2017

Size: px
Start display at page:

Download "2017"

Transcription

1 2017

2 ? [5, 6] : phase slip [5, 8] [7, 9 11] [29]

3

4 msec ta/mathbio.html 3

5 3 3.1? [2] 1 ( ) 1 (1) (2)2 1 (1) ( ( ) ; phase locking) (2) ( ; frequency locking) 0 ( ) π( ) (mutual entrainment) (intrinsic frequency, natural frequency) (observed frequency) ( ) 1 4

6 3.2 [5, 6] dx dt = F (X) X = (x 1, x 2,, x M ), M 2 (3.1) X (x 1, x 2,, x M ) mrna F (X) T X 0 = X 0 (t + T ) M 2 (3.1) 2 ( ) (x 1, x 2,, x M ) 2 5

7 M (3.1) X (3.1) ϕ = ϕ(x) ω 0 () dϕ dt = ω 0, (3.2) θ dθ dt = f(θ, t) ϕ (3.2) (3.2) θ dϕ = ω 0 dθ dθ dt θ 1 ϕ = ω 0 dθ dθ 0 dt θ 1 = ω 0 f(θ, t) dθ 0 (3.3) (isochrone) ϕ X dϕ(x) dt = ω 0 (3.4) ω 0 = 2π/T X 0 (ωt) = X 0 (ϕ) (3.5) ϕ X ϕ dϕ(x) dt = grad X ϕ(x) dx dt 6 (3.6)

8 3 (3.6),(3.1),(3.4) grad X ϕ(x) F (X) = ω 0 (3.7) (3.6) ( )p dx dt = F (X) + ϵp(x, t) (3.8) ϵ (3.7) dϕ(x) dt = grad X ϕ(x) dx dt = grad X ϕ(x) (F (X) + ϵp(x, t)) = ω 0 + ϵ grad X ϕ(x) p(x, t) (3.9) 2 ϵ X o (ϕ) dϕ(x) dt ω 0 + ϵ grad X ϕ(x) X0 (ϕ) p(x 0(ϕ), t) ϕ dϕ dt = ω 0 + ϵq(ϕ, t) Q(ϕ, t) grad X ϕ(x) X0 (ϕ) p(x 0(ϕ), t) (3.10) Q 1 2π (3.1) M ϕ 2 3 ϕ dϕ(x) = ϕ dx 1 + ϕ dx ϕ dx M x 1 x 2 x M dϕ(x) = grad X ϕ(x) dx 7

9 1. (3.1) 2. (3.1) : Landau-Stuart equation(λ ω system) Hopf A = R exp(iθ) da dt = (1 + iη)a (1 + iα) A 2 A (3.11) x = R cos θ, y = R sin θ x dx dt = x ηy (x2 + y 2 )(x αy) + ϵ cos(ωt) dy dt = y + ηx (x2 + y 2 )(y + αx) (3.12) ϕ ( 1-1) ϕ = θ α ln R θ = tan 1 (y/x), R = (x 2 + y 2 ) 1/2 ϕ = tan 1 y x α 2 ln(x2 + y 2 ) (3.13) (3.12) (3.10) dϕ dt = ω 0 + ϵq(ϕ, t) = ω 0 + ϵ ϕ x X0 (ϕ) p(x 0 (ϕ), t) = η α ϵ(sin ϕ + α cos ϕ) cos(ωt) = η α ϵ 1 + α 2 cos(ϕ ϕ 0 ) cos(ωt) (3.14) X 0 R = 1, θ = ϕ tan ϕ 0 = 1/α 2 (3.12) ϕ λ ω system θ R 2 ϕ ϕ = θ α ln R ϕ ( 3 ) 8

10 3.2.3 Q(ϕ, t) ϕ ()ω 0 t ( )ψ ϕ ω 0 t + ψ(= θ + ψ, θ ω 0 t ) ψ ϕ θ ψ ϕ ω 0 t(= ϕ θ) (3.10) dψ dt = dϕ dt ω 0 = ϵ grad X ϕ(x) X0 (ϕ) p(x 0(ϕ), t) (3.15) ψ ω dψ dt = 1 2π [ dθ ϵ grad 2π X ϕ(x) ] X0 (ϕ=θ+ψ) p(x 0(ϕ = θ + ψ), t) 0 ϵγ(ψ) (3.16) ϕ = θ + ψ θ ψ dϕ dt = ω 0 + ϵγ(ψ) (3.17) (3.8) Γ (3.10) Γ ψ 9

11 3.2.4 p(ω 1 t) = p(ω 1 t + 2π) (3.10) dϕ dt = ω 0 + ϵ grad X ϕ(x) X0 (ϕ) p(ω 1t) (3.18) ψ ψ = ϕ ω 1 t (3.19) (3.19) (3.18) dψ dt = dϕ dt ω 1 = (ω 0 ω 1 ) + ϵ grad X ϕ(x) X0 (ϕ=ψ+ω 1 t) p(ω 1t) (3.20) (3.20) 2 ϵ 1 δω (ω 0 ω 1 ) dψ dt ψ 2 θ = ω 1 t Γ(ψ) 1 2π [ dθ grad 2π X ϕ(x) ] X0 (ϕ=ψ+ω 1 t) p(ω 1t) (3.21) 0 (3.20) dψ dt = δω + ϵγ(ψ) (3.22) ψ dϕ dt = ω 0 + ϵγ(ψ) (3.23) (3.19) ψ = const.( :phase locking) dϕ dt = ω 1 1 : 1 n : m ω 0 n m ω 1, m, n ψ = mϕ nω 1 t dψ dt = mω 0 nω 1 + mϵγ(ψ) (3.24) 10

