( 3) b 1 b : b b f : a b 1 b f = f (2.7) g : b c g 1 b = g (2.8) 1 b b (identity arrow) id b f a b g f 1 b b c g (2.9) 3 C C C a, b a b Hom C (a, b) h

Size: px
Start display at page:

Download "( 3) b 1 b : b b f : a b 1 b f = f (2.7) g : b c g 1 b = g (2.8) 1 b b (identity arrow) id b f a b g f 1 b b c g (2.9) 3 C C C a, b a b Hom C (a, b) h"

Transcription

1 Lie (category) (object) a, b, c, a b (arrow, morphism) f : a b (2.1) f a b (2.2) ( 1) f : a b g : b c (composite) g f : a c ( 2) f f a b g f g c g h (2.3) a b c d (2.4) h (g f) = (h g) f (2.5) g f h h g f f a b g h g g f c d h (2.6) 1

2 ( 3) b 1 b : b b f : a b 1 b f = f (2.7) g : b c g 1 b = g (2.8) 1 b b (identity arrow) id b f a b g f 1 b b c g (2.9) 3 C C C a, b a b Hom C (a, b) hom-set 2.2 a a a (endomorphism) f : a b f : b a f : b a f f = 1 b f f = 1 a, (2.10) f f (right inverse) f f (left inverse) f = 1 a f = (f f) f = f (f f ) = f 1 b = f (2.11) f b a 1 1 a f b b a f = f f (inverse) f = f 1 f (invertible) (isomorphism) a b (isomorphic) a = b a a a (automorphism) Set f 1 : a 1 a 2, f 2 : a 2 a 4, f 3 : a 1 a 3, f 4 : a 3 a 4 f f 2 f 1 = f 4 f 3 (2.12) 2

3 (commutative diagram) a 1 a 4 f 3 a 1 f 1 a 2 f 2 g 3 g 1 a 3 f 4 a 4 g 2 (2.13) g 2 g 1 = g (groupoid) 2.4 (group) 2.5 Set, Top, rp, Mod, Vct K, Pos (partially ordered set), P (X) 2.6 C D C a, b D F a, F b C f : a b D F f : F a F b F F (g f) = F g F f (2.14) F (1 a ) = 1 F a (2.15) F C D (covariant functor) (functor) F : C D a F a f F f C f a b g f c g F F a F f F b F (g f)=f g F f F g F F c D (2.16) 3

4 C a, b D a, b C f : a b D f : b a (g f) = f g (2.17) (1 a ) = 1 a (2.18) C D (contravariant functor) C f a b g f c g a f b (g f)=f g g c D (2.19) F : C D C a b F D F a F b a b (2.10) f : a b f : b a f f = 1 a, f f = 1 b (2.20) F F (f) : F a F b F (f ) : F b F a (2.14), (2.15) F (f ) F (f) = 1 F a, F (f) F (f ) = 1 F b (2.21) F a F b D 1 a a f F F a F f 1 F a (2.22) C a b f f b 1 b F F a F b D F f 1 F b F F f F b a = b F a = F b (2.23) a = b a = b (2.24) 2.7 P : Set Set, P : Set Set, ϕ : Pos Pos, : Vct K Vct K, U : rp Set, : Set Mod, : Set Vct K, : Set rp 4

5 2.8 C D F, F F F (natural transformation) T : F F C a D T a : F a F a a, b f C a f b F F a F f F b T a T D b F F a F f F b (2.25) Vct Vct Z, Z n, S n, L(n, R), SL(n, R), O(n), SO(n), U(1), U(n), SU(n), R n, E(n) = O(n) R n, 3 U(1) := {z C ; z = 1} = {e iθ ; θ R}, (3.1) T := R/2πZ, SO(2) := {g M(2, R); g g = 1, det g = 1} = {( cos θ sin θ ) } sin θ ; θ R cos θ (3.2) (3.3) 3.2 N K 3.3 Lie 5

6 3.4 X, AutX, Banach 4.3 Euclid Minkowski Hilbert 4.4 Lorentz Sp(n) = {g U(2n); g J n g = J n } Hilbert 6

7 5.2 (intertwining operator, intertwiner) g π π(g) V V T T Vct π V V π (g) (5.1) 2 (π, V ) (π, V ) Hom (V, V ) Hom (V, V ), Schur Schur 2 π, π C Hilbert V, V V, V T : V V g, T π(g) = π (g)t (5.2) (i) π π T = 0. (ii) π π I : V V T = λi λ C π = π T = λ id V (1) Ker T Im T (2) T Ker T V V Im T Hilbert V V Im T V Im T V (3) T 0 (π, V ) Ker T = {0}(π, V ) Im T = V T π π (i) (4) (ii) T I 1 T (π, V ) = (π, V ) T : V V T λ 1 (5.2) T λid V π(g) Ker (T λid V ) V {0} Ker (T λid V ) V (5.3) (π, V ) Ker (T λid V ) = V T = λid V 7

8 (π, V ) (π, V ) T : V V, g, T π(g) = π(g)t λ C, T = λid V (5.4) (outer tensor product representation) π 1 π 2 6 Lie 6.1 Lie Lie Lie Lie Jacobi identity, Lie Lie 6.2 Lie Lie Lie g gl(n, R), gl(n, C), sl(n, R), sl(n, C), o(n), u(n), su(n), o(1, 3) 6.3 R U(1), SU(2) SO(3), SL(2, C) SO (1, 3) 7 Peter-Weyl 7.1 Baire Haar 0 Baire Baire dg = 1 Haar SU(2) Haar p.84, p.64 L(2, R) p.87 8

