数理解析研究所講究録 第1908巻

Size: px
Start display at page:

Download "数理解析研究所講究録 第1908巻"

Transcription

1 D3 1 [20] Born [18, 21] () () RIMS ( 1834) [19] ( [16] ) [1, 23, 24] 2 $\Vert A\Vert^{2}$ $c*$ - $*:\mathcal{x}\ni A\mapsto A^{*}\in \mathcal{x}$ $\Vert A^{*}A\Vert=$ $\Vert\cdot\Vert$ 1 ) $\omega(1)=1$ Banach ( $E_{\mathcal{X}}$ $\omega(a^{*}a)\geq 0$ () $C^{*}-$ $(\mathcal{x}, \omega)$ $c*$ - () 2-3 $c*$ - (continuous functional calculus) - () : 1( [20,19-1 kazuqi@kurims kyoto-u ac.$ip$ 2 3 $*:A\mapsto A^{*}$

2 ) ) $\hat{\mathcal{x}}$ 79 $c*$ - $E_{\mathcal{X}}$ $A_{i}\in \mathcal{x},$ $\epsilon_{i}>0(i=1,2, \cdots, n)$ : $O_{\omega}(\{A_{i}, \epsilon_{i}\}_{i=1}^{n})=\{\omega \in E_{\mathcal{X}} \omega(a_{i})-\omega (A_{i}) <\epsilon_{i}, i=1, 2, \cdots, n\}.$ 1(GNS ). $\omega\in $B(\mathcal{H}_{\omega})$ E_{\mathcal{X}}$ Hilbert $\mathcal{h}_{\omega}$ () $\pi_{\omega}$ $\Omega\omega$, $\in \mathcal{h}_{\omega}$ $\omega(a)=\langle\omega_{\omega} \pi_{\omega}(a)\omega_{\omega}\rangle$ $\mathcal{h}\omega$ $=\pi_{\omega}(\mathcal{x})\omega_{\omega}$ $\{\pi_{\omega}, \mathcal{h}_{\omega}, \Omega_{\omega}\}$ 3 GNS GNS $S\subset B(\mathcal{H})$ $S =\{A\in B(\mathcal{H}) AB =BA, B\in S\}$ (1) $S$ $S $ $:=(S ) $ $S$ $\mathcal{m}$ $B(\mathcal{H})$ - $\mathcal{m}"=\mathcal{m}$ ( $\mathcal{h}$ ( $\mathcal{h}_{\omega}$ $\pi_{\omega}(\mathcal{x})"$ von Neumann von Neumann 2(). $F_{\mathcal{X}}/\approx$ 3(). $\omega\in $\mathfrak{z}_{\omega}(\mathcal{x})$ $F_{\mathcal{X}}$ E_{\mathcal{X}}$ $\pi_{\omega}(\mathcal{x})"$ von Neumann $:=\pi_{\omega}(\mathcal{x})"\cap\pi_{\omega}(\mathcal{x}) =\mathbb{c}1$ $\mathcal{m}$ 4 ( $\pi$-). (1) von Neumann $A_{\alpha}\nearrow A$ $\lim_{\alpha}\omega(a_{\alpha})=\omega(a)$ $\mathcal{m}_{*,1}$ $\mathcal{m}$ (2) $\rho$ $c*$ - $\pi$ $\omega\in E_{\mathcal{X}}$ $\pi$- $\pi(\mathcal{x})"$ $\omega(x)=\rho(\pi(x))$ $X\in \mathcal{x}$, 5(). (1) 2 $\pi_{1},$ $\pi_{2}$ $\pi_{1}$ $\pi_{1}\approx\pi_{2}$ (2) 2 $\pi_{1},$ $\pi_{2}$ $\pi_{1}d\pi_{2}$ $\pi_{1}$ - $\pi_{2}$ $GNS$ - $\pi_{2}$

3 : $\mathfrak{b}$ ( ) 80 : $\Rightarrow$ $\Rightarrow$ 3 -, $E_{\mathcal{X}}$ Choquet $\omega\in$ $(E_{\mathcal{X}}, \mathcal{b}(e_{\mathcal{x}}))$ Borel E 4 7( ). $=$ $(E_{\mathcal{X}}, \mathcal{b}(e_{\mathcal{x}}))$ Borel $\mu$ $\triangle\in \mathcal{b}(e_{\mathcal{x}})$ : $\int_{\delta}d\mu(\rho)\rho d \int_{e_{\mathcal{x}\backslash \triangle}}d\mu(\rho)\rho$. (2) : 8 ( [1, Theorem ] ). (1) $\mathfrak{b}$ von Neumann $\mu,$ $L^{\infty}(E_{\mathcal{X}}, \mu)$ $\kappa_{\mu}$ $L^{\infty}(\mu)arrow \mathfrak{b}$ $\mathfrak{b}$ $\mu$ $\mathfrak{z}_{\omega}(\mathcal{x})$ $L^{\infty}(\mu):=$ - : $\langle\omega_{\omega} \kappa_{\mu}(f)\pi_{\omega}(x)\omega_{\omega}\rangle=\int d\mu(\rho)f(\rho)\rho(x)$. (3) (2) $\mathfrak{z}_{\omega}(\mathcal{x})$ $\mu_{\omega}$ $F_{\mathcal{X}}$ $\mu_{\omega}$ F von Neumann $F_{\mathcal{X}}$ $\mathfrak{z}_{\omega}(\mathcal{x})$ $(\pi_{\omega}(\mathcal{x})"$ $)$ ( GNS ) () 2( [20,19 $\omega\in E_{\mathcal{X}}$ $\Delta\in \mathcal{b}(e_{\mathcal{x}})$ $\mu_{\omega}(\delta)$ 4