12 1-2 λ ω system 1:1 ωt 1-3 n : m (3.24) Γ (3.21) Q 2π Γ 2π Γ(ψ) = k a k e ikψ (3.25) Γ(ψ) = sin(ψ + α) + sin α (3.26) ( 3.1 ) 4 0 α π/2 (α = 0) 5 (3.22) Γ(ψ) = sin(ψ) (3.27) dψ dt = δω ϵ sin(ψ) (3.28) ψ = ϕ ω 1 t 4 [9] 5 () 11

13 3.1: Γ(ψ) = sin(ψ + α) + sin α () ( ) (3.28) 3.2 (3.28) ψ dψ/dt δω ϵ ψ ϕ dψ dt = dϕ dt ω 1 = 0 (3.29) dϕ/dt ω 1 (3.28) 0 δω ϵ sin ψ = 0 (3.30) ψ ψ dψ/dt (3.28) 3.2(a) ψ (3.30) 3.2(b) δω ϵ (3.31) 12

14 (a) (b) 0 0 (c) 0 3.2: : ψ dψ/dt, Γ(ψ) = ϵ sin(ψ), ϵ > 0. (a) δω ϵ, (b) δω > ϵ, (c) δω = ϵ (3.30) ψ ψ = sin 1 ( δω ϵ ) (3.32) 3.2(a) 0 < ψ < 2π 2 ψ dψ/dt dψ/dt > 0 ψ dψ/dt < 0 3.2(a) ψ 3.2(b) ψ (3.31) 3.2(c) 0 < ψ < 2π dψ/dt > 0 dψ/dt < 0 : δω ϵ c < ϵ (3.33) δω ϵ 13

15 0 δω 3.3: δω < ϵ. 3.3 δω δω ϵ = ϵ c δω / 3.2(a-c) 2 / saddle-node < ψ < 2π (ϵ > 0, δω 0) ψ 0 ϵ < 0 (3.32) : phase slip [5, 8] dψ/dt = 0 (3.22) dϕ/dt = ω 1 (3.19) ω 1 t ψ Ω Ω = dϕ dt = ω 1 + dψ dt (3.34) ω 1 + Ω b 14

16 Ω b (3.28) dψ dt = δω ϵ sin(ψ) F (ψ) (3.35) ϵ / ϵ = ϵ c 3.2(c) 1 F (ψ) F 1 (ψ) ψ 0 ϵ ϵ c 3.2(b) F 1 F (ψ) = ϵ c ϵ + F 1 (ψ) F 1 ψ 0 F 1 (ψ) = F 1 (ψ 0 ) + F 1(ψ 0 )(ψ ψ 0 ) + F 1 (ψ 0) (ψ ψ 0 ) 2 + (3.36) 2 F 1 = F, F 1 = F ψ 0 F 1 (ψ 0 ) = 0 ψ / F 1 (ψ 0) = 0 dψ dt = F (ψ) ϵ c ϵ + F (ψ 0 ) (ψ ψ 0 ) 2 (3.37) 2 dψ dt = ϵ c ϵ + F (3.38) (ψ 0 ) 2 (ψ ψ 0 ) 2 T b x T b = 2π 0 dψ ϵ c ϵ + F (3.39) (ψ 0 ) 2 (ψ ψ 0 ) 2 F (ψ 0 ) 2(ϵ c ϵ) (ψ ψ 0) ± Ω b = 2π T b ϵ c ϵ (3.40) ϕ = ω 1 t + Ω b t ϵ c ϵ () 3.4 ( 1, 2) ( 3-5) (2π/Ω b ) (phase slip) phase slip 2π/Ω b 15

17 0 δω 3.4: Phase slip. [5].(a) δω ϵ.(b).. (phase slip). ( ) (3.40) 1-4 F (ψ) (3.35) Ω b (= (3.39) (3.40) ) (3.28) 3.4 phase slip (2π/Ω b ) 16

18 y y x y x y (a) eta= 1 alpha= 0.1 epsilon= 50 delta= 0.01 tp= (b) eta= 1 alpha= 0.1 epsilon= 50 delta= 0.01 tp= time x time (c) eta= 1 alpha= 0.1 epsilon= 50 delta= 0.01 tp= 22 (d) eta= 1 alpha= 0.1 epsilon= 50 delta= 0.01 tp= time x time 3.5: (1). λ ω. (3.12) ϵ cos(ωt) (3.41).t p. η = 1.1,α = 0.1,ϵ = 50, σ = isochron,, (a),(b) 3π/2 < ϕ < 2π, t p = 20. (c), (d) 0 < ϕ < π/2,t p = [7, 9 11] Γ(ψ) 3.21 (phase response curve; PRC) λ ω (3.12) ϵ cos(ωt) (3.41).t p ϵ, t p t t p + σ p(t) = 0, otherwise (3.41) λ ω (Figs.3.5,3.6(a,c,e,g)) isochron α 17