9 Haar dg (π, V ) v V ṽ := π(g)v dg (7.1) ṽ h π(h)ṽ = π(h) π(g)v dg = π(h)π(g)v dg = π(hg)v dg = π(g)v dg = ṽ (7.2) 7.2 Schur (π, V ), (π, V ) V, V dg Haar v, w V, v, w V v, π(g)w v, π (g)w dg = { 0 (π π ) 1 dim V v, v w, w (π = π ) V, V π(g), π (g) π ij (g), π kl (g) π ij (g)π kl (g) dg = { (1) 0 (π π ) 1 dim V δ ikδ jl (π = π ) (7.3) (7.4) A : V V Hom C (V, V ) (v, v ) A v,v : V V w A v,v (w ) := v v, w (7.5) v 0, v 0 Im A v,v = Cv V 1 (2) Hom C (V, V ) Hom (V, V ), B B := π(g) B π (g 1 ) (7.6) B h Bπ (h) = π(h) B (7.7) B (π, V ) (π, V ) intertwiner 9

10 (3) (7.6) A v,v à v,v (π, V ) (π, V ) intertwiner Schur π = π à v,v = 0 π = π à v,v = λ id V (7.8) λ C (4) (7.3) w, π(g) v v, π (g)w dg = w, à v,v w = { 0 (π π ) λ w, w (π = π ) (7.9) (5) π = π (7.8) Tr à v,v = Tr A v,v = v, v = λ Tr(id V ) = λ dim V (7.10) λ = 1 dim V v, v (7.11) (7.3) 7.3 Haar dg L 2 () := {ψ : C ψ(g) 2 dg < } (7.12) L 2 () Hilbert ϕ, ψ := ϕ(g)ψ(g) dg (7.13) π L (h)ψ(g) := ψ(h 1 g), π R (h)ψ(g) := ψ(gh) (7.14) π L, π R L 2 () π L π R L 2 () ((π L π R )(h l, h r )ψ)(g) := ψ(h 1 l gh r ) (7.15) Ĝ (group dual) (π, V π ) Ĝ d π = dim V π (π, V π ) Ĝ V π f π (g)f := f π(g 1 ) V π (7.16) Φ π : V π V π L 2 () f v Φ π (f, v) : C g Φ π (f, v)(g) := d π f, π(g)v (7.17) 10

11 π π π L π R intertwiner Peter-Weyl Φ : π V π V π L 2 () c = π,i f π i v π i Φ(c) : C g Φ(c)(g) := π,i dπ f i, π(g)v i (7.18) π π π π L π R intertwiner { dπ π ij (g) π Ĝ; i, j = 1, 2,, d π} L 2 () ψ L 2 () (7.19) dπ c π ij π ij (g) (7.20) ψ(g) = π Ĝ i,j c π ij = d π π ij (g)ψ(g) dg (7.21) (7.19) f L 2 (), π Ĝ, i, j 1, 2,, d π, f(g)π ij (g)dg = 0 f 0 (7.22) (1) h(g) h(g 1 ) = h(g) h π ij h 0 (A h ψ)(g) := h(gx 1 )ψ(x) dx (7.23) A h L 2 () 0 Schwarz h ϕ, A h ψ = = ϕ(g)h(gx 1 )ψ(x) dxdg ϕ(g)h(xg 1 )ψ(x) dxdg = A h ϕ, ψ (7.24) (2) A h 0 σ E σ A h p.154 A h ψ E σ π ij 11

12 (3) a, f L 2 () (T a f)(g) := f(ga) (7.25) T a A h T a E σ U a := T a Eσ E σ π ν 1,, ν d ν j (ga) = (U a ν j )(g) = d π ij (a)ν i (g) (7.26) i=1 g = e d ν j (a) = π ij (a)ν i (e) (7.27) i=1 ν j π ij ν j E σ π ij ν j = 0 E σ = {0} E σ {0} h = 0 (4) h(g 1 ) = h(g) f L 2 () π ij f = 0 f L 2 () π ij s(x) = f(xy)f(y) dy (7.28) π ij, s = π ij (x)s(x) dx = π ij (x)f(xy)f(y) dx dy = π ij (zy 1 )f(z)f(y) dz dy = π ik (z)π jk (y)f(z)f(y) dz dy k = 0 (7.29) s π ij (5) h(x) = s(x) + s(x 1 ) h(x) h = 0. s(e) = f(y)f(y) dy (7.30) 0 = h(e) = s(e) + s(e) = 2s(e) f(y) 2 dy = 0. f = 0 12

13 7.4 = π Ĝ(dim V π ) 2, (7.31) Ĝ = (7.32) U(1) SU(2) 8.1 U(1) 8.2 SU(2) SU(2) SU(2) := = { ( α g = β { ( α g = β ) ( ) } γ 1 0 M(2, C) δ g g =, det g = β ) } M(2, C) ᾱ α 2 + β 2 = 1 (8.1) SU(2) = S 3. C 2 ( ) ( ) g SU(2), C 2 z αz + γw v = gv = w βz + δw 2 ψ(z, w) = ψ(v) L SU(2) C 2 (8.2) ψ(v) (U g ψ)(v) := ψ(g 1 v) = ψ(δz γw, βz + αw) (8.3) U g1 U g2 = U g1 g 2 ψ ψ(z, w) = a 0 z n + a 1 z n 1 w + a 2 z n 2 w a n 1 zw n 1 + a n w n (8.4) U g ψ n L n (n = 0, 1, 2, ) SU(2) dim L n = n + 1 L SU(2) ψ(z) dz d z = ψ(x + iy) dx dy = 2π 0 0 ψ(re iθ ) rdr dθ (8.5) 13

