( ) >

Size: px
Start display at page:

Download "( ) >"

Transcription

1 (Ryūta Hashimoto) α α p q < p/q α q Lagrange < <.5.4 < <.4.44 < < π Yes, I have a number Napier e

2 ( ) > p q p q p q q q p q < p q, 3, 4 3, 7 5, 7, 4 7, 4 9, 99 70, 40 99, 39 69, , , ,

3 , +, + +, + + +,..., 3, 7 5, 7, 4 9, 99 70, 39 69, , ,.... ξ [ξ [ξ [ξ ξ < [ξ + ξ ξ ξ ξ ξ ξ < ξ +, ξ < ξ ξ α α α c 0 α c 0 α α c α α c α 3 α 0 α α 0 α, c 0 α 0, α, c α, α, α 0 c 0 α c..., c k α k, α k+ α k c k,... c k k n c n α n 3

4 α k+ α k c k α k c k + α k+ α α 0 α c 0 + c 0 + α c + c 0 + c + α c + α 3 α [ c 0, α [ c0, c, α [ c0, c, c, α 3 [ 3,,,,,..., [ π 3, 7, 5,, 9,,,..., [ 5, 4, 4, 4, 4,..., [ e,,,,, 4,,.... α [ c 0, c,..., c k α k [ [ [,.44...,,.44...,,, [ [, 3, [,, 7 5 ( ) a b GL(, Z) α c d ( a c ) b α aα + b d cα + d ( ) 0 α α; B(Aα) (BA)α ( A, B GL(, Z) ) 0 4

5 ( ) c + α c α 0 α [ c 0, c,..., c n, α n c0 + [ c,..., c n, α n ( ) c 0 [ c,..., c n, α n 0 ( ) ( ) c 0 c [ c,..., c n, α n 0 0 ( ) ( ) ( ) c 0 c c n α n ( ) ( ) ( ) ( ) c 0 c c k c k {p k }{ } ( p k ) ( ) ( ) ( ) ( ) c 0 c c k c k ( ) ( ) ( ) p k p k c k 0 ( ) ( ) ( ) ( ) ( ) p k p k c 0 c c k c k () ( p k ) ( ) ( p k p k p k p k ) ( ) c k 0 ( c k p k + p k c k + p k ) p k c k p k + p k, p, p 0 c 0 ; c k +, q 0, q 0 () {p k }, { } p k / k ) ( ) ( ) [ (c 0 c c k c0, c,..., c k c k ( ) p k p k c k p k c k + p k p k c k + 5

6 () p k p k ( ) k+ (3) p k.3 (3) p k p k ( )k+ (4) k (k ) p k p k c k p k + p k c k + p k c k p k p k ( )k c k p k p k ( ) k c k p k p k ( )k c k (5) k (k ) (4) k p /q > p 0 /q 0 (4) k p /q < p /q p /q > p 0 /q 0 (5) k k 3 p /q < p 3 /q 3 < p /q p 0 q 0 < p q < < p k q k < p k+ q k+ < < p k+ q k+ < p k q k < < p 3 q 3 < p q α { } c k + q 0 q q 0 q < q < q 3 < α α [ ( p k c 0, c,..., c k, α k+ α p k α k+p k + p k α k+ + p k p k ) p k p k (α k+ + ) α k+ α k+p k + p k α k+ + ( ) k (α k+ + ) 6

7 { } α 0 α p k (α k+ + ) < (c k+ + ) + α p k (α k+ + ) > ((c k+ + ) + ) (+ + ) (+ + ) < α p k < (6) + α < α p k < (7) α α α α () α {c k } k 0 c 0 0 () {p k / } k {c k } k [ Euclid a, b Euclid a/b a, b ax by a/b 7

8 .5 ξ ξ α 0 α, c 0 α 0, α c 0, c α α, α 0 c, α... c k α k, α k+ c k,... α k ξ ξ {c k } {c k } ξ GL(, Z) ξ SL(, Z). p/q α p q p q q q α p q < α p p q p q q q qα p < q α p α 3 [ (443.B) [K q 8

9 α p q q qα p < q q α p α p q. α p/q p/q 3 p/q < p 0 /q 0 p/q > p /q p k / p k+ /+ p/q k α c 0 < qα p p/q 3 p k < α < p k+ < p + q < p k p k < p q < p k+ < α < p k + k k (8) k α p q > p k+ p + q qp k+ p+ q+ q+ 0 q (7) qα p > + > α p k (9) p q q p k < p k p k (8) 0 (3) 9