19 y y x y x y (e) eta= 1 alpha= 0.1 epsilon= 50 delta= 0.01 tp= 21 (f) eta= 1 alpha= 0.1 epsilon= 50 delta= 0.01 tp= time x time (g) eta= 1 alpha= 0.1 epsilon= 50 delta= 0.01 tp= (h) eta= 1 alpha= 0.1 epsilon= 50 delta= 0.01 tp= time x time 3.6: (2)., Fig.3.5. (e),(f)ϕ 0, t p = 21. (g), (h)π < ϕ < 3π/2, t p = 25. (3.41) Figs.3.5,3.6 (a,b) (c,d) (e,f) (g,h) Figs.3.5,3.6(a,c,e,g) (3.41) x (a) () ( ) (c) ( ) (e) (g) ( 2 ) ϕ (ϕ) 18

20 3.7: (PRC)., Fig.3.5.(a) ϵ. (b) σ. 19

21 T τ (ϕ) = τ/t (3.42) Fig.3.7 PRC σ ϵ PRC σ ϵ Fig.(b) type1 type0 Fig.3.8 type1 (a) PRC Fig. (b) ϕ n+1 = F (ϕ n, p) Phase Transition Curve (PTC) type1 1 type1 type0 (c) π π PRC 1-5 Fig.3.8(a), (c) PRC 3.8(b), (d) (3.41) σ ϵ (type1 ) dϕ dt = ω 0 + (ϕ) p(t) (3.43) (3.10) (ϕ) grad X ϕ X0 λ ω Fig.3.9 Fig.3.7(a) ϵ PRC grad X ϕ X0 p(t) p(θ) = p(θ + 2π) (3.21) 20

22 3.8: type1 type0 (PRC).(a,b) type1. (c,d) type0. Γ Γ(ψ) 1 2π [ ] dθ (ψ + θ) p(θ) 2π 0 (3.44) λ ω Fig.3.9(b) 6 Γ(ψ) sin(ψ) λ ω λ ω B. Ermentraut G. Bowtell Adjoint [12] Ermentraut XPP-Aut [13] 21

23 3.9:.(a)grad X ϕ X0. Γ(ψ). (b) 22

24 X 1, X 2 dx 1 = F 1 (X 1 ) + ϵp(x 1, X 2 ) dt dx 2 = F 2 (X 2 ) + ϵp(x 2, X 1 ) dt (3.45) X 0 1, X0 2 ω 1, ω 2 ( ) ϕ 1, ϕ 2 ϵ (3.23) 7 dϕ 1 dt = ω 1 + ϵγ 1,2 (ϕ 1 ϕ 2 ) dϕ 2 dt = ω 2 + ϵγ 2,1 (ϕ 2 ϕ 1 ) (3.46) Γ 1,2, Γ 2,1 2 Γ(ψ) 1,2 = sin(ψ) Γ 1,2 (ψ) = sin(ψ + α) + sin(α) Γ(ψ) 1,2 = sin(ψ) ψ ϕ 1 ϕ 2 δω = ω 1 ω 2 (3.46) dψ dt = δω 2ϵ sin(ψ) (3.47) dψ dt = dϕ 1 dt dϕ 2 dt = 0 (3.48) (3.47) 0 δω 2ϵ sin ψ = 0 (3.49) ψ 3.2 δω 2 ϵ c < ϵ (3.50) 7 23

25 ( ) < ψ < 2π (ϵ > 0, δω 0) ψ 0 ψ = ψ 0 (3.49) ψ 0 = sin 1 ( ω 1 ω 2 ) (3.51) 2ϵ ω 1 ω 2 0 π ϵ 0 (ϵ > 0) ψ 0 π (ϵ < 0) Ω Ω = dϕ 1 dt = dϕ 2 dt = ω 1 ϵ sin(ψ 0 ) = ω 1 + ω 2 2 (3.52) Γ = sin Γ 1,2 (ψ) = sin(ψ + α) + sin(α)( (3.26)) ψ α Ω α ψ α = sin 1 ( ω 1 ω 2 2ϵ cos α ) (3.53) Ω α = ω 1 + ω ϵ(1 cos ψ α ) sin α (3.54) ϵ > 0, 0 < α < π/2 ( 2 ) 0 Ω α (ω 1 + ω 2 )/2 24

26 1-6 (3.53),(3.54) α = 0 α = π/4 2 ϵ (3.46) -ϵ Ω 1,2 Ω 1,2 1, 2 Ω 1 Ω Schuster Wagner [14] (3.46) τ dϕ 1 (t) = ω 1 ϵ sin(ϕ 1 (t) ϕ 2 (t τ)) dt dϕ 2 (t) = ω 2 ϵ sin(ϕ 2 (t) ϕ 1 (t τ)) dt (3.55) ψ ϕ 1,2 (t) = φ(t) ± α/2 (3.56) φ 1,2 α (3.55) ( [14] ) f(ω) ω 0 Ω ϵ tan(ωτ) cos 2 (Ωτ) ω 2 /ϵ 2 = 0, (3.57) sin 1 ( ω/ϵ cos(ωτ)) cos(ωτ) 0, ψ = (3.58) π sin 1 ( ω/ϵ cos(ωτ)) Ω ϕ 1,2 (t) = Ωt±ψ/2 ω 0 = (ω 1 +ω 2 )/2, ω = (ω 1 ω 2 )/2 (3.57) (3.58) cos(ωτ) ϵ (3.57),(3.58) 25