14 ϕ, ψ := ϕ(z, w)ψ(z, w) e z 2 w 2 dz d z dw d w (8.6) U g ϕ, U g ψ = ϕ, ψ 2π 0 0 r 2k e r2 rdr dθ = π 0 t k e t dt = π Γ (k + 1) = π k! (8.7) z k w m, z p w q = δ kp δ mq π 2 k! m! (8.8) 2 n L n (n = 0, 1, 2, ) SU(2) n + 1 SU(2) (1) SU(2) ( ) α 0 g 1 = 0 α 1, α C, α = 1, (8.9) ( ) cos θ sin θ g 2 =, θ R (8.10) sin θ cos θ L n A U g1, U g2 ϕ k = z k w n k U g1 ϕ k = α 2k n z k w n k α n, α n 2,, α n α U g1 1 A U g1 A Aϕ k = λ k ϕ k λ k C U g2 z n = (z cos θ + w sin θ) n = A U g2 0 = [A, U g2 ]z n = n z k w n k cos k θ sin n k θ (8.11) k=0 n (λ k λ n )z k w n k cos k θ sin n k θ (8.12) k=0 λ k λ n (k = 0,, n). A = λ n id Schur (L n, U) (2) SU(2) ( ) e iθ 0 g = 0 e iθ, 0 θ π (8.13) SU(2) 2π L n χ n (g) = e inθ + e i(n 2)θ + e i(n 4)θ + + e i( n+2)θ + e inθ (8.14) 14

15 χ n (g) χ n 1 (g) = e inθ + e inθ = cos nθ (8.15) n = 0, 1, 2, 2π SU(2) (Clebsch-ordan ) χ m χ n = χ m+n + χ m+n χ m n (8.16) χ 1 χ 1 = χ 2 + χ = 3 1 χ 2 χ 1 = χ 3 + χ = 5 1 χ 2 χ 2 = χ 4 + χ 2 + χ = χ 5 χ 2 = χ 7 + χ 5 + χ = χ 7 χ 7 = χ 14 + χ χ = (8.17) intertwiner Clebsch-ordan 8.3 SU(3) Young 3 3 = 6 3 (8.18) 3 3 = 8 1 (8.19) 6 3 = 10 8 (8.20) 8 8 = (8.21) p Fourier-Pontryagin duality (locally compact Hausdorff Abelian group) Z p Z U(1) γ γ : U(1) (character) γ : U(1), g γ(g), (9.1) γ(g 1 g 2 ) = γ(g 1 )γ(g 2 ) (9.2) γ(g 1 ) = γ(g) (9.3) 15

16 Ĝ = {γ} (γ 1 γ 2 )(g) := γ 1 (g)γ 2 (g) (9.4) Ĝ (dual group) (character group) Ĝ Ĝ = (9.5) Fourier γ 1 (g)γ 2 (g)dg = δ γ1,γ 2 (9.6) γ(g 1 )γ(g 2 )dγ = δ g1,g 2 (9.7) Ĝ Fourier Hilbert H U U : U(H), g U(g) (9.8) P γ := γ(g)u(g)dg (9.9) (9.10) P γ = γ(g)u(g) dg = γ(g 1 )U(g 1 )dg = γ(g)u(g)dg P γ = P γ, (9.10) P α P β = δ αβ P β, (9.11) P γ dγ = 1, (9.12) Ĝ U(g)P γ = γ(g)p γ, (9.13) P γ U(g) = γ(g)p γ, (9.14) γ(g)p γ dγ = U(g) (9.15) Ĝ = P γ (9.16) 16

17 (9.11) (9.12) P α P β = α(g)u(g)dg β(h)u(h)dh = dg dh α(g)β(h)u(gh) = dg dh α(g)β(g 1 h)u(h) = dh dg α(g)β(g)β(h)u(h) = δ α,β dh β(h)u(h) Ĝ = δ αβ P β (9.17) P γ dγ = = = Ĝ dγ dg Ĝ dg δ g,e U(g) dg γ(g)u(g) dγ γ(g)γ(e) U(g) = U(e) = 1 (9.18) (9.13) U(g)P γ = U(g) γ(h)u(h)dh = γ(h)u(gh)dh = γ(g 1 h)u(h)dh = γ(g 1 )γ(h)u(h)dh = γ(g) γ(h)u(h)dh = γ(g)p γ (9.19) (9.14) (9.15) γ(g)p γ dγ = dγ γ(g) dh γ(h)u(h) Ĝ Ĝ = dh dγ γ(h)γ(g) U(h) Ĝ = dh δ g,h U(h) = U(g) (9.20) 9.2 Doplicher-Roberts category Doplicher-Roberts T 17