4 ) 81 () () () $c*$ - $c*$ - : 9 (Gel fand-naimark ). Hausdorff $S$ - $0$ $C_{0}(S)$ - Hausdorfff $S$ : Spec $(\mathcal{x}$ $)$ Spec $(\mathcal{x})=\{\chi\in E_{\mathcal{X}} \chi(ab)=\chi(a)\chi(b), A, B\in \mathcal{x}\}$. (4) $E_{\mathcal{X}}$ () $\mathcal{e}(e_{\mathcal{x}})$ Spec $(\mathcal{x})=\mathcal{e}(e_{\mathcal{x}})=f_{\mathcal{x}}$ (5) Gel fand-n\ aimark $c*$ - Spec $(\mathcal{x}$ $)$ Borel : 10 (Riesz-Markov-Kakutani ). Hausdorff $S$ $0$ - $C_{0}(S)$ $S$ Borel $c*$ - $c*$ $(\mathcal{x}, \omega)$ - (Spec ( ), $\mathcal{b}$(spec ( ), $\mu$) ( $\mu$ Borel ) $C(Spec(\mathcal{X}))$ Riesz-Markov-Kakutani () Riesz-Markov-Kakutani : 11 ([23, Chapter III, $S$ Theorem 1.2]). Hausdorff $\mu$ $S$ Borel ( $\mu$ ) (i) $C_{0}(S)$ $\mu$ $GNS$ $(\pi_{\mu}, \mathcal{h}_{\mu}, \Omega_{\mu})$ Hilbert $L^{2}(S, \mu)$, $L^{2}(S, \mu)$ $M_{f},$ $f\in C_{0}(S)$ $S$, 1 : $\mathcal{h}_{\mu}=l^{2}(s, \mu), \pi_{\mu} =M., \Omega_{\mu}=1$ ; (ii) von Neumann $\pi_{\mu}(c_{0}(s))"$ $L^{2}(S, \mu)$ $\pi_{\mu}(c_{0}(s))"=\pi_{\mu}(c_{0}(s)) $ ; (6) (iii) $\pi_{\mu}(c_{0}(s))"$ $\pi(f)$, $f\in L^{2}(S, \mu)$ $(\pi(f)\xi)(s)=f(\mathcal{s})\xi(s), \xi\in L^{2}(S, \mu), s\in S$. (7)

5 $\mathcal{o}_{1}$ 82 $c*$ $(\mathcal{x}, \omega)$ - 5, ( ) 4 ( ) von Neumann (von Neumann ), $\{\mathcal{a}(\mathcal{o}) \mathcal{o}\in \mathcal{k}\}$ Minkowski $M_{4}$ $\mathcal{k}=\{\mathcal{o}=(a+$ $V_{+})\cap(b-V_{+}) a,$ $b\in M_{4}\}$ $(V;= \{x\in M_{4} x^{2}=x_{0}^{2}-\sum_{j=1}^{3}x_{i}^{2}>0, x_{0}>0\}$ $M_{4}$ ) $c*$ - $\mathcal{o}\mapsto () 3 : \mathcal{a}(\mathcal{o})$ 1) $\mathcal{o}_{1}\subset \mathcal{o}_{2}$ $\mathcal{a}(\mathcal{o}_{1})\subset \mathcal{a}(\mathcal{o}_{2})$ ; 2) $\mathcal{k}$ $\mathcal{o}_{1}$ $\mathcal{o}_{2}$ $\mathcal{a}(\mathcal{o}_{1})$ 2 $\mathcal{o}_{1}$ $\mathcal{o}_{1} \supset ; $\mathcal{a}(\mathcal{o}_{2})$ $\mathcal{o}i=\{x\in M_{4} (x-y)^{2}<0, y\in \mathcal{o}_{1}\}$ $\mathcal{o}_{2}$ \mathcal{o}_{2}$ $\mathcal{a}:=\bigcup_{\mathcal{o}\in \mathcal{k}}\mathcal{a}(\mathcal{o})$ $c*$ - $Aut(\mathcal{A})$ - $\alpha_{9}$ : $\mathcal{p}_{+}^{\uparrow}$ 3) Poincar\ e $(^{*}$-) $\alpha_{g}(\mathcal{a}(\mathcal{o}))=\mathcal{a}(g\mathcal{o})$ $\mathcal{o}\in $\mathcal{p}_{+}^{\uparrow}arrow Aut(\mathcal{A})$, \mathcal{k}$ $g\in $g\in \mathcal{p}_{+}^{\uparrow}$, \mathcal{p}_{+}^{\uparrow}$ () $\omega_{0}$ 2 : $\omega_{0}$ 5

6 $\tilde{\mathcal{o}}$ \mathcal{o}^{-},\mathcal{o}\in \mathcal{k}}\mathcal{a}(\mathcal{o})}$ 83 A) $\omega_{0}$ $\mathcal{p}_{+}^{\uparrow}$- A $\in \mathcal{a}$ $9\in \mathcal{p}_{+}^{\uparrow}$ $\omega_{0}(\alpha_{g}(a))=\omega_{0}(a)$ ; (8) $\omega_{0}$ A $\in GNS $(\pi_{0}, \mathcal{a}$ $g\in \mathcal{p}_{+}^{\uparrow}$ \mathcal{h}_{0}, \Omega_{0})$ $\alpha_{g}$ : $\pi_{0}(\alpha_{g}(a))=u_{g}\pi_{0}(a)u_{9}^{*}$. (9) $U_{g}\Omega=\Omega$ $U_{g}$ : $\mathcal{p}_{+}^{\uparrow}$ $\mathbb{r}^{4}$ B) Poincar\ e $U_{g}$ $P=(P_{\mu})_{\mu=0,1,2,3}$ $\overline{v_{+}}=\{x\in M_{4} x^{2}=x_{0}^{2}-\sum_{j}^{3_{=1}}x_{i}^{2}\geq 0, x_{0}\geq 0\}$ ; A) B) $\{\mathcal{a}(\mathcal{o}) \mathcal{o}\in \mathcal{k}\}$ $DHR$(Doplicher-Haag-Roberts) $\omega_{0}$ $\mathcal{h}_{0}$ GNS Hilbert $\{0\})$ 2 : 1(Haag ). $\mathcal{o}\in \mathcal{k}$ $\{\mathcal{a}(\mathcal{o}) \mathcal{o}\in \mathcal{k}\}$ 2( B). $\mathcal{o}_{1}$ $\mathcal{o}$2 $\mathcal{a}(\tilde{\mathcal{o}})=\overline{\bigcup_{\mathcal{o}\subset $(ker(\pi_{0})=$ $\pi_{0}(\mathcal{a}(\mathcal{o}))"=\pi_{0}(\mathcal{a}(\mathcal{o} )) $ Haag $E\in $W^{*}W=E,$ $WW^{*}=1$ 2 DHR [3, 4, 5, 6, 7] $W\in \mathcal{a}(\mathcal{o}_{2})$ \mathcal{a}(\mathcal{o}_{1})$ $=$ (10) : DHR $\mathcal{o} $ $\pi_{0}$ () $\mathcal{o}\in : \mathcal{k}$ $\pi _{\mathcal{a}(\mathcal{o} )}\cong\pi_{0} _{\mathcal{a}(\mathcal{o} )}$. (11)