27 3.10 (3.57) τ ϵ 3.10(a) Ω 3.10(b,c) Ω 3.10(d) τ ϵ 3.11 (a) (3.55) (b) [15] ϵ L W ( ϵ ) L( τ ) 3.11 ( W ) ϵ < 0 L W ( I) L ( II) ϵ L( τ) W ( ϵ ) ( III) ( IV, V... ) I ( ) II 3.10 (3.57) Ω 26

28 (a) f(ω) (b) f(ω) ψ π ψ π ψ 0 0 Ω 0 Ω (c) f(ω) (d) f(ω) ψ π ψ 0 ψ π ψ 0 ψ π 0 Ω 0 Ω 3.10: Ω.. (3.58). ω 0 = 0.06, δω = (a)ϵ = 0.05, τ = 10, (b), ϵ = 0.15, τ = 10, (c), ϵ = 0.05, τ = 20, (d), ϵ = 0.15, τ =

29 (a) L (mm) L=4 W=0.30 (II) L=10 (I) (IV) (III) W (mm) (b) τ W=0.30 (II) (I) L=10 L= (V) (IV) (III) :.. (a), : (. ). : (), :, : (), :, :. (b) ( (3.55)). :, :, :. [15]. 28

30 (a) (b) (rad/sec) 0.10 UE Ω 0.10 AP UE AP IP AP W(mm) W(mm) K K UE AP UE AP IP (c) 0.09 AP 0.06 IP L(mm) τ(sec) 0.07 AP IP W(mm) AP W(mm) L(mm) 3.12:.,. (a) L=4 (mm), (b) L=10 (mm), (c) W=0.30 (mm) [15]. 8 τ Ω (3.57) τ 0 ω 0 tan Ωτ Ωτ, cos Ωτ 1 Ω ω ϵτ (3.59) (a) 3.12(b), (c) ( ) 8 (3.55) ( ) 29

31 (3.57) ( 3.10 ) 3.12(a) 10% oscillator death 0 [16, 17] [18, 19] 30

32 [20,21] Γ = sin ϕ 1 = ω 1 ϵ sin(ϕ 1 ϕ 2 ) ϕ i = ω i ϵ sin(ϕ i ϕ i 1 ) ϵ sin(ϕ i ϕ i+1 ) ϕ N = ω N ϵ sin(ϕ N ϕ N 1 ) 1 < i < N (3.60) (3.60) Γ = sin N ϕ i = i=1 N ω i (3.61) (3.60) i, j i=1 (3.61) N ϕ 1 = ϕ 2 = = ϕ i (3.62) ϕ i = 1 N k=1 ϕ i = Nϕ i N ω i ω (3.63) i=1 j (1 j < N) j (3.60) j j ϕ i = i=1 j ω i ϵ sin(ϕ j ϕ j+1 ) (3.64) i=1 (3.62) ψ j ϕ j+1 ϕ j j j ϕ k = jϕ i j ω k=1 ϵ sin(ψ j ) = j (ω i ω) X j (3.65) i=1 : X j ϵ (3.66) 31

33 X j i = 1 j ( ) ϵ j 1 j (3.66) 1 max X j ϵ (3.67) 1 j N 1-8 Γ i (ψ) = sin(ψ + α) + sin(α) α ϕ k = ω k ϵ N N sin(ϕ k ϕ j ) (3.68) j=1 ϵ/n N N z k = e iϕ k = cos ϕ k + i sin ϕ k Z Z 1 N N e iϕ k k=1 (3.69) Ke iθ K cos Θ = 1 N K sin Θ = 1 N N cos ϕ k k=1 (3.70) N sin ϕ k k=1 32

34 K Θ K Θ K 0 2π 0 K = 0 K 0 K (3.68) 2 ϵ sin(ϕ k ϕ j ) = ϵ (sin ϕ k cos ϕ j cos ϕ k sin ϕ j ) N N j j = ϵ N sin ϕ k cos ϕ j ϵ N cos ϕ k sin ϕ j = ϵk sin(ϕ k Θ) (3.68) j ϕ k = ω k ϵk sin(ϕ k Θ) (3.71) = ω Θ = ωt ψ k = ϕ k Θ = ϕ k ωt (3.71) ψ k = ω k ω ϵk sin ψ k (3.72) ψ k = 0 ω k ω ϵk sin ψ k = 0 ω k ω ϵk (3.73) ψ k = sin 1 ( ω k ω ϵk ) k Ω k = ϕ k = ω k ϵk sin ψ k = ω k + ( ω ω k ) = ω 33 j

35 (3.73) k 1 34

36 4 1 [26] [29] x,y x,y D x,d y x t = D x 2 x + f(x, y) y t = D y 2 y + g(x, y) (4.1) ẋ 1 = f(x 1, y 1 ) + d x (x 2 x 1 ) ẏ 1 = g(x 1, y 1 ) + d y (y 2 y 1 ) ẋ 2 = f(x 2, y 2 ) + d x (x 1 x 2 ) ẏ 2 = g(x 2, y 2 ) + d y (y 1 y 2 ) (4.2) f(x, y) = x x 3 4y,g(x, y) = x 3y 1 d u = d v = 0 35