18 (i) (ii) 2 π, π Hom(π, π ) T (λ 1 S 1 + λ 2 S 2 ) = λ 1 T S 1 + λ 2 T S 2 (9.21) (λ 1 T 1 + λ 2 T 2 ) S = λ 1 T 1 S + λ 2 T 2 S (9.22) π π π (9.23) λ 1 T S 1 +λ 2 T S 2 S 1 S 2 λ 1 S 1 +λ 2 S 2 π π π T π (iii) Hom(π, π ) Banach (iv) S : π π, T : π π T S T S (v) : T T S : π π S : π π (vi) S S = S 2 (C -norm property) (λ 1 S 1 + λ 2 S 2 ) = λ 1 S 1 + λ 2 S 2 (9.24) (S ) = S (9.25) (T S) = S T (9.26) (vii) E Hom(π, π) E = E, E 2 = E E V Hom(σ, π) V V = 1 σ V E V V = E V : σ π σ E subobject σ 1, σ 2 V 1 : σ 1 π, V 2 : σ 2 π V 1 V1 + V 2 V2 = 1 π π σ 2 V 2 V2 V 1 σ 1 π V1 1 π (9.27) (viii) 2 ρ, τ ρ τ 2 R : ρ ρ, T : τ τ R T : ρ τ ρ τ R, T ρ σ ρ σ (ρ σ) τ ρ (σ τ) (9.28) R S R S (R S) T R (S T ) ρ σ ρ σ (ρ σ ) τ ρ (σ τ ) 18

19 (ix) (R T ) (R T ) = (R R) (T T ) (9.29) ρ τ ρ τ ρ τ ρ τ (9.30) R ρ T τ R R T T R R T T R T ρ τ R T R T ρ τ ρ τ ρ τ ρ τ (x) (R T ) = R T (9.31) (xi) i π i τ = τ i = τ T : τ τ 1 i T = T 1 i = T (9.32) Hom(i, i) = C1 i (9.33) 1 (xii) U : π π U U = 1 π, U U = 1 π τ, ρ ρ τ τ ρ ε(ρ, τ) ε(ρ, τ ) (R T ) = (T R) ε(ρ, τ) (9.34) ε(τ, ρ) ε(ρ, τ) = 1 ρ τ (9.35) ε(i, ρ) = ε(ρ, i) = 1 ρ (9.36) ε(ρ σ, τ) = (ε(ρ, τ) 1 σ ) (1 ρ ε(σ, τ)) (9.37) 19

20 ρ τ ρ τ ρ τ ε(ρ,τ) τ ρ (9.38) R T ε(ρ,τ) R T T R ρ τ τ ρ ρ τ τ ρ ε(ρ,τ ) ρ τ 1 ρ τ (9.39) ε(ρ,τ) τ ρ ε(τ,ρ) ρ τ i ρ ρ ρ i (9.40) ε(i,ρ) 1 ρ ε(ρ,i) ρ i ρ i ρ ρ σ τ ε(ρ σ,τ) ρ τ σ τ ρ σ ε(ρ,τ) 1σ 1 ρ ε(σ,τ) (9.41) (xiii) ρ (conjugate) ρ R : i ρ ρ R := ε( ρ, ρ) R : i ρ ρ ( R 1 ρ ) (1 ρ R) = 1 ρ (9.42) (R 1 ρ ) (1 ρ R) = 1 ρ (9.43) R i R R ρ ρ ρ ρ ε( ρ,ρ) ρ i = ρ 1 ρ ρ ρ ρ i ρ = ρ R 1 ρ 1 ρ R i R R ρ ρ ρ ρ ε(ρ, ρ) i ρ = ρ 1 ρ ρ ρ ρ ρ i = ρ R 1 ρ 1 ρ R (9.44) (9.45) T DR C T (i)-(iv) T Banach (i)-(v) Banach (i)-(vi) C (i), (ii), (viii), (ix) Doplicher-Roberts intertwiner DR Rep() Rep 20

21 DR T T = Rep() π T (9.46) V g V π π V V π T V V π π T π(g) π (g) V V π V π T V Vct intertwiner. DR V Mackey s imprimitivity system Curie intertwiner

22 SU(2) Haar Hopf bundle: SU(2) S 3 = SU(2) U(1) = S 1 ρ S 2 (13.1) SU(2) := {g Mat(2, C) g g = gg = I, det g = 1} = S 3 R 4 (13.2) ( ) y 0 + iy 3 iy 1 + y 2 g = det g = (y 0 ) 2 + (y 1 ) 2 + (y 2 ) 2 + (y 3 ) 2 = 1 (13.3) iy 1 y 2 y 0 iy 3 su(2) R 3 Hopf R 3 = su(2), x = (x1, x 2, x 3 ) x = x 1 σ 1 + x 2 σ 2 + x 3 σ 3 (13.4) ρ : SU(2) = S 3 S 2 su(2), g gσ 3 g = ñ = n 1 σ 1 + n 2 σ 2 + n 3 σ 3 (13.5) fiber ρ 1 (σ 3 ) = {e 1 2 iσ 3ψ ψ R} = U(1) = S 1. Hopf Hopf τ : R 4 R + S 3 R + S 2 R 3, ( r, g) (r, gσ 3 g ) Mat(2, C) q = rg = q 0 + iσ k q k x = qσ 3 q = r gσ 3 g = σ k x k su(2) ( ) ( ) q 0 + iq 3 iq 1 + q 2 x 3 x 1 ix 2 iq 1 q 2 q 0 iq 3 x 1 + ix 2 x 3 q 0 q x 1 2q 0 q 2 + 2q 1 q 3 1 q 2 x 2 = 2q 0 q 1 + 2q 2 q 3 (13.6) x 3 q0 2 q2 1 q2 2 + q2 3 q 3 x 2 = det x = det(qσ 3 q ) = det(σ 3 ) det(q) det(q) = (det q) 2 = q 4 r = q 2 = x (13.7) 22