10 < q p/q < q qα p < α p k (9) p/q.3 α α > / 0 k 0 < q p/q qα p q gcd(p, q) qα p p/q (p, q) (p k, ) p/q gcd(p, q) p p j q q j j q j q {q } j k q 0 q k 0j α α > / p 0 /q 0 j k j < k < q j α p j α p k < + q j + q j+ + (p, q) 3 4 (7) {q } + < + {q } j < k j k.4 p k c k p k +p k c k + c kp k +p k c k + c k c k < c k c k k k k + α p k < α < p k+ + 0

11 k k + p k+ +p k + + p k < p k+ + p k + + < α < p k+ + Faray α p k < p k+ + p k + + < p k+ + p k + + < p k < p k+ + p k + + < p k+ + p k + + < α < p k+ + < (c k+ )p k+ + p k (c k+ )+ + < c k+p k+ + p k c k+ + + p k+ + < α < p k+ + [ [.5 Lagrange α k (6) α p k < < + q k p/q α p q < q α p q < q p/q α p q < q p/q Lagrange α p q < q p q α p/q q α p qα p q > q

12 q α p q q q α p q < q q q q q p q p q q q p q p q p q α + α p q < q q + q q + q q q 0 q < q + q q < q.6 Lagrange α p q < q p/q Legendre Lagrange Vahlen p k p k+ + α p q < q α p q < 5 q p/q Hurwitz Borel p k p k+ + p k+ + α p q < 5 q C α p q < C q C > 5 p/q C 5 α + 5 p/q C > + α 5 p/q C α + p/q C > 5 α + p/q

13 GL(, Z) [,,, [,,,... C 5,, 5 m,..., 9m Lagrange spectra 4 m Markoff 3 m + m + m 3mm m Markoff Markov Waldschmidt [W Markov Markoff (,, ) Markoff chain Markoff chain Markov 006 x + y + z xyz 0 < x y z x 3 + y 3 + z 3 xyz 0 < x y z x + y + z xyz 0 < x y z Markoff.7 Lagrange Pell Lagrange Pell D N N < D X DY N X, Y N ± Pell N N < D N [H,.5 [, 7 N > 0 0 < N (X + D Y )(X D Y ) 0 < X D Y D X Y < Y 0 < X D Y N X + D Y < N D Y < Y X/Y D 3

14 N < 0 Y D X N D N > 0 < Y/X / D D Y X X X/Y D Lagrange 3 Pell [P [ 3. [,,,... [, 33 [ 7,,, 4,,,, 3,,, 3,,,, 4,,, 34 α [ c 0, c,..., c m, c m+,..., c m+l ( ) ( ) p m p m p m+l p m+l α α m+ α m+l+ q m q m q m+l q m+l α m+ α m+l+ α m+ α Lagrange {a k }{b k } α α 0 b 0 + D, a 0 (D b a 0); 0 b 0 + D c k, b k+ c k a k b k, a k+ D b k+ a 0 a k 3. D D [ D c0, c, c,..., c, c, c 0 4

15 α [ c, c,..., c n α α α [ c n,..., c, c 3.3 Pell D Pell X DY ± D l X DY X DY l X DY, X DY, X DY l (mod ), l 0 (mod 4), l (mod 4) N < D N X DY N N c ( ) k a k k c 4 Jacobi-Perron Padé Lehmar Lang ζ(3)rogers-ramanujan 5

16 [ (00) [H Hua, Loo Keng ( ). Introduction to Number Theory, Translated from Shu lun tao yin( ) by Peter Shiu, Springer-Verlag (98). [ 3 (985) [ (99) [K A. Ya. Khinchin. Continued Fractions. Dover(997). [ (987) [P O. Perron. Die Lehre von den Kettenbrüchen, Band I: Elementare Kettenbrüche, dritte, verbesserte und erweiterte auflage edition, B. G. Teubner Verlagsgesellschaft m. b. H., Stuttgart (954). [ (97) [W W. M. Waldschmidt. Open Diophantine Problems, Moscow Math. Journal vol. 4, no. (004), pp [email protected] Ryūta Hashimoto Takuma National College of Technology Takuma-cho, Mitoyo-shi, Kagawa JAPAN hasimoto/ 6