37 (4.2) x = 0, y = 0 ẋ = x 4y ẏ = x 3y (4.3) λ = 1 < 0 (4.2) (4.2) 1 x 1 = y 1 = x 2 = y 2 = 0 2 (4.2) (0,0,0,0) ẋ 1 = x 1 4y 1 + d x (x 2 x 1 ) ẏ 1 = x 1 3y 1 + d y (y 2 y 1 ) ẋ 2 = x 2 4y 2 + d x (x 1 x 2 ) ẏ 2 = x 2 3y 2 + d y (y 1 y 2 ) (4.4) p 1 x 1 + x 2, q 1 y 1 + y 2, p 2 x 1 x 2, q 2 y 1 y 2 x 1 + x 2 y 1 + y 2 ṗ 1 = ẋ 1 + ẋ 2 = p 1 4q 1 q 1 = ẏ 1 + ẏ 2 = p 1 3q 1 (4.5) (4.3) p 1 = q 1 = 0 ṗ 2 = ẋ 1 ẋ 2 = p 2 4q 2 2d x p 2 h(p 2, q 2 ) q 2 = ẏ 1 ẏ 2 = p 2 3q 2 2d y q 2 k(p 2, q 2 ) (4.6) p 2 = q 2 = 0 (4.6) J det J = (1 2d x )(3 + 2d y ) + 4 tr J = 2(1 + d x + d y ) < 0 (4.7) 36

38 λ = (tr J ± tr J 2 4 det J)/2 tr J < 0 tr J + tr J 2 4 det J > 0 det J < 0 (1 2d x )(3 + 2d y ) + 4 < 0 (4.8) 2 (4.2) S 1 (x, y, x, y ), S 2 ( x, y, x, y ) 2 x = y = 3 + 2d y (1 2d x )(3 + 2d y ) 4, (3 + 2d y ) x (4.9) (4.8) x S 1,S x y (a) (4.2) US S 1,S 2 (b) (4.8) y d y x d x (4.3) activator-inhibitor x activator, y inhibitor inhibitor 37

39 4.1: 1.(a), (b). 4.1(a) (b) ( ) 4-1 (4.2) S 1 (x, y, x, y ), S 2 ( x, y, x, y ) 2 x, y (4.9) S 1 (x, y, x, y ), S 2 ( x, y, x, y ) (4.8) 4-3 (4.2) 1 38

40 (4.1) d = D y /D x, γ = 1/D x, t = τ/γ τ t x,y u, v (4.1) u t = 2 u + γf(u, v) v t = d 2 v + γg(u, v) (4.10) f(u, v) = 0, g(u, v) = 0 (u 0, v 0 ) ( 4.2.1) ( ) ( 4.2.2) (?) (4.10) (D x = 0, D y = 0 ) (u 0, v 0 ) ( ) f u f v J g u g v (4.11) tr J = f u + g v < 0 det J = f u g v + f v g u > 0 (4.12) (4.12) (u 0, v 0 ) w 1 39

41 w (u u 0, v v 0 ) (4.10) w t = γjw + D 2 w (4.13) ( ) 1 0 D 0 d (; 0; 0) 2 1 w x w (0, t) = (a, t) = 0 x x = 0 x = a ( 2 )1 w = c cos( nπx a ) (4.14) c n k nπ/a () k w x = cnπ a sin(nπx a ) x = 0 a w x = 0 2 w x 2 = c(nπ a )2 cos( nπx a ) = k 2 w 2 w + k 2 w = 0 (4.15) k w k w w(r, t) = C k e λt w k (r) (4.16) k 2 () w(0, t) = w(a, t) = w 0 40

42 r C k λ (4.16) (4.13) (4.15) λ k C k e λt w k (r) = γj k C k e λt w k (r) + D 2 w = γj k C k e λt w k (r) Dk 2 k C k e λt w k (r) C k k λw k = γjw k Dk 2 w k. (4.17) (λi γj + Dk 2 )w k = 0 (4.18) w k 0 λ 3 λi γj Dk 2 = 0 (4.19) λ 2 + λ(k 2 (1 + d) γ(f u + g v )) + h(k 2 ) = 0 (4.20) h(k 2 ) dk 4 γ(df u + g v )k 2 + γ 2 J (4.20) Re(λ) < 0 2 (4.16) (0,0) (4.1) D x = 0, D y = 0 D x > 0, D y > 0 (D x = 0, D y = 0) Re(λ(k = 0)) < (4.12) 3 w k = 0 (0,0) 41