7 $\gamma$ 84 DHR $B$ $\pi$ $\pi$- DHR $\mathcal{o}$ 12. $DHR$ $\pi$ $\rho$ : (1) $\pi=\pi_{0}\circ\rho,$ (2) $\rho(a)=a,$ $A\in \mathcal{a}(\mathcal{o} )$ - 1(Haag ). - $DR(\mathcal{A}) :=\{\rho\in End(\mathcal{A}) \exists \mathcal{o}\in \mathcal{k}s.t. \rho(a)=a, A\in \mathcal{a}(\mathcal{o} )\}$ (12) $\{\mathcal{a}(\mathcal{o}) \mathcal{o}\in \mathcal{k}\}$ $DR(\mathcal{A})$ $DR(\mathcal{A})$ $DR(\mathcal{A})$ $c*$- Doplicher-Roberts [6] $DR(\mathcal{A})$ $G$ Rep (G) $G$ () $G$ DHR Haag Haag (essential duality) DHR DHR [13, 14] 5 () () [2, 8, 9] () Sanov 1 () Sanov [11] :

8 $\mu,$ $v$ $\psi$ $\varphi,$ $m$ $\mu,$ $v\ll m$ $S(\varphi\Vert\psi)=D(\mu\Vert\nu)$. (13) $S(\varphi\Vert\psi)$ [22, 25] $D(\mu\Vert v)$ : $D(\mu\Vert\nu)=\{\begin{array}{ll}\int d\mu(\rho)\log\frac{d\mu}{dv}(\rho), (\mu\ll\nu),+\infty, (otherwise).\end{array}$ (14) [1] O. Bratteli and D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics (vol. 1), Springer-Verlag (1979). [2] I. Csisz\ ar, Bull. Brazilian Math. Soc. 37, (2006) [3] S. Doplicher, R. Haag and J.E. Roberts, I & II, Comm. Math. Phys. 13, 1-23 (1969); 15, (1969). [4] S. Doplicher, R. Haag and J.E. Roberts, I& II, 23, (1971) & $35,$ (1974). [5] S. Doplicher and J.E. Roberts, Ann. Math. 130, (1989). [6] S. Doplicher and J.E. Roberts, Invent. Math. 98, S (1989). [7] S. Doplicher and J.E. Roberts, Comm. Math. Phys. 131, (1990). [8] A. Dembo and O. Zeitouni, Large deviations techniques and applications (2nd ed (Springer, 2002). [9] R.S. Ellis, Entropy, Large Deviations, and Statistical Mechanics, (Springer, 1985). [10] R. Harada and I. Ojima, Open Sys. $Inf$. Dyn. 16, (2009). [11] F. Hiai, M. Ohya and M. Tsukada, Pacific J. Math. 107, (1983). [12] I. Ojima, Order Parameters in QFT and Large Deviation, RIMS Kokyuroku (1998), (in Japanese). [13] I. Ojima, Open Sys. $Inf$. Dyn. 10, (2003). [14] I. Ojima, Publ. RIMS 40, (2004). [15] I. Ojima, Micro-Macro Duality in Quantum Physics, pp in Proc. Intern. Conf. on Stochastic Analysis, Classical and Quantum (World Scientific, 2005), arxiv:math-ph/ [16] (2013). [17] I. Ojima and K. Okamura, Open Syst. $Inf$. Dyn. 19, (2012). [18] I. Ojima and K. Okamura, Open Syst. $Inf$. Dyn. 19, (2012). [19] (2013). [20] I. Ojima, K. Okamura and H. Saigo, Derivation of Born Rule from Algebraic and Statistical Axioms, (2013), $arxiv: $, to appear in Open Sys. $Inf$. Dyn. [21] K. Okamura, Quant. $Inf$. Process. 12, , (2013). [22] M. Ohya and D. Petz, Qunatum Entropy and Its Use, (Springer, Berlin, 1993). [23] M. Takesaki, Theory of Operator Algebras $I$, (Springer, 1979). [24] M. Takesaki, Theory of 0perator Algebras II, (Springer, 2002). [25] $(1983,1984)$.

数理解析研究所講究録 第1921巻

数理解析研究所講究録 第1921巻 1921 2014 108-121 108 Local state, sector theory and measurement in AQFT 1 1 () $($local state) (quantum operation) ( RIMS ) () [25] ( [22] ) [5, 35, 36] 2 : $c*$ - $E_{\mathcal{X}}$ $\omega(a^{*}a)\geq

More information

2 5W1H = a) [ ]= (= ) : b) [ ] : c) [ ] = (to characterize the observed system) : d) [ ] (: ) 2

2 5W1H = a) [ ]= (= ) : b) [ ] : c) [ ] = (to characterize the observed system) : d) [ ] (: ) 2 1 vs. 90 mescoscopic physics 1 2 5W1H = a) [ ]= (= ) : b) [ ] : c) [ ] = (to characterize the observed system) : d) [ ] (: ) 2 (: ) [1]: 1. Newton =[( ) vs. ] (a) =0 x v ( p = mv) [ a), b), c)] (b) = :

More information

α : G X (s, A) α s (A) X α s (c 1 A 1 + c 2 A 2 ) = c 1 α s (A 1 )+c 2 α s (A 2 ), α st (A) = α s (α t (A)) G X α 1.1 G α X (IO) 5W1H A A B A B 1.2!?

