連続講座 断層映像法の基礎第 29 回 : 篠原広行 他 断層映像法の基礎第 29 回 2 次元ファンビームの投影と画像再構成 篠原広行 II 梶原宏則 II 中世古和真 1 ) 橘篤志 II 橋本雄幸 2) 首都大学東京人間健康科学研究科放射線科学域 21 横浜愈 l 英短期大学情報学科 はじめに

Size: px
Start display at page:

Download "連続講座 断層映像法の基礎第 29 回 : 篠原広行 他 断層映像法の基礎第 29 回 2 次元ファンビームの投影と画像再構成 篠原広行 II 梶原宏則 II 中世古和真 1 ) 橘篤志 II 橋本雄幸 2) 首都大学東京人間健康科学研究科放射線科学域 21 横浜愈 l 英短期大学情報学科 はじめに"

Transcription

1 連続講座 断層映像法の基礎第 29 回 : 篠原広行 他 断層映像法の基礎第 29 回 2 次元ファンビームの投影と画像再構成 篠原広行 II 梶原宏則 II 中世古和真 1 ) 橘篤志 II 橋本雄幸 2) 首都大学東京人間健康科学研究科放射線科学域 21 横浜愈 l 英短期大学情報学科 はじめに第 28 固までで レジストレーションについてその基本から非剛体レジストレーションまで解説してきた 今回から直接 M RI の画像再構成には使われてないが CT の世界ではよく使われている 2 次元のファン ( 扇状 ) ビームと 3 次元のコーン ( 円錐状 ) ビームからの画像再構成について解説する 本稿では 2 次元画像再構成で使われているファンビームから投影データを取得する方法とその投影データから画像再構成する方法について解説する 1. パラレルビームとファンビーム 2. ファンパラ変換と投影再構成法 3. ファンビームからの直接再構成法 1. パラレルビームとファンビーム MRI の投影再構成法は k 空間を極座標系でスキャン ( ラジアルスキャン ) して画像再構成を行う 図 1 に示すように I 方向をスキャンした k 空間のデータを 1 次元フーリエ逆変換すると図 2 に示すような実空間での被写体の同じ方向の投影データになる この場合 被写体に対してパラレルビーム ( 平行ビーム ) で投影をとった投影データに相当する 一方 ファンビームの投影データは図 3 に示すように 1 つの X 線源から放射状に検出器に到達するように投影をとる そして X 線源と検出器を同時に回転させて 全方向から投影データを取得する このファンビームの投影データは k 空間で直接取得することはできない よってファンビームの投影データからの画像再構成問題は k 空間を考え 図 1. k 空間におけるラジアルスキャン ( 投影再構成法 ) 図 2. パラレルビームの投影 別刷請求先 : 東京都荒川区東尾久 首都大学東京人間健康科学研究科放射線科学域篠原 広行 2009 年 12 月 20 日 179-( 5 9 )

2 連続講座 断層映像法の基礎第 29 回 : 篠原広行 他 図 3. シ r ヘ ファンビームの投影 ずに実空間でとられるデータについて考えていく ファンビームでの投影の幾何学的配置には 2 種類あって 図 4 に示すように検出器が扇状に並んで いるものと 図 5 に示すように検出器が直線状に並んでいるものとがある ファンビームの投影を数値シミュレーションで作成する場合は ファンビームの X 線源から検出器までの 1 つのラインをパラレルビームのラインに換算することによって パラレルビームと同じように作成することができる 図 4 に示すように検出器が扇状に並んで いる場合のファンビームの投影データを gf (α.8c) パラレルビームの投影データを gp (X p.8 p ) とし X 線源からファンビームの回転中心 ( 被写体空間の座標軸の原点 ) までの距離を L とすると, [2;;::?α,F よって投影データの関係は と表すことができる gr(α, 8r α, 8r+α) 図 4. 検出器が扇状に並んだファンビームの幾何学的配置 となる 図 6 に示した数値ファントムに対して パラレルビームで作成した投影と検出器が扇状に並んだファンビームで作成した投影のサイノグラムをそれぞれ図 7(a) と (b) に示す パラレルビームの投影では 外側の楕円の投影の輪郭が左右対称になっているのに対