23 Hopf x 1 q 2 q 3 q 0 q 1 x 2 x 3 = q 1 q 0 q 3 q 2 q 0 q 1 q 2 q 3 0 q 3 q 2 q 1 q 0 q 0 q 1 q 2 q 3 = W q 0 q 1 q 2 q 3 (13.8) W T W = W W T = q 2 I Hopf Euler angles: τ : C 2 R 3, ( ) ψ σ 1 ψ q 0 + iq 3 ψ = = ψ σ 2 ψ (13.9) iq 1 q 2 ψ σ 3 ψ g = e i 2 σ 3ϕ e i 2 σ 2θ e i 2 σ 3ψ x 1 x 2 x 3 (13.10) gσ 3 g = σ 1 sin θ cos ϕ + σ 2 sin θ sin ϕ + σ 3 cos θ (13.11) SU(2) 0 < θ < π, 0 ϕ < 2π, 0 ψ < 4π. g N = e i 2 σ 3ϕ e i 2 σ 2θ e + i 2 σ 3ϕ e i 2 σ 3ψ g S = e i 2 σ 3ϕ e i 2 σ 2θ e i 2 σ 3ϕ e i 2 σ 3ψ Maurer-Cartan 1-form: g dg = i { σ 1 (sin ψ dθ cos ψ sin θ dϕ) 2 } +σ 2 (cos ψ dθ + sin ψ sin θ dϕ) + σ 3 (dψ + cos θ dϕ) = i { } σ1 α 1 + σ 2 α 2 + σ 3 α 3 2 (13.12) (13.13) (13.14) α 1 α 2 α 3 sin ψ cos ψ sin θ 0 dθ = cos ψ sin ψ sin θ 0 dϕ (13.15) 0 cos θ 1 dψ 3-form Trg dg g dg g dg = ( i 2) 3 3! σ1 σ 2 σ 3 α 1 α 2 α 3 = i 6 2i sin θ dθ dϕ dψ 8 = 3 sin θ dθ dϕ dψ 2 (13.16) sin θ dθ dϕ dψ = 2 2π 4π = 16π 2 (13.17) 23

24 Haar SU(2) = S 3 SU(2) Tr(g dg) (g dg) = 1 2 Ω = 1 sin θ dθ dϕ dψ (13.18) 16π2 { dθ 2 + (sin θ dϕ) 2 + (dψ + cos θ dϕ) 2} (13.19) q = rg q = q 0 + iσ k q k Mat(2, C) SU(2) q dq q dq = 1 2 dr + rg dg = η 0 + iσ k η k = q 0 dq 0 + q 1 dq 1 + q 2 dq 2 + q 3 dq 3 +iσ 1 ( q 1 dq 0 + q 0 dq 1 q 3 dq 2 + q 2 dq 3 ) +iσ 2 ( q 2 dq 0 + q 3 dq 1 + q 0 dq 2 q 1 dq 3 ) η 0 η 1 η 2 η 3 = +iσ 3 ( q 3 dq 0 q 2 dq 1 + q 1 dq 2 + q 0 dq 3 ) (13.20) q 0 q 1 q 2 q 3 dq 0 dq 0 q 1 q 0 q 3 q 2 dq 1 q 2 q 3 q 0 q 1 dq 2 = Q dq 1 (13.21) dq 2 q 3 q 2 q 1 q 0 dq 3 dq 3 Q Q T Q = QQ T = q 2 I q 2 = q 2 0 +q2 1 +q2 2 +q2 3 = det q = 1 2 Trq q SU(2) (13.14) (13.20) rg dg (13.21) 1 2 rα k = η k k = 1, 2, 3 (13.22) dq 0 η 0 q 0 q 1 q 2 q 3 dr dq 1 dq 2 = 1 η 1 q 2 QT η 2 = 1 q 1 q 0 q 3 q 2 rα 1 2r q 2 q 3 q 0 q 1 rα 2 dq 3 η 3 q 3 q 2 q 1 q 0 rα 3 q 0 q 1 q 2 q dr = 1 q 1 q 0 q 3 q 2 0 r sin ψ r cos ψ sin θ 0 dθ 2r q 2 q 3 q 0 q 1 0 r cos ψ r sin ψ sin θ 0 dϕ (13.23) q 3 q 2 q 1 q r cos θ r dψ Q = R 4 {0} = R + S 3 g Q := 2 Tr(q dq) (q dq) 1 } = 2{ 2 dr2 + r 2 Tr(g dg) (g dg) = dr 2 + r 2( dθ 2 + (sin θ dϕ) 2 + (dψ + cos θ dϕ) 2) = 4 q 2 (dq dq dq dq 2 3) (13.24) 24