α : G X (s, A) α s (A) X α s (c 1 A 1 + c 2 A 2 ) = c 1 α s (A 1 )+c 2 α s (A 2 ), α st (A) = α s (α t (A)) G X α 1.1 G α X (IO) 5W1H A A B A B 1.2!? 62 Abstract 0 Coulomb Coulomb Coulomb BCS Higg Cooper 1 G α X, G G = R or Z X X X (A, B) A + B, AB X, K X (c, A) ca X K K = R C K = R or C 1 α : G X (s, A) α s (A) X α s (c 1 A 1 + c 2 A 2 ) = c 1 α s

More information

$)\triangleleft\hat{g}$ $\mathcal{t}\mathcal{h}$ 106 ( ) - Einstein ( ) ( ) $R_{\mu\nu}- \frac{1}{2}g_{\mu\nu}r=\kappa T_{\mu\nu}$ bottom-up feedback

$)\triangleleft\hat{g}$ $\mathcal{t}\mathcal{h}$ 106 ( ) - Einstein ( ) ( ) $R_{\mu\nu}- \frac{1}{2}g_{\mu\nu}r=\kappa T_{\mu\nu}$ bottom-up feedback duality 1532 2007 105-117 105 - $-*$ (Izumi Ojima) Research Institllte for Mathematical Sciences Kyoto University 1? 3 ( 2-4 ) 1507 RIMS. ( ) (2006 6 28 30 ). $+\mathrm{f}_{\mathrm{o}\mathrm{l}1\gamma}\mathrm{i}\mathrm{e}\mathrm{r}$

More information

Kullback-Leibler

Kullback-Leibler Kullback-Leibler 206 6 6 http://www.math.tohoku.ac.jp/~kuroki/latex/206066kullbackleibler.pdf 0 2 Kullback-Leibler 3. q i.......................... 3.2........... 3.3 Kullback-Leibler.............. 4.4

More information

一般演題(ポスター)

一般演題(ポスター) 6 5 13 : 00 14 : 00 A μ 13 : 00 14 : 00 A β β β 13 : 00 14 : 00 A 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

2016 Course Description of Undergraduate Seminars (2015 12 16 ) 2016 12 16 ( ) 13:00 15:00 12 16 ( ) 1 21 ( ) 1 13 ( ) 17:00 1 14 ( ) 12:00 1 21 ( ) 15:00 1 27 ( ) 13:00 14:00 2 1 ( ) 17:00 2 3 ( ) 12

More information

CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS, KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$:, Cape i,.,.,,,,.,,,.

CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS, KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$:, Cape i,.,.,,,,.,,,. 1508 2006 1-11 1 CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$: Cape i Capelli 1991 ( ) (1994 ; 1998 ) 100 Capelli Capelli Capelli ( ) (

More information

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25 .. IV 2012 10 4 ( ) 2012 10 4 1 / 25 1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) 2012 10 4 2 / 25 1. Ω ε B ε t

More information

(Osamu Ogurisu) V. V. Semenov [1] :2 $\mu$ 1/2 ; $N-1$ $N$ $\mu$ $Q$ $ \mu Q $ ( $2(N-1)$ Corollary $3.5_{\text{ }}$ Remark 3

(Osamu Ogurisu) V. V. Semenov [1] :2 $\mu$ 1/2 ; $N-1$ $N$ $\mu$ $Q$ $ \mu Q $ ( $2(N-1)$ Corollary $3.5_{\text{ }}$ Remark 3 Title 異常磁気能率を伴うディラック方程式 ( 量子情報理論と開放系 ) Author(s) 小栗栖, 修 Citation 数理解析研究所講究録 (1997), 982: 41-51 Issue Date 1997-03 URL http://hdl.handle.net/2433/60922 Right Type Departmental Bulletin Paper Textversion

More information

1 P2 P P3P4 P5P8 P9P10 P11 P12

1 P2 P P3P4 P5P8 P9P10 P11 P12 1 P2 P14 2 3 4 5 1 P3P4 P5P8 P9P10 P11 P12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 & 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1! 3 2 3! 4 4 3 5 6 I 7 8 P7 P7I P5 9 P5! 10 4!! 11 5 03-5220-8520

More information

Centralizers of Cantor minimal systems

Centralizers of Cantor minimal systems Centralizers of Cantor minimal systems 1 X X X φ (X, φ) (X, φ) φ φ 2 X X X Homeo(X) Homeo(X) φ Homeo(X) x X Orb φ (x) = { φ n (x) ; n Z } x φ x Orb φ (x) X Orb φ (x) x n N 1 φ n (x) = x 1. (X, φ) (i) (X,

More information

数理解析研究所講究録 第1977巻

数理解析研究所講究録 第1977巻 1977 2015 33-44 33 Ding-Iohara-Miki modular double Yosuke Saito Osaka City University Advanced Mathematical Institute 2015 9 30 Ding-Iohara-Miki Ruijsenaars Ding-Iohara-Miki Ding-Iohara-Miki modular double

More information

診療ガイドライン外来編2014(A4)/FUJGG2014‐01(大扉)

診療ガイドライン外来編2014(A4)/FUJGG2014‐01(大扉) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

More information

1

1 1 Borel1956 Groupes linéaire algébriques, Ann. of Math. 64 (1956), 20 82. Chevalley1956/58 Sur la classification des groupes de Lie algébriques, Sém. Chevalley 1956/58, E.N.S., Paris. Tits1959 Sur la classification

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

- 2 -

- 2 - - 2 - - 3 - (1) (2) (3) (1) - 4 - ~ - 5 - (2) - 6 - (1) (1) - 7 - - 8 - (i) (ii) (iii) (ii) (iii) (ii) 10 - 9 - (3) - 10 - (3) - 11 - - 12 - (1) - 13 - - 14 - (2) - 15 - - 16 - (3) - 17 - - 18 - (4) -