43 D x > 0, D y > 0 Re(λ(k 0)) > 0 k 1, 0 B,C λ = B ± B 2 4C 2 (4.21) 1 Re(λ(k 0)) > 0 1) 2) 2) B + B 2 4C > 0 (4.12) B > 0 C = h(k 2 ) < 0 1) h(k 2 ) < 0 k h dk 4 > 0, γ 2 J > 0( (4.12) ) df u + g v > 0 h(k 2 ) k 2 2 k { h(kmin) 2 = γ 2 J (df u + g v ) 2 } 4d (4.22) k 2 min = γ(df u + g v )/2d (df u + g v ) 2 4d(f u g v f v g u ) > 0 (4.23) ( [27] ) df u + g v > 0 (df u + g v ) 2 4d(f u g v f v g u ) > 0 (4.24) (4.12) (4.24) k k k 2 h(k 2 ) d k c = γ J /d c d c 2 k 42

44 h(k 2 ) () - (4.12) (4.24) k 2 h(k 2 ) 4 (4.24) (4.12) 43

45 [1] - -,P., Y., Ch.,, (1992) [2] J. Pantaleone, Synchronization of metronomes, Am. J. Phys. 70, (2002) [3] Unserstanding Nonlinear Dynamics, Daniel Kaplan and Leon Glass, Springer (1995) [4] Nonlinear Dynamics and Chaos, Steven H. Strogatz, Addison Wesley (1994) [5] Synchronization: A universal concept in nonlinear sciences, Cambridge Nonlinear Science Series 12, A. Pikovsky, M. Rosenblum and J. Kurth, Cambridge (2001) [6], (1),, (2005) [7] Izhikevich EM, Kuramoto Y., Weakly coupled oscillators. In: Encyclopedia of mathematical physics, Vol 5, Ed 1 (Francoise J-P, Naber GL, Tsun TS, eds), pp 448. Boston: Elsevier (2006). [8] Z.Zheng, G. Hu, B. Hu, Phase slip and phase synchronization of coupled oscillators, Phys.Rev. Lett.,81, (1998) [9] G. B. Ermentraut, The Mathematics of Biological Oscillator, Methods Enzymol, 240, (1994) [10] A. T. Winfree, The geometryr of biological time 2nd edn., New York Springer (2000). [11] C. H. Johnson, Phase Response Curve: What can they tell us about circadian Clocks?, Circadian clocks from cell to human, edited by T. Hisohige and K. Honma, Hokkaido Univ. Press, Sapporo, (1992). 44

46 [12] B. Ermentraut, Type I membrane, phase resetting courves and synchrony., Neural Computation, 8, (1996). [13] bard/xpp/xpp.html [14] Schuster, H. G. and Wagner, P., Mutual entrainment of two limit cycle oscillators with time delayed counpling, Prog. Theor. Phys., 81, , [15] Takamatsu, A., Fujii, T. and Endo, I., Time delay effect in a living coupled oscillator system with the plasmodium of Physarum polycephalum, Phys. Rev. Lett., 85, , [16] Reddy,D.V. R., Sen, A. and Johnston,G. L., Time delay induced death in coupled limit cycle oscillators, Phys. Rev. Lett., 80, 5109 (1998) [17] Strogatz, S. H., Death by delay, Nature (London) 394, 316 (1998) [18] Dhamala, M., Jirsa, V. K. and Ding, M., Enhancement of neural synchrony by time delay, Phys. Rev. Lett., 92, , 2004 [19] Masoller, C. and Marti, A. C., Random delays and the synchronization of chaotic maps, Phys. Rev. Lett, 94, , 2005 [20] Strogatz S. H. and Mirollo R. E. J. Phys. A: Math. Gen. 21 L699 (1988) [21] Sakaguchi, H. Shinomoto, S., and Kuramoto, Y., Prog. theor. Phys. 79, 1069 (1988) [22],,, (2003) (M. Golubitsky and I. Stewart, The symmetry perspective, Birkhauser (2000)) [23] M. E. J. Newman, The structure and function of complex networks. SIAM Review, 45, (2003) [24] R. Albert and A. L. Barabasi, Statistical mechanics of complex network, Reviews of Modern physics, 74, 47-97, (2002) [25],,, (2005) [26] A.M. Turing (1952) The chemical basis of morphogenesis. Phil. Trans. Royal Soc. London, B, Biological Sciences 237,

47 [27] Mathematical Biology, J. D. Murray, Springer (3rd Ed., 2001) [28], (3),, (2005) [29], (4),, (2005) 46

ver.1 / c /(13)

ver.1 / c /(13) 1 -- 11 1 c 2010 1/(13) 1 -- 11 -- 1 1--1 1--1--1 2009 3 t R x R n 1 ẋ = f(t, x) f = ( f 1,, f n ) f x(t) = ϕ(x 0, t) x(0) = x 0 n f f t 1--1--2 2009 3 q = (q 1,..., q m ), p = (p 1,..., p m ) x = (q,

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

ẋ = ax + y ẏ = x x by 2 Griffith a b Saddle Node Saddle-Node (phase plane) Griffith mrna(y) Protein(x) (nullcline) 0 (nullcline) (

ẋ = ax + y ẏ = x x by 2 Griffith a b Saddle Node Saddle-Node (phase plane) Griffith mrna(y) Protein(x) (nullcline) 0 (nullcline) ( 2 (bifurcation) Saddle-Node Hopf Pitchfork 2.1 Saddle-Node( ) 2.1.1 Griffith : (bistability) ON/OFF 2 (bistability) (Stable node Stable spiral) 2 Griffith X mrna mrna X Griffith ( x y mrna ) 2.1: Griffith