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6 26 11 5 1 ( 2 2 2 3 5 3.1...................................... 5 3.2....................................... 5 3.3....................................... 6 3.4....................................... 7

More information

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x >

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x > 5.1 1. x = a f (x) a x h f (a + h) f (a) h (5.1) h 0 f (x) x = a f +(a) f (a + h) f (a) = lim h +0 h (5.2) x h h 0 f (a) f (a + h) f (a) f (a h) f (a) = lim = lim h 0 h h 0 h (5.3) f (x) x = a f (a) =

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

1 P2 P P3P4 P5P8 P9P10 P11 P12

1 P2 P P3P4 P5P8 P9P10 P11 P12 1 P2 P14 2 3 4 5 1 P3P4 P5P8 P9P10 P11 P12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 & 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1! 3 2 3! 4 4 3 5 6 I 7 8 P7 P7I P5 9 P5! 10 4!! 11 5 03-5220-8520

More information

2008 (2008/09/30) 1 ISBN 7 1.1 ISBN................................ 7 1.2.......................... 8 1.3................................ 9 1.4 ISBN.............................. 12 2 13 2.1.....................

More information

福岡大学人文論叢47-3

福岡大学人文論叢47-3 679 pp. 1 680 2 681 pp. 3 682 4 683 5 684 pp. 6 685 7 686 8 687 9 688 pp. b 10 689 11 690 12 691 13 692 pp. 14 693 15 694 a b 16 695 a b 17 696 a 18 697 B 19 698 A B B B A B B A A 20 699 pp. 21 700 pp.

More information

untitled

untitled 13 50 15 6.0 0.25 220 23 92 960 16 16 3.9 3.9 12.8 83.3 7 10 1150 90 1035 1981 1850 4700 4700 15 15 1150 1150 10 12 31 1.5 3.7%(224 ) 1.0 1.5 25.4%(1522 ) 0.7 30.6 1835 ) 0.7 1.0 40.3 (2421 ) 7.3

More information

JAPAN MARKETING JOURNAL 110 Vol.28 No.22008

JAPAN MARKETING JOURNAL 110 Vol.28 No.22008 Vol.28 No.22008 JAPAN MARKETING JOURNAL 110 Vol.28 No.22008 JAPAN MARKETING JOURNAL 110 Vol.28 No.22008 JAPAN MARKETING JOURNAL 110 Vol.28 No.22008 JAPAN MARKETING JOURNAL 110 Vol.28 No.22008 JAPAN MARKETING

More information

2

2 1 2 119 119 5 500 1 30 102 1 113 3 4 120 2 3 113 5 230 1 1 3 4 5 6 7 8 1 [email protected] 2 9 3 ( ) 10 11 12 4 1. 2. 3. 4. 13 5 14 15 16 17 18 19 [ ] [ ] 20 [ ] [ ] [ ] 21 22 [ ] 23 < > < >

More information

旭川工業高等専門学校 学校だよりファンクト

旭川工業高等専門学校 学校だよりファンクト FANCT CONTENTS 1 3 7 8 9 11 12 13 14 15 16 17 18 19 Vol.114 Asahikawa National College of Technology 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 FANCT Vol. 114 Asahikawa National College of Technology

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2 1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac

More information

1 n =3, 2 n 3 x n + y n = z n x, y, z 3 a, b b = aq q a b a b b a b a a b a, b a 0 b 0 a, b 2

1 n =3, 2 n 3 x n + y n = z n x, y, z 3 a, b b = aq q a b a b b a b a a b a, b a 0 b 0 a, b 2 n =3, 200 2 10 1 1 n =3, 2 n 3 x n + y n = z n x, y, z 3 a, b b = aq q a b a b b a b a a b a, b a 0 b 0 a, b 2 a, b (a, b) =1a b 1 x 2 + y 2 = z 2, (x, y) =1, x 0 (mod 2) (1.1) x =2ab, y = a 2 b 2, z =

More information

JAPAN MARKETING JOURNAL 123 Vol.31 No.32012

JAPAN MARKETING JOURNAL 123 Vol.31 No.32012 Japan Marketing Academy JAPAN MARKETING JOURNAL 123 Vol.31 No.32012 JAPAN MARKETING JOURNAL 123 Vol.31 No.32012 JAPAN MARKETING JOURNAL 123 Vol.31 No.32012 JAPAN MARKETING JOURNAL 123 Vol.31 No.32012 JAPAN