More information

2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4 4 4 2 5 5 2 4 4 4 0 3 3 0 9 10 10 9 1 1

2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4 4 4 2 5 5 2 4 4 4 0 3 3 0 9 10 10 9 1 1 1 1979 6 24 3 4 4 4 4 3 4 4 2 3 4 4 6 0 0 6 2 4 4 4 3 0 0 3 3 3 4 3 2 4 3? 4 3 4 3 4 4 4 4 3 3 4 4 4 4 2 1 1 2 15 4 4 15 0 1 2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4

More information

1 (1) (2)

1 (1) (2) 1 2 (1) (2) (3) 3-78 - 1 (1) (2) - 79 - i) ii) iii) (3) (4) (5) (6) - 80 - (7) (8) (9) (10) 2 (1) (2) (3) (4) i) - 81 - ii) (a) (b) 3 (1) (2) - 82 - - 83 - - 84 - - 85 - - 86 - (1) (2) (3) (4) (5) (6)

More information

20 15 14.6 15.3 14.9 15.7 16.0 15.7 13.4 14.5 13.7 14.2 10 10 13 16 19 22 1 70,000 60,000 50,000 40,000 30,000 20,000 10,000 0 2,500 59,862 56,384 2,000 42,662 44,211 40,639 37,323 1,500 33,408 34,472

More information

I? 3 1 3 1.1?................................. 3 1.2?............................... 3 1.3!................................... 3 2 4 2.1........................................ 4 2.2.......................................

More information

Gelfand 3 L 2 () ix M : ϕ(x) ixϕ(x) M : σ(m) = i (λ M) λ (L 2 () ) ( 0 ) L 2 () ϕ, ψ L 2 () ((λ M) ϕ, ψ) ((λ M) ϕ, ψ) = λ ix ϕ(x)ψ(x)dx. λ /(λ ix) ϕ,

Gelfand 3 L 2 () ix M : ϕ(x) ixϕ(x) M : σ(m) = i (λ M) λ (L 2 () ) ( 0 ) L 2 () ϕ, ψ L 2 () ((λ M) ϕ, ψ) ((λ M) ϕ, ψ) = λ ix ϕ(x)ψ(x)dx. λ /(λ ix) ϕ, A spectral theory of linear operators on Gelfand triplets MI (Institute of Mathematics for Industry, Kyushu University) (Hayato CHIBA) chiba@imi.kyushu-u.ac.jp Dec 2, 20 du dt = Tu. (.) u X T X X T 0 X

More information

I , : ~/math/functional-analysis/functional-analysis-1.tex

I , : ~/math/functional-analysis/functional-analysis-1.tex I 1 2004 8 16, 2017 4 30 1 : ~/math/functional-analysis/functional-analysis-1.tex 1 3 1.1................................... 3 1.2................................... 3 1.3.....................................

More information

Title 二重指数関数型変数変換を用いたSinc 関数近似 ( 科学技術における数値計算の理論と応用 II) Author(s) 杉原, 正顯 Citation 数理解析研究所講究録 (1997), 990: Issue Date URL

Title 二重指数関数型変数変換を用いたSinc 関数近似 ( 科学技術における数値計算の理論と応用 II) Author(s) 杉原, 正顯 Citation 数理解析研究所講究録 (1997), 990: Issue Date URL Title 二重指数関数型変数変換を用いたSinc 関数近似 ( 科学技術における数値計算の理論と応用 II) Author(s) 杉原 正顯 Citation 数理解析研究所講究録 (1997) 990 125-134 Issue Date 1997-04 URL http//hdlhandlenet/2433/61094 Right Type Departmental Bulletin Paper

More information

日本糖尿病学会誌第58巻第2号

日本糖尿病学会誌第58巻第2号 β γ Δ Δ β β β l l l l μ l l μ l l l l α l l l ω l Δ l l Δ Δ l l l l l l l l l l l l l l α α α α l l l l l l l l l l l μ l l μ l μ l l μ l l μ l l l μ l l l l l l l μ l β l l μ l l l l α l l μ l l

More information

時間遅れをもつ常微分方程式の基礎理論入門 (マクロ経済動学の非線形数理)

時間遅れをもつ常微分方程式の基礎理論入門 (マクロ経済動学の非線形数理) 1713 2010 72-87 72 Introduction to the theory of delay differential equations (Rinko Miyazaki) Shizuoka University 1 $\frac{dx(t)}{dt}=ax(t)$ (11), $(a$ : $a\neq 0)$ 11 ( ) $t$ (11) $x$ 12 $t$ $x$ $x$

More information

$6\mathrm{V}\mathrm{I}\mathrm{I}\mathrm{I}$ (p (Kazuhiro Sakuma) Dept. of Math. and Phys., Kinki Univ.,. (,,.) \S 0. $C^{\infty

$6\mathrm{V}\mathrm{I}\mathrm{I}\mathrm{I}$ (p (Kazuhiro Sakuma) Dept. of Math. and Phys., Kinki Univ.,. (,,.) \S 0. $C^{\infty $6\mathrm{V}\mathrm{I}\mathrm{I}\mathrm{I}$ (p 1233 2001 111-121 111 (Kazuhiro Sakuma) Dept of Math and Phys Kinki Univ ( ) \S 0 $M^{n}$ $N^{p}$ $n$ $p$ $f$ $M^{n}arrow N^{p}$ $n

More information

(Keiko Harai) (Graduate School of Humanities and Sciences Ochanomizu University) $\overline{\mathrm{b} \rfloor}$ (Michie Maeda) (De

(Keiko Harai) (Graduate School of Humanities and Sciences Ochanomizu University) $\overline{\mathrm{b} \rfloor}$ (Michie Maeda) (De Title 可測ノルムに関する条件 ( 情報科学と函数解析の接点 : れまでとこれから ) こ Author(s) 原井 敬子 ; 前田 ミチヱ Citation 数理解析研究所講究録 (2004) 1396: 31-41 Issue Date 2004-10 URL http://hdlhandlenet/2433/25964 Right Type Departmental Bulletin Paper

More information

Kullback-Leibler

Kullback-Leibler Kullback-Leible Sanov 206 6 6 http://www.math.tohoku.ac.jp/~kuoki/latex/206066kullbackleible.pdf 0 2 Kullback-Leible 3........................... 3.2........... 4.3 Kullback-Leible.............. 4.4 Kullback-Leible......................