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 3 版 1 刷発行時のものです. 最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/052093 このサンプルページの内容は, 第 3 版 1 刷発行時のものです. i 3 10 3 2000 2007 26 8 2 SI SI 20 1996 2000 SI 15 3 ii 1 56 6

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

ohp_06nov_tohoku.dvi

ohp_06nov_tohoku.dvi 2006 11 28 1. (1) ẋ = ax = x(t) =Ce at C C>0 a0 x(t) 0(t )!! 1 0.8 0.6 0.4 0.2 2 4 6 8 10-0.2 (1) a =2 C =1 1. (1) τ>0 (2) ẋ(t) = ax(t τ) 4 2 2 4 6 8 10-2 -4 (2) a =2 τ =1!! 1. (2) A. (2)

More information

sakigake1.dvi

sakigake1.dvi (Zin ARAI) arai@cris.hokudai.ac.jp http://www.cris.hokudai.ac.jp/arai/ 1 dynamical systems ( mechanics ) dynamical systems 3 G X Ψ:G X X, (g, x) Ψ(g, x) =:Ψ g (x) Ψ id (x) =x, Ψ gh (x) =Ψ h (Ψ g (x)) (

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e ( ) Note 3 19 12 13 8 8.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R, µ R, τ R (1a) L ( ) ) * 3) W Z 1/2 ( - )

More information

L. S. Abstract. Date: last revised on 9 Feb translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, L. Onsager and S.

L. S. Abstract. Date: last revised on 9 Feb translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, L. Onsager and S. L. S. Abstract. Date: last revised on 9 Feb 01. translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, 1953. L. Onsager and S. Machlup, Fluctuations and Irreversibel Processes, Physical

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

ẍ = kx, (k > ) (.) x x(t) = A cos(ωt + α) (.). d/ = D. d dt x + k ( x = D + k ) ( ) ( ) k k x = D + i D i x =... ( ) k D + i x = or ( ) k D i x =.. k.

ẍ = kx, (k > ) (.) x x(t) = A cos(ωt + α) (.). d/ = D. d dt x + k ( x = D + k ) ( ) ( ) k k x = D + i D i x =... ( ) k D + i x = or ( ) k D i x =.. k. K E N Z OU 8 9 8. F = kx x 3 678 ẍ = kx, (k > ) (.) x x(t) = A cos(ωt + α) (.). d/ = D. d dt x + k ( x = D + k ) ( ) ( ) k k x = D + i D i x =... ( ) k D + i x = or ( ) k D i x =.. k. D = ±i dt = ±iωx,

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

1   nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC 1 http://www.gem.aoyama.ac.jp/ nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC r 1 A B B C C A (1),(2),, (8) A, B, C A,B,C 2 1 ABC

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A 2 1 2 1 2 3 α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3 4 P, Q R n = {(x 1, x 2,, x n ) ; x 1, x 2,, x n R}

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

R¤Çʬ¤«¤ëÎÏ³Ø·Ï - ¡Áʬ´ô¤ÎÍͻҤò²Ä»ë²½¤·¤Æ¤ß¤ë¡Á

R¤Çʬ¤«¤ëÎÏ³Ø·Ï - ¡Áʬ´ô¤ÎÍͻҤò²Ä»ë²½¤·¤Æ¤ß¤ë¡Á .... R 2009 3 1 ( ) R 2009 3 1 1 / 23 : ( )!, @tkf, id:tkf41, (id:artk ) : 4 1 : http://arataka.wordpress.com : Python, C/C++, PHP, Javascript R : / ( ) R 2009 3 1 2 / 23 R? R! ( ) R 2009 3 1 3 / 23 =

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising ,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising Model 1 Ising 1 Ising Model N Ising (σ i = ±1) (Free

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

b3e2003.dvi

b3e2003.dvi 15 II 5 5.1 (1) p, q p = (x + 2y, xy, 1), q = (x 2 + 3y 2, xyz, ) (i) p rotq (ii) p gradq D (2) a, b rot(a b) div [11, p.75] (3) (i) f f grad f = 1 2 grad( f 2) (ii) f f gradf 1 2 grad ( f 2) rotf 5.2

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2 1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac

More information

DVIOUT-fujin

DVIOUT-fujin 2005 Limit Distribution of Quantum Walks and Weyl Equation 2006 3 2 1 2 2 4 2.1...................... 4 2.2......................... 5 2.3..................... 6 3 8 3.1........... 8 3.2..........................