More information

JAPAN MARKETING JOURNAL 110 Vol.28 No.22008

JAPAN MARKETING JOURNAL 110 Vol.28 No.22008 JAPAN MARKETING JOURNAL 110 Vol.28 No.22008 JAPAN MARKETING JOURNAL 110 Vol.28 No.22008 JAPAN MARKETING JOURNAL 110 Vol.28 No.22008 JAPAN MARKETING JOURNAL 110 Vol.28 No.22008 JAPAN MARKETING JOURNAL 110

More information

untitled

untitled 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 ( ) 1 ( ) ( ) ( ) ( ) 3 ( ) a b ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 4 ( ) ( ) ( ) ( ) ( ) ( ) < > 5 a b c d ( ) ( ) ( ) ( ) ( ) 18 73 ( ) ( ) a b 6 6 c ( ) (

More information

... 3... 3... 3... 3... 4... 7... 10... 10... 11... 12... 12... 13... 14... 15... 18... 19... 20... 22... 22... 23 2

... 3... 3... 3... 3... 4... 7... 10... 10... 11... 12... 12... 13... 14... 15... 18... 19... 20... 22... 22... 23 2 1 ... 3... 3... 3... 3... 4... 7... 10... 10... 11... 12... 12... 13... 14... 15... 18... 19... 20... 22... 22... 23 2 3 4 5 6 7 8 9 Excel2007 10 Excel2007 11 12 13 - 14 15 16 17 18 19 20 21 22 Excel2007

More information

P-12 P-13 3 4 28 16 00 17 30 P-14 P-15 P-16 4 14 29 17 00 18 30 P-17 P-18 P-19 P-20 P-21 P-22

P-12 P-13 3 4 28 16 00 17 30 P-14 P-15 P-16 4 14 29 17 00 18 30 P-17 P-18 P-19 P-20 P-21 P-22 1 14 28 16 00 17 30 P-1 P-2 P-3 P-4 P-5 2 24 29 17 00 18 30 P-6 P-7 P-8 P-9 P-10 P-11 P-12 P-13 3 4 28 16 00 17 30 P-14 P-15 P-16 4 14 29 17 00 18 30 P-17 P-18 P-19 P-20 P-21 P-22 5 24 28 16 00 17 30 P-23

More information

MultiWriter 5600C 活用マニュアル

MultiWriter 5600C 活用マニュアル 1 *1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 9 1 2 3 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 1 2 3 a b c 26 27 28 C *1 *2 *2 29 2 2 2 2 2 2 2 2 2 30 *1 *2 ± *1 C C 31 32 33 34 35 36 M C Y K 1 2 3 4 5 6

More information

http://banso.cocolog-nifty.com/ 100 100 250 5 1 1 http://www.banso.com/ 2009 5 2 10 http://www.banso.com/ 2009 5 2 http://www.banso.com/ 2009 5 2 http://www.banso.com/ < /> < /> / http://www.banso.com/

More information

II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1

II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1 II 2014 1 1 I 1.1 72 r 2 72 8 72/8 = 9 9 2 a 0 1 a 1 a 1 = a 0 (1+r/100) 2 a 2 a 2 = a 1 (1 + r/100) = a 0 (1 + r/100) 2 n a n = a 0 (1 + r/100) n a n a 0 2 n a 0 (1 + r/100) n = 2a 0 (1 + r/100) n = 2

More information

0 (18) /12/13 (19) n Z (n Z ) 5 30 (5 30 ) (mod 5) (20) ( ) (12, 8) = 4

0   (18) /12/13 (19) n Z (n Z ) 5 30 (5 30 ) (mod 5) (20) ( ) (12, 8) = 4 0 http://homepage3.nifty.com/yakuikei (18) 1 99 3 2014/12/13 (19) 1 100 3 n Z (n Z ) 5 30 (5 30 ) 37 22 (mod 5) (20) 201 300 3 (37 22 5 ) (12, 8) = 4 (21) 16! 2 (12 8 4) (22) (3 n )! 3 (23) 100! 0 1 (1)

