R. Shen.17 (p. 17) SFG g ω β αβγ = ( e3 h ) (r γ ) ng n ω ω ng + iγ (r α ) gn ' (r β ) n 'n (r ) (r ) α n 'n β gn ' ng n ' ω ω n 'g iγ n'g ω + ω n 'n iγ nn ' (1-1) Harris (Chem. Phys. Lett.,

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx x E E E e i ω t + ikx k λ λ π k π/λ k ω/v v n v c/n k nω c c ω/π λ k πn/λ π/(λ/n) κ n n κ N n iκ k Nω c iωt + inωx c iωt + i( n+ iκ ) ωx c κω x c iω ( t nx c) E E e E e E e e κ e ωκx/c e iω(t nx/c) I I

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π 4 4.1 4.1.1 A = f() = f() = a f (a) = f() (a, f(a)) = f() (a, f(a)) f(a) = f 0 (a)( a) 4.1 (4, ) = f() = f () = 1 = f (4) = 1 4 4 (4, ) = 1 ( 4) 4 = 1 4 + 1 17 18 4 4.1 A (1) = 4 A( 1, 4) 1 A 4 () = tan

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ II p = mv p x > h/4π λ = h p m v Ψ 2 Ψ Ψ Ψ 2 0 x P'(x) m d 2 x = mω 2 x = kx = F(x) dt 2 x = cos(ωt + φ) mω 2 = k ω = m k v = dx = -ωsin(ωt + φ) dt = d 2 x dt 2 0 y v θ P(x,y) θ = ωt + φ ν = ω [Hz] 2π

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R II Karel Švadlenka 2018 5 26 * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* 5 23 1 u = au + bv v = cu + dv v u a, b, c, d R 1.3 14 14 60% 1.4 5 23 a, b R a 2 4b < 0 λ 2 + aλ + b = 0 λ =

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

215 11 13 1 2 1.1....................... 2 1.2.................... 2 1.3..................... 2 1.4...................... 3 1.5............... 3 1.6........................... 4 1.7.................. 4

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0 1 2003 4 24 ( ) 1 1.1 q i (i 1,,N) N [ ] t t 0 q i (t 0 )q 0 i t 1 q i (t 1 )q 1 i t 0 t t 1 t t 0 q 0 i t 1 q 1 i S[q(t)] t1 t 0 L(q(t), q(t),t)dt (1) S[q(t)] L(q(t), q(t),t) q 1.,q N q 1,, q N t C :

More information

1 yousuke.itoh/lecture-notes.html [0, π) f(x) = x π 2. [0, π) f(x) = x 2π 3. [0, π) f(x) = x 2π 1.2. Euler α

1   yousuke.itoh/lecture-notes.html [0, π) f(x) = x π 2. [0, π) f(x) = x 2π 3. [0, π) f(x) = x 2π 1.2. Euler α 1 http://sasuke.hep.osaka-cu.ac.jp/ yousuke.itoh/lecture-notes.html 1.1. 1. [, π) f(x) = x π 2. [, π) f(x) = x 2π 3. [, π) f(x) = x 2π 1.2. Euler dx = 2π, cos mxdx =, sin mxdx =, cos nx cos mxdx = πδ mn,

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy f f x, y, u, v, r, θ r > = x + iy, f = u + iv C γ D f f D f f, Rm,. = x + iy = re iθ = r cos θ + i sin θ = x iy = re iθ = r cos θ i sin θ x = + = Re, y = = Im i r = = = x + y θ = arg = arctan y x e i =

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

I , : ~/math/functional-analysis/functional-analysis-1.tex

I , : ~/math/functional-analysis/functional-analysis-1.tex I 1 2004 8 16, 2017 4 30 1 : ~/math/functional-analysis/functional-analysis-1.tex 1 3 1.1................................... 3 1.2................................... 3 1.3.....................................

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X 4 4. 4.. 5 5 0 A P P P X X X X +45 45 0 45 60 70 X 60 X 0 P P 4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P 0 0 + 60 = 90, 0 + 60 = 750 0 + 60 ( ) = 0 90 750 0 90 0

More information

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,, 6,,3,4,, 3 4 8 6 6................................. 6.................................. , 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p,

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R = 1 1 1.1 1827 *1 195 *2 x 2 t x 2 = 2Dt D RT D = RT N A 1 6πaη (1.1) D N A a η 198 *3 ( a =.212µ) *1 Robert Brown (1773-1858. *2 Albert Einstein (1879-1955 *3 Jean Baptiste Perrin (187-1942 2 1 x 2 x 2

More information

untitled

untitled - k k k = y. k = ky. y du dx = ε ux ( ) ux ( ) = ax+ b x u() = ; u( ) = AE u() = b= u () = a= ; a= d x du ε x = = = dx dx N = σ da = E ε da = EA ε A x A x x - σ x σ x = Eε x N = EAε x = EA = N = EA k =

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

KENZOU

KENZOU KENZOU 2008 8 2 3 2 3 2 2 4 2 4............................................... 2 4.2............................... 3 4.2........................................... 4 4.3..............................

More information

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B 9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2 Hanbury-Brown Twiss (ver. 1.) 24 2 1 1 1 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 3 3 Hanbury-Brown Twiss ( ) 4 3.1............................................

More information