25 SU(2) R 4 X := Q/U(1) = R + S 2 = R 3 {0} g X := 1 2 Trd xd x = dr2 + r 2( dθ 2 + (sin θ dϕ) 2) = dx dx dx 2 3 (13.25) 3 R 3 SU(2) (13.6) τ : Q X g Q Vol Q = (2 q ) 4 dq 0 dq 1 dq 2 dq 3 = dx 1 dx 2 dx 3 rdψ (13.26) dq 0 dq 1 dq 2 dq 3 = 1 16r dx 1 dx 2 dx 3 dψ (13.27) T Q { (T Q) H = span r, 1 r θ, 1 ( r sin θ ϕ cos θ )} ψ { } (T Q) V = span ψ (13.28) (13.29) T Q { } (T Q) H = span dr, r dθ, r sin θ dϕ { } (T Q) V = span r(dψ + cos θ dϕ) (13.30) (13.31) 14 p.64 {( ) } x y = ; x, y, z R, x > 0, z > 0 0 z (14.1) ( ) ( ) ( ) a b x y x y = 0 c 0 z 0 z (14.2) x = ax, y = ay + bz, z = cz (14.3) dx dy dz = a dx (a dy + b dz) c dz = a 2 c dx dy dz = x 2 z x 2 dx dy dz (14.4) z ω L = 1 x 2 z dx dy dz = 1 x 2 dx dy dz (14.5) z 25

26 ( ) ( ) ( ) x y a b x y = 0 z 0 c 0 z (14.6) x = ax, y = bx + cy, z = cz (14.7) dx dy dz = a dx (b dx + c dy) c dz = ac 2 dx dy dz = x z 2 dx dy dz (14.8) xz2 ω R = 1 x z 2 dx dy dz = 1 dx dy dz (14.9) xz2 ω L = xz2 x 2 z ω R = z x ω R (14.10) R gω L = cz ax ω R = c a ω L (14.11) (g) = c a p.84 1 {( ) } x y = ; x, y, z R, x (14.12) (14.13) [1] S. Mac Lane, Categories for the Working Mathematician (2nd edition), Springer, S., [2] K. H. Rose, XY-pic L A TEX [3] SC 52, (2006). [4],, (1980) 26

27 [5], (2009). [6] (2001). [7], : (2003). [8] H. (1990), ( ). [9] (1960). [10] (2005). Lie Lie (1,2 ) (1999) [11] (1951). [12] (1994). [13] S. Doplicher and J. E. Roberts, A new duality theory for compact groups, Invent. Math. 98, 157 (1989). [14] pp (2004). [15] No. 10pp , (1998). [16], 2006, (2006). [17] P. W. Anderson, More is different, Science, 177, 393 (1972). [18] 11 3, ( ), 11 4, ( ), 12 1, ( ) web page [19]

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c GL 2 1 Lie SL(2, R) GL(2, A) Gelbart [Ge] 1 3 [Ge] Jacquet-Langlands [JL] Bump [Bu] Borel([Bo]) ([Ko]) ([Mo]) [Mo] 2 2.1 H = {z C Im(z) > 0} Γ SL(2, Z) Γ N N Γ (N) = {γ SL(2, Z) γ = 1 2 mod N} g SL(2,

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

Dynkin Serre Weyl

Dynkin Serre Weyl Dynkin Naoya Enomoto 2003.3. paper Dynkin Introduction Dynkin Lie Lie paper 1 0 Introduction 3 I ( ) Lie Dynkin 4 1 ( ) Lie 4 1.1 Lie ( )................................ 4 1.2 Killing form...........................................

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

I , : ~/math/functional-analysis/functional-analysis-1.tex

I , : ~/math/functional-analysis/functional-analysis-1.tex I 1 2004 8 16, 2017 4 30 1 : ~/math/functional-analysis/functional-analysis-1.tex 1 3 1.1................................... 3 1.2................................... 3 1.3.....................................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2. A A 1 A 5 A 6 1 2 3 4 5 6 7 1 1.1 1.1 (). Hausdorff M R m M M {U α } U α R m E α ϕ α : U α E α U α U β = ϕ α (ϕ β ϕβ (U α U β )) 1 : ϕ β (U α U β ) ϕ α (U α U β ) C M a m dim M a U α ϕ α {x i, 1 i m} {U,

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

SO(2)

SO(2) TOP URL http://amonphys.web.fc2.com/ 1 12 3 12.1.................................. 3 12.2.......................... 4 12.3............................. 5 12.4 SO(2).................................. 6

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

II Lie Lie Lie ( ) 1. Lie Lie Lie

II Lie Lie Lie ( ) 1. Lie Lie Lie II Lie 2010 1 II Lie Lie Lie ( ) 1. Lie Lie 2. 3. 4. Lie i 1 1 2 Lie Lie 4 3 Lie 8 4 9 5 11 6 14 7 16 8 19 9 Lie 23 10 Lie 26 11 Lie Lie 31 12 Lie 35 1 1 C Lie Lie 1.1 Hausdorff M M {(U α, φ α )} α A (1)

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A 2 1 2 1 2 3 α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 4 P, Q R n = {(x 1, x 2,, x n ) ; x 1, x 2,, x n R}

More information

Step 2 O(3) Sym 0 (R 3 ), : a + := λ 1 λ 2 λ 3 a λ 1 λ 2 λ 3. a +. X a +, O(3).X. O(3).X = O(3)/O(3) X, O(3) X. 1.7 Step 3 O(3) Sym 0 (R 3 ),

Step 2 O(3) Sym 0 (R 3 ), : a + := λ 1 λ 2 λ 3 a λ 1 λ 2 λ 3. a +. X a +, O(3).X. O(3).X = O(3)/O(3) X, O(3) X. 1.7 Step 3 O(3) Sym 0 (R 3 ), 1 1 1.1,,. 1.1 1.2 O(2) R 2 O(2).p, {0} r > 0. O(3) R 3 O(3).p, {0} r > 0.,, O(n) ( SO(n), O(n) ): Sym 0 (R n ) := {X M(n, R) t X = X, tr(x) = 0}. 1.3 O(n) Sym 0 (R n ) : g.x := gxg 1 (g O(n), X Sym 0