More information

福岡大学人文論叢47-3

福岡大学人文論叢47-3 679 pp. 1 680 2 681 pp. 3 682 4 683 5 684 pp. 6 685 7 686 8 687 9 688 pp. b 10 689 11 690 12 691 13 692 pp. 14 693 15 694 a b 16 695 a b 17 696 a 18 697 B 19 698 A B B B A B B A A 20 699 pp. 21 700 pp.

More information

Note5.dvi

Note5.dvi 12 2011 7 4 2.2.2 Feynman ( ) S M N S M + N S Ai Ao t ij (i Ai, j Ao) N M G = 2e2 t ij 2 (8.28) h i μ 1 μ 2 J 12 J 12 / μ 2 μ 1 (8.28) S S (8.28) (8.28) 2 ( ) (collapse) j 12-1 2.3 2.3.1 Onsager S B S(B)

More information

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). Theorem 1.3 (Lebesgue ) lim n f n = f µ-a.e. g L 1 (µ)

More information

2013 年 12 月 日 神戸大学大学院理学研究科にて特別講義 素粒子理論特論 A 現代数学と量子論 谷村省吾名古屋大学大学院情報科学研究科 1 いまどきの観測理論 : シュレーディンガーの猫 は真の問題ではない最近の学生さんは量子力学の観測問題 (measurement proble

2013 年 12 月 日 神戸大学大学院理学研究科にて特別講義 素粒子理論特論 A 現代数学と量子論 谷村省吾名古屋大学大学院情報科学研究科 1 いまどきの観測理論 : シュレーディンガーの猫 は真の問題ではない最近の学生さんは量子力学の観測問題 (measurement proble 2013 年 12 月 11-13 日 神戸大学大学院理学研究科にて特別講義 素粒子理論特論 A 現代数学と量子論 谷村省吾名古屋大学大学院情報科学研究科 1 いまどきの観測理論 : シュレーディンガーの猫 は真の問題ではない最近の学生さんは量子力学の観測問題 (measurement problem) についてどう思っているだろうか? 観測問題とは, 重ね合わせ状態の量子系を観測すると途端に波動関数が収縮するというが,

More information

(Masatake MORI) 1., $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}.$ (1.1) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1

(Masatake MORI) 1., $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}.$ (1.1) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1 1040 1998 143-153 143 (Masatake MORI) 1 $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}$ (11) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1+x)3/4}$ 1974 [31 8 10 11] $I= \int_{a}^{b}f(\mathcal{i})d_{x}$

More information

Design of highly accurate formulas for numerical integration in weighted Hardy spaces with the aid of potential theory 1 Ken ichiro Tanaka 1 Ω R m F I = F (t) dt (1.1) Ω m m 1 m = 1 1 Newton-Cotes Gauss

More information

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2 hara@math.kyushu-u.ac.jp 1 1 1.1............................................... 2 1.2............................................. 3 2 3 3 5 3.1............................................. 6 3.2...................................

More information

204 / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January 2016 047

204 / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January 2016 047 9 π 046 Vol.69-1 January 2016 204 / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January 2016 047 β γ α / α / 048 Vol.69-1 January 2016 π π π / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January 2016 049 β 050 Vol.69-1

More information

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle Method) 974 1996 43-54 43 Optimization Algorithm by Use of Fuzzy Average and its Application to Flow Control Hiroshi Suito and Hideo Kawarada 1 (Steepest Descent Method) ( $\text{ }$ $\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{h}_{0}\mathrm{d}$

More information

, 1. x 2 1 = (x 1)(x + 1) x 3 1 = (x 1)(x 2 + x + 1). a 2 b 2 = (a b)(a + b) a 3 b 3 = (a b)(a 2 + ab + b 2 ) 2 2, 2.. x a b b 2. b {( 2 a } b )2 1 =

, 1. x 2 1 = (x 1)(x + 1) x 3 1 = (x 1)(x 2 + x + 1). a 2 b 2 = (a b)(a + b) a 3 b 3 = (a b)(a 2 + ab + b 2 ) 2 2, 2.. x a b b 2. b {( 2 a } b )2 1 = x n 1 1.,,.,. 2..... 4 = 2 2 12 = 2 2 3 6 = 2 3 14 = 2 7 8 = 2 2 2 15 = 3 5 9 = 3 3 16 = 2 2 2 2 10 = 2 5 18 = 2 3 3 2, 3, 5, 7, 11, 13, 17, 19.,, 2,.,.,.,?.,,. 1 , 1. x 2 1 = (x 1)(x + 1) x 3 1 = (x 1)(x

More information

( 3) b 1 b : b b f : a b 1 b f = f (2.7) g : b c g 1 b = g (2.8) 1 b b (identity arrow) id b f a b g f 1 b b c g (2.9) 3 C C C a, b a b Hom C (a, b) h

( 3) b 1 b : b b f : a b 1 b f = f (2.7) g : b c g 1 b = g (2.8) 1 b b (identity arrow) id b f a b g f 1 b b c g (2.9) 3 C C C a, b a b Hom C (a, b) h 2011 9 5 1 Lie 1 2 2.1 (category) (object) a, b, c, a b (arrow, morphism) f : a b (2.1) f a b (2.2) ( 1) f : a b g : b c (composite) g f : a c ( 2) f f a b g f g c g h (2.3) a b c d (2.4) h (g f) = (h