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

Bifurcation Structure of a Novel Car-following Model with Relative Velocity Effect 1 Akiyasu Tomoeda 2 Tomoyuki Miyaji 3 2011 AUTO Hopf Kota Ikeda 1 [1, 2] [3, 4, 5]. [4] 1 1 / / JST CREST 2 / 3 / 54 (,

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

QMII_10.dvi

QMII_10.dvi 65 1 1.1 1.1.1 1.1 H H () = E (), (1.1) H ν () = E ν () ν (). (1.) () () = δ, (1.3) μ () ν () = δ(μ ν). (1.4) E E ν () E () H 1.1: H α(t) = c (t) () + dνc ν (t) ν (), (1.5) H () () + dν ν () ν () = 1 (1.6)

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 1 16 10 5 1 2 2.1 a a a 1 1 1 2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 4 2 3 4 2 5 2.4 x y (x,y) l a x = l cot h cos a, (3) y = l cot h sin a (4) h a

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

http : // ta/mathbio.html

http : //  ta/mathbio.html 2018 1 1 http : //www.f.waseda.jp/atsuko ta/mathbio.html 1 ( [1, 15]) 3 2 6 2.1 -.... 6 2.1.1............ 7 2.1.2... 7 2.1.3................. 8 2.1.4 (Enzyme Kinetics)......... 9 2.1.5 (quasi-steady state

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji 8 4 2018 6 2018 6 7 1 (Contents) 1. 2 2. (1) 22 3. 31 1. Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji SETO 22 3. Editorial Comments Tadashi

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

1 : ( ) ( ) ( ) ( ) ( ) etc (SCA)

1 : ( ) ( ) ( ) ( ) ( ) etc (SCA) START: 17th Symp. Auto. Decentr. Sys., Jan. 28, 2005 Symplectic cellular automata as a test-bed for research on the emergence of natural systems 1 : ( ) ( ) ( ) ( ) ( ) etc (SCA) 2 SCA 2.0 CA ( ) E.g.

More information

1 c Koichi Suga, ISBN

1 c Koichi Suga, ISBN c Koichi Suga, 4 4 6 5 ISBN 978-4-64-6445- 4 ( ) x(t) t u(t) t {u(t)} {x(t)} () T, (), (3), (4) max J = {u(t)} V (x, u)dt ẋ = f(x, u) x() = x x(t ) = x T (), x, u, t ẋ x t u u ẋ = f(x, u) x(t ) = x T x(t

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

215 11 13 1 2 1.1....................... 2 1.2.................... 2 1.3..................... 2 1.4...................... 3 1.5............... 3 1.6........................... 4 1.7.................. 4

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2 7 1995, 2017 7 21 1 2 2 3 3 4 4 6 (1).................................... 6 (2)..................................... 6 (3) t................. 9 5 11 (1)......................................... 11 (2)

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ II p = mv p x > h/4π λ = h p m v Ψ 2 Ψ Ψ Ψ 2 0 x P'(x) m d 2 x = mω 2 x = kx = F(x) dt 2 x = cos(ωt + φ) mω 2 = k ω = m k v = dx = -ωsin(ωt + φ) dt = d 2 x dt 2 0 y v θ P(x,y) θ = ωt + φ ν = ω [Hz] 2π

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ 1 (1) ( i ) 60 (ii) 75 (iii) 15 () ( i ) (ii) 4 (iii) 7 1 ( () r, AOB = θ 0 < θ < ) OAB A OB P ( AB ) < ( AP ) (4) 0 < θ < sin θ < θ < tan θ 0 x, 0 y (1) sin x = sin y (x, y) () cos x cos y (x, y) 1 c

More information

Chap10.dvi

Chap10.dvi =0. f = 2 +3 { 2 +3 0 2 f = 1 =0 { sin 0 3 f = 1 =0 2 sin 1 0 4 f = 0 =0 { 1 0 5 f = 0 =0 f 3 2 lim = lim 0 0 0 =0 =0. f 0 = 0. 2 =0. 3 4 f 1 lim 0 0 = lim 0 sin 2 cos 1 = lim 0 2 sin = lim =0 0 2 =0.

More information

K E N Z U 01 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.................................... 4 1..1..................................... 4 1...................................... 5................................

More information

( ) ) AGD 2) 7) 1

( ) ) AGD 2) 7) 1 ( 9 5 6 ) ) AGD ) 7) S. ψ (r, t) ψ(r, t) (r, t) Ĥ ψ(r, t) = e iĥt/ħ ψ(r, )e iĥt/ħ ˆn(r, t) = ψ (r, t)ψ(r, t) () : ψ(r, t)ψ (r, t) ψ (r, t)ψ(r, t) = δ(r r ) () ψ(r, t)ψ(r, t) ψ(r, t)ψ(r, t) = (3) ψ (r,

More information

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2. A A 1 A 5 A 6 1 2 3 4 5 6 7 1 1.1 1.1 (). Hausdorff M R m M M {U α } U α R m E α ϕ α : U α E α U α U β = ϕ α (ϕ β ϕβ (U α U β )) 1 : ϕ β (U α U β ) ϕ α (U α U β ) C M a m dim M a U α ϕ α {x i, 1 i m} {U,

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

4 5.............................................. 5............................................ 6.............................................. 7......................................... 8.3.................................................4.........................................4..............................................4................................................4.3...............................................

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y 017 8 10 f : R R f(x) = x n + x n 1 + 1, f(x) = sin 1, log x x n m :f : R n R m z = f(x, y) R R R R, R R R n R m R n R m R n R m f : R R f (x) = lim h 0 f(x + h) f(x) h f : R n R m m n M Jacobi( ) m n

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( ) 2 9 2 5 2.2.3 grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = g () g () (3) grad φ(p ) p grad φ φ (P, φ(p )) y (, y) = (ξ(t), η(t)) ( ) ξ (t) (t) := η (t) grad f(ξ(t), η(t)) (t) g(t) := f(ξ(t), η(t))

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information