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

n=360 28.6% 34.4% 36.9% n=360 2.5% 17.8% 19.2% n=64 0.8% 0.3% n=69 1.7% 3.6% 0.6% 1.4% 1.9% < > n=218 1.4% 5.6% 3.1% 60.6% 0.6% 6.9% 10.8% 6.4% 10.3% 33.1% 1.4% 3.6% 1.1% 0.0% 3.1% n=360 0% 50%

More information

untitled

untitled 20 7 1 22 7 1 1 2 3 7 8 9 10 11 13 14 15 17 18 19 21 22 - 1 - - 2 - - 3 - - 4 - 50 200 50 200-5 - 50 200 50 200 50 200 - 6 - - 7 - () - 8 - (XY) - 9 - 112-10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 -

More information

untitled

untitled 19 1 19 19 3 8 1 19 1 61 2 479 1965 64 1237 148 1272 58 183 X 1 X 2 12 2 15 A B 5 18 B 29 X 1 12 10 31 A 1 58 Y B 14 1 25 3 31 1 5 5 15 Y B 1 232 Y B 1 4235 14 11 8 5350 2409 X 1 15 10 10 B Y Y 2 X 1 X

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................ 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)

More information

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a 9 203 6 7 WWW http://www.math.meiji.ac.jp/~mk/lectue/tahensuu-203/ 2 8 8 7. 7 7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa,

More information

untitled

untitled 10 log 10 W W 10 L W = 10 log 10 W 10 12 10 log 10 I I 0 I 0 =10 12 I = P2 ρc = ρcv2 L p = 10 log 10 p 2 p 0 2 = 20 log 10 p p = 20 log p 10 0 2 10 5 L 3 = 10 log 10 10 L 1 /10 +10 L 2 ( /10 ) L 1 =10

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

BIT -2-

BIT -2- 2004.3.31 10 11 12-1- BIT -2- -3-256 258 932 524 585 -4- -5- A B A B AB A B A B C AB A B AB AB AB AB -6- -7- A B -8- -9- -10- mm -11- fax -12- -13- -14- -15- s58.10.1 1255 4.2 30.10-16- -17- -18- -19-6.12.10

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 0 1 2 3 4 5 6 1964 1978 7 0.0015+0.013 8 1 π 2 2 2 1 2 2 ( r 1 + r3 ) + π ( r2 + r3 ) 2 = +1,2100 9 10 11 1.9m 3 0.64m 3 12 13 14 15 16 17 () 0.095% 0.019% 1.29% (0.348%) 0.024% 0.0048% 0.32% (0.0864%)

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

2

2 2007 8 12 1 Q&A Q1 A 2007 6 29 2008 1 1 14 1 12 1 2 3 1 1 13 1 2 15 1 1 2 Q2 A 627 1 20 1 1 3 15 2003 18 2 3 4 5 3 406 44 2 1997 7 16 5 1 1 15 4 52 1 31 268 17 5 60 55 50 1999 3 9 1999 3 39 40 44 100 1

More information

項 目

項 目 1 1 2 3 11 4 6 5 7,000 2 120 1.3 4,000 04 450 < > 5 3 6 7 8 9 4 10 11 5 12 45 6 13 E. 7 B. C. 14 15 16 17 18 19 20 21 22 23 8 24 25 9 27 2 26 6 27 3 1 3 3 28 29 30 9 31 32 33 500 1 4000 0 2~3 10 10 34

More information

2 1 17 1.1 1.1.1 1650

2 1 17 1.1 1.1.1 1650 1 3 5 1 1 2 0 0 1 2 I II III J. 2 1 17 1.1 1.1.1 1650 1.1 3 3 6 10 3 5 1 3/5 1 2 + 1 10 ( = 6 ) 10 1/10 2000 19 17 60 2 1 1 3 10 25 33221 73 13111 0. 31 11 11 60 11/60 2 111111 3 60 + 3 332221 27 x y xy

More information

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED)

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) rational number p, p, (q ) q ratio 3.14 = 3 + 1 10 + 4 100 ( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) ( a) ( b) a > b > 0 a < nb n A A B B A A, B B A =

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

2 probably 3 probability theory probability theory (gàil`ü) 2 1960 2.1, 1: 583 589 666 1853 2967 2 3 1973

2 probably 3 probability theory probability theory (gàil`ü) 2 1960 2.1, 1: 583 589 666 1853 2967 2 3 1973 ( ) ( C) 1 probability probability probable probable probable probable probably probably maybe perhaps possibly likely possibly

More information