More information

~ ~.86 ~.02 ~.08 ~.01 ~.01 ~.1 6 ~.1 3 ~.01 ~.ω ~.09 ~.1 7 ~.05 ~.03 ~.01 ~.23 ~.1 6 ~.01 ~.1 2 ~.03 ~.04 ~.01 ~.1 0 ~.1 5 ~.ω ~.02 ~.29 ~.01 ~.01 ~.11 ~.03 ~.02 ~.ω 本 ~.02 ~.1 7 ~.1 4 ~.02 ~.21 ~.I

More information

Twist knot orbifold Chern-Simons

Twist knot orbifold Chern-Simons Twist knot orbifold Chern-Simons 1 3 M π F : F (M) M ω = {ω ij }, Ω = {Ω ij }, cs := 1 4π 2 (ω 12 ω 13 ω 23 + ω 12 Ω 12 + ω 13 Ω 13 + ω 23 Ω 23 ) M Chern-Simons., S. Chern J. Simons, F (M) Pontrjagin 2.,

More information

Chern-Simons Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q

Chern-Simons   Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q Chern-Simons E-mail: fuji@th.phys.nagoya-u.ac.jp Jones 3 Chern-Simons - Chern-Simons - Jones J(K; q) []Jones q J (K + ; q) qj (K ; q) = (q /2 q /2 )J (K 0 ; q), () J( ; q) =. (2) K Figure : K +, K, K 0

More information

( ) >

( ) > (Ryūta Hashimoto) α α p q < p/q α q Lagrange 0 0. 3.4.4.96.5.5.5.4 <

More information

第89回日本感染症学会学術講演会後抄録(I)

第89回日本感染症学会学術講演会後抄録(I) ! ! ! β !!!!!!!!!!! !!! !!! μ! μ! !!! β! β !! β! β β μ! μ! μ! μ! β β β β β β μ! μ! μ!! β ! β ! ! β β ! !! ! !!! ! ! ! β! !!!!! !! !!!!!!!!! μ! β !!!! β β! !!!!!!!!! !! β β β β β β β β !!

More information

可積分測地流を持つエルミート多様体のあるクラスについて (幾何学的力学系の新展開)

可積分測地流を持つエルミート多様体のあるクラスについて (幾何学的力学系の新展開) 1774 2012 63-77 63 Kazuyoshi Kiyoharal Department of Mathematics Okayama University 1 (Hermite-Liouville ) Hermite-Liouville (H-L) Liouville K\"ahler-Liouville (K-L $)$ Liouville Liouville ( FLiouville-St\"ackel

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara 80 1963 Sp(2, R) p L holomorphic discrete series Eichler Brandt Eichler

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

Global phase portraits of planar autonomous half-linear systems (Masakazu Onitsuka) (Aya Yamaguchi) (Jitsuro Sugie) Department of M

Global phase portraits of planar autonomous half-linear systems (Masakazu Onitsuka) (Aya Yamaguchi) (Jitsuro Sugie) Department of M 1445 2005 88-98 88 Global phase portraits of planar autonomous half-linear systems (Masakazu Onitsuka) (Aya Yamaguchi) (Jitsuro Sugie) Department of Mathematics Shimane University 1 2 $(\mathit{4}_{p}(\dot{x}))^{\circ}+\alpha\phi_{p}(\dot{x})+\beta\phi_{p}(x)=0$

More information

Lebesgue Fubini L p Banach, Hilbert Höld

Lebesgue Fubini L p Banach, Hilbert Höld II (Analysis II) Lebesgue (Applications of Lebesgue Integral Theory) 1 (Seiji HIABA) 1 ( ),,, ( ) 1 1 1.1 1 Lebesgue........................ 1 1.2 2 Fubini...................... 2 2 L p 5 2.1 Banach, Hilbert..............................

More information

第 61 回トポロジーシンポジウム講演集 2014 年 7 月於東北大学 ( ) 1 ( ) [6],[7] J.W. Alexander 3 1 : t 2 t +1=0 4 1 : t 2 3t +1=0 8 2 : 1 3t +3t 2 3t 3 +3t 4 3t 5 + t

第 61 回トポロジーシンポジウム講演集 2014 年 7 月於東北大学 ( ) 1 ( ) [6],[7] J.W. Alexander 3 1 : t 2 t +1=0 4 1 : t 2 3t +1=0 8 2 : 1 3t +3t 2 3t 3 +3t 4 3t 5 + t ( ) 1 ( ) [6],[7] 1. 1928 J.W. Alexander 3 1 : t 2 t +1=0 4 1 : t 2 3t +1=0 8 2 : 1 3t +3t 2 3t 3 +3t 4 3t 5 + t 6 7 7 : 1 5t +9t 2 5t 3 + t 4 ( :25400086) 2010 Mathematics Subject Classification: 57M25,

More information

1: (Emmy Noether; ) (Feynman) [3] [4] {C i } A {C i } (A A )C i = 0 [5] 2

1: (Emmy Noether; ) (Feynman) [3] [4] {C i } A {C i } (A A )C i = 0 [5] 2 2003 1 1 (Emmy Noether 1) [1] [2] [ (Paul Gordan Clebsch-Gordan ] 1915 habilitation habilitation außerordentlicher Professor Außerordentlich(=extraordinary) 1 1: (Emmy Noether; 1882-1935) (Feynman) [3]

More information

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1,

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, B 2, B 3 A i 1 B i+1 A i+1 B i 1 P i i = 1, 2, 3 3 3 P 1, P 2, P 3 1 *1 19 3 27 B 2 P m l (*) l P P l m m 1 P l m + m *1 A N

More information

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull Feynman Encounter with Mathematics 52, 200 9 [] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull. Sci. Math. vol. 28 (2004) 97 25. [2] D. Fujiwara and

More information

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c GL 2 1 Lie SL(2, R) GL(2, A) Gelbart [Ge] 1 3 [Ge] Jacquet-Langlands [JL] Bump [Bu] Borel([Bo]) ([Ko]) ([Mo]) [Mo] 2 2.1 H = {z C Im(z) > 0} Γ SL(2, Z) Γ N N Γ (N) = {γ SL(2, Z) γ = 1 2 mod N} g SL(2,

More information

確率論と統計学の資料

確率論と統計学の資料 5 June 015 ii........................ 1 1 1.1...................... 1 1........................... 3 1.3... 4 6.1........................... 6................... 7 ii ii.3.................. 8.4..........................