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

1 G K C 1.1. G K V ρ : G GL(V ) (ρ, V ) G V 1.2. G 2 (ρ, V ), (τ, W ) 2 V, W T : V W τ g T = T ρ g ( g G) V ρ g T W τ g V T W 1.3. G (ρ, V ) V W ρ g W

1 G K C 1.1. G K V ρ : G GL(V ) (ρ, V ) G V 1.2. G 2 (ρ, V ), (τ, W ) 2 V, W T : V W τ g T = T ρ g ( g G) V ρ g T W τ g V T W 1.3. G (ρ, V ) V W ρ g W Naoya Enomoto 2002.9. paper 1 2 2 3 3 6 1 1 G K C 1.1. G K V ρ : G GL(V ) (ρ, V ) G V 1.2. G 2 (ρ, V ), (τ, W ) 2 V, W T : V W τ g T = T ρ g ( g G) V ρ g T W τ g V T W 1.3. G (ρ, V ) V W ρ g W W G- G W

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona Macdonald, 2015.9.1 9.2.,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdonald,, q., Heckman Opdam q,, Macdonald., 1 ,,. Macdonald,

More information

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ SO(3) 71 5.7 5.7.1 1 ħ L k l k l k = iϵ kij x i j (5.117) l k SO(3) l z l ± = l 1 ± il = i(y z z y ) ± (z x x z ) = ( x iy) z ± z( x ± i y ) = X ± z ± z (5.118) l z = i(x y y x ) = 1 [(x + iy)( x i y )

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,, 15, pp.1-13 1 1.1,. 1.1. C ( ) f = u + iv, (, u, v f ). 1 1. f f x = i f x u x = v y, u y = v x.., u, v u = v = 0 (, f = 2 f x + 2 f )., 2 y2 u = 0. u, u. 1,. 1.2. S, A S. (i) A φ S U φ C. (ii) φ A U φ

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,.

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,. 1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, 2015. webpage,.,,. 2 1 (1),, ( ). (2),,. (3),.,, : Hashinaga, T., Tamaru, H.: Three-dimensional solvsolitons and the

More information

Armstrong culture Web

Armstrong culture Web 2004 5 10 M.A. Armstrong, Groups and Symmetry, Springer-Verlag, NewYork, 1988 (2000) (1989) (2001) (2002) 1 Armstrong culture Web 1 3 1.1................................. 3 1.2.................................

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3 2 2 1 5 5 Schrödinger i u t + u = λ u 2 u. u = u(t, x 1,..., x d ) : R R d C λ i = 1 := 2 + + 2 x 2 1 x 2 d d Euclid Laplace Schrödinger 3 1 1.1 N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3,... } Q

More information

( ),.,,., C A (2008, ). 1,, (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,, (M, g) p M, s p : M M p, : (1) p s p, (

( ),.,,., C A (2008, ). 1,, (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,, (M, g) p M, s p : M M p, : (1) p s p, ( ( ),.,,., C A (2008, ). 1,,. 1.1. (M, g) (Riemannian symmetric space), : p M, s p : M M :.,.,.,, (, ).,,. 1.2. (M, g) p M, s p : M M p, : (1) p s p, (2) s 2 p = id ( id ), (3) s p ( )., p ( s p (p) = p),,

More information

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d ) 23 M R M ϕ : R M M ϕt, x) ϕ t x) ϕ s ϕ t ϕ s+t, ϕ 0 id M M ϕ t M ξ ξ ϕ t d ϕ tx) ξϕ t x)) U, x 1,...,x n )) ϕ t x) ϕ 1) t x),...,ϕ n) t x)), ξx) ξ i x) d ϕi) t x) ξ i ϕ t x)) M f ϕ t f)x) f ϕ t )x) fϕ

More information

等質空間の幾何学入門

等質空間の幾何学入門 2006/12/04 08 tamaru@math.sci.hiroshima-u.ac.jp i, 2006/12/04 08. 2006, 4.,,.,,.,.,.,,.,,,.,.,,.,,,.,. ii 1 1 1.1 :................................... 1 1.2........................................ 2 1.3......................................

More information

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 (4/12) 1 1.. 2. F R C H P n F E n := {((x 0,..., x n ), [v 0 : : v n ]) F n+1 P n F n x i v i = 0 }. i=0 E n P n F P n

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α SO(3) 48 6 SO(3) t 6.1 u, v u = u 1 1 + u 2 2 + u 3 3 = u 1 e 1 + u 2 e 2 + u 3 e 3, v = v 1 1 + v 2 2 + v 3 3 = v 1 e 1 + v 2 e 2 + v 3 e 3 (6.1) i (e i ) e i e j = i j = δ ij (6.2) ( u, v ) = u v = ij

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

『共形場理論』

『共形場理論』 T (z) SL(2, C) T (z) SU(2) S 1 /Z 2 SU(2) (ŜU(2) k ŜU(2) 1)/ŜU(2) k+1 ŜU(2)/Û(1) G H N =1 N =1 N =1 N =1 N =2 N =2 N =2 N =2 ĉ>1 N =2 N =2 N =4 N =4 1 2 2 z=x 1 +ix 2 z f(z) f(z) 1 1 4 4 N =4 1 = = 1.3