More information

ron04-02/ky768450316800035946

ron04-02/ky768450316800035946 β α β α β β β α α α Bugula neritina α β β β γ γ γ γ β β γ β β β β γ β β β β β β β β! ! β β β β μ β μ β β β! β β β β β μ! μ! μ! β β α!! β γ β β β β!! β β β β β β! β! β β β!! β β β β β β β β β β β β!

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 0 1 2 3 4 5 6 1964 1978 7 0.0015+0.013 8 1 π 2 2 2 1 2 2 ( r 1 + r3 ) + π ( r2 + r3 ) 2 = +1,2100 9 10 11 1.9m 3 0.64m 3 12 13 14 15 16 17 () 0.095% 0.019% 1.29% (0.348%) 0.024% 0.0048% 0.32% (0.0864%)

More information

Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川, 正行 Citation 数理解析研究所講究録 (1993), 830: Issue Date URL

Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川, 正行 Citation 数理解析研究所講究録 (1993), 830: Issue Date URL Title 非線形シュレディンガー方程式に対する3 次分散項の効果 ( 流体における波動現象の数理とその応用 ) Author(s) 及川 正行 Citation 数理解析研究所講究録 (1993) 830: 244-253 Issue Date 1993-04 URL http://hdlhandlenet/2433/83338 Right Type Departmental Bulletin Paper

More information

untitled

untitled B2 3 2005 (10:30 12:00) 201 2005/10/04 10/04 10/11 9, 15 10/18 10/25 11/01 17 20 11/08 11/15 22 11/22 11/29 ( ) 12/06 12/13 L p L p Hölder 12/20 1/10 1/17 ( ) URL: http://www.math.tohoku.ac.jp/ hattori/hattori.htm

More information

DS II 方程式で小振幅周期ソリトンが関わる共鳴相互作用

DS II 方程式で小振幅周期ソリトンが関わる共鳴相互作用 1847 2013 157-168 157 $DS$ II (Takahito Arai) Research Institute for Science and Technology Kinki University (Masayoshi Tajiri) Osaka Prefecture University $DS$ II 2 2 1 2 $D$avey-Stewartson $(DS)$ $\{\begin{array}{l}iu_{t}+pu_{xx}+u_{yy}+r

More information

D-brane K 1, 2 ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane

D-brane K 1, 2   ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane K 1, 2 E-mail: sugimoto@yukawa.kyoto-u.ac.jp (2004 12 16 ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane RR D-brane K D-brane K D-brane K K [2, 3]

More information

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 B =(1+R ) B +G τ C C G τ R B C = a R +a W W ρ W =(1+R ) B +(1+R +δ ) (1 ρ) L B L δ B = λ B + μ (W C λ B )

More information

1

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Ni-Cd 19 1 1 2 3 4 5 6 7 20 21 1 2 3 22 1 2 3 1 2 3 23 1 2 1 1 1 24 25 1 1 2 3 2 26 1 2 1 27 1 2 3 28 1 2 3 29 30 31 32 33 34 35 1 1 36 1 2 37 38 1 2 3 1 39

More information

2018 : msjmeeting-2018sep-11i001 WKB ( ) Eynard-Orantin WKB.,, Schrödinger WKB Voros, Painlevé (τ- ). 1. WKB,, WKB Voros WKB, Painlevé WKB. WKB, [ ],.

2018 : msjmeeting-2018sep-11i001 WKB ( ) Eynard-Orantin WKB.,, Schrödinger WKB Voros, Painlevé (τ- ). 1. WKB,, WKB Voros WKB, Painlevé WKB. WKB, [ ],. 018 : msjmeeting-018sep-11i001 WKB ( Eynard-Orantin WKB.,, Schrödinger WKB Voros, Painlevé (τ-. 1. WKB,, WKB Voros WKB, Painlevé WKB. WKB, [ ],. 1.1. WKB Voros Voros ([V] WKB (exact WKB analysis, ( 1 Schrödinger

More information

ed. by M. E. Szabo, North-Holland, 1969). [4] K. Godel, Uber eine bisher noch nicht benutzte Erweiterung des finiten Standpunktes, Dialectica, 12(1958), 280-287. (Coll. Works II, [5] G. Takeuti, Consistency

More information

取扱説明書

取扱説明書 TK-200 c OP PGM OP PGM y x f u - v m r R t Å 19 0^. o d i c k w P E 1234%678 1234%678 y r 100V 31 1 2 ) ) 1 2 3 4 5 6 7 5 6 7 8 J J 9 1 2 3 4 ) ) ) ) ) ) @ 1 2 3 1 1 1 y 0 y 2 0 y 0 3 2 y 0 e08 @

More information

メモリハイコーダ 8826

メモリハイコーダ 8826 8826 MEMORY HiCORDER 8826 2 μ 3 4 μ μ μ μ μ μ μ μ μ μ μ μ 5 6 Ethernet Ethernet 7 8 9 μ μ III μ μ μ μ μ μ μ ± 10 μ μ Ω ± C ± ± ±± ± C ± C Ω Ω μ C C C C C C C C C C ± ± ±± C±± C C C ±± C ±± C C C ±± C +

More information

2017 02 18 1 3 1.1............................... 4 1.2............................. 5 1.3 Minimum Output Entropy /........ 7 2 10 2.1 Asymptotic Geometric Analysis......... 11 2.2.................. 17

More information

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2) (1) I 44 II 45 III 47 IV 52 44 4 I (1) ( ) 1945 8 9 (10 15 ) ( 17 ) ( 3 1 ) (2) 45 II 1 (3) 511 ( 451 1 ) ( ) 365 1 2 512 1 2 365 1 2 363 2 ( ) 3 ( ) ( 451 2 ( 314 1 ) ( 339 1 4 ) 337 2 3 ) 363 (4) 46

More information