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

パソコン機能ガイド

パソコン機能ガイド PART12 ii iii iv v 1 2 3 4 5 vi vii viii ix P A R T 1 x P A R T 2 xi P A R T 3 xii xiii P A R T 1 2 3 1 4 5 1 6 1 1 2 7 1 2 8 1 9 10 1 11 12 1 13 1 2 3 4 14 1 15 1 2 3 16 4 1 1 2 3 17 18 1 19 20 1 1

More information

パソコン機能ガイド

パソコン機能ガイド PART2 iii ii iv v 1 2 3 4 5 vi vii viii ix P A R T 1 x P A R T 2 xi P A R T 3 xii xiii P A R T 1 2 1 3 4 1 5 6 1 2 1 1 2 7 8 9 1 10 1 11 12 1 13 1 2 3 14 4 1 1 2 3 15 16 1 17 1 18 1 1 2 19 20 1 21 1 22

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

( ) (, ) ( )

( ) (, ) ( ) ( ) (, ) ( ) 1 2 2 2 2.1......................... 2 2.2.............................. 3 2.3............................... 4 2.4.............................. 5 2.5.............................. 6 2.6..........................

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2

. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2 2014 6 30. 2014 3 1 6 (Hopf algebra) (group) Andruskiewitsch-Santos [AFS09] 1980 Drinfeld (quantum group) Lie Lie (ribbon Hopf algebra) (ribbon category) Turaev [Tur94] Kassel [Kas95] (PD) x12005i@math.nagoya-u.ac.jp

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

1 A A.1 G = A,B,C, A,B, (1) A,B AB (2) (AB)C = A(BC) (3) 1 A 1A = A1 = A (4) A A 1 A 1 A = AA 1 = 1 AB = BA ( ) AB BA ( ) 3 SU(N),N 2 (Lie) A(θ 1,θ 2,

1 A A.1 G = A,B,C, A,B, (1) A,B AB (2) (AB)C = A(BC) (3) 1 A 1A = A1 = A (4) A A 1 A 1 A = AA 1 = 1 AB = BA ( ) AB BA ( ) 3 SU(N),N 2 (Lie) A(θ 1,θ 2, 1 A A.1 G = A,B,C, A,B, (1) A,B AB (2) (AB)C = A(BC) (3) 1 A 1A = A1 = A (4) A A 1 A 1 A = AA 1 = 1 AB = BA ( ) AB BA ( ) 3 SU(N),N 2 (Lie) A(θ 1,θ 2,θ n ) = exp(i n i=1 θ i F i ) (A.1) F i 2 0 θ 2π 1

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e ( ) Note 3 19 12 13 8 8.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R, µ R, τ R (1a) L ( ) ) * 3) W Z 1/2 ( - )

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx i B5 7.8. p89 4. ψ x, tψx, t = ψ R x, t iψ I x, t ψ R x, t + iψ I x, t = ψ R x, t + ψ I x, t p 5.8 π π π F e ix + F e ix + F 3 e 3ix F e ix + F e ix + F 3 e 3ix dx πψ x πψx p39 7. AX = X A [ a b c d x

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

,2,4

,2,4 2005 12 2006 1,2,4 iii 1 Hilbert 14 1 1.............................................. 1 2............................................... 2 3............................................... 3 4.............................................

More information

1 1.1 [ ]., D R m, f : D R n C -. f p D (df) p : (df) p : R m R n f(p + vt) f(p) : v lim. t 0 t, (df) p., R m {x 1,..., x m }, (df) p (x i ) =

1 1.1 [ ]., D R m, f : D R n C -. f p D (df) p : (df) p : R m R n f(p + vt) f(p) : v lim. t 0 t, (df) p., R m {x 1,..., x m }, (df) p (x i ) = 2004 / D : 0,.,., :,.,.,,.,,,.,.,,.. :,,,,,,,., web page.,,. C-613 e-mail tamaru math.sci.hiroshima-u.ac.jp url http://www.math.sci.hiroshima-u.ac.jp/ tamaru/index-j.html 2004 D - 1 - 1 1.1 [ ].,. 1.1.1

More information

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1) φ 4 Minimal subtraction scheme 2-loop ε 28 University of Tokyo Atsuo Kuniba version 2/Apr/28 Formulas Γ n + ɛ = n n! ɛ + ψn + + Oɛ n =,, 2, ψn + = + 2 + + γ, 2 n ψ = γ =.5772... Euler const, log + ax x

More information

I 1 V ( x) = V (x), V ( x) = V ( x ) SO(3) x = R x: R SO(3) Lorentz R t JR = J: J = diag(1, 1, 1, 1) x = x + a Poincarré ( ) 2

I 1 V ( x) = V (x), V ( x) = V ( x ) SO(3) x = R x: R SO(3) Lorentz R t JR = J: J = diag(1, 1, 1, 1) x = x + a Poincarré ( ) 2 III 1 2005 Jan 30th, 2006 I : II : I : [ I ] 12 13 9 (Landau and Lifshitz, Quantum Mechanics chapter 12, 13, 9: Pergamon Pr.) [ ] ( ) (H. Georgi, Lie algebra in particle physics, Perseus Books) [ ] II

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. R-space ( ) Version 1.1 (2012/02/29) i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. ii 1 Lie 1 1.1 Killing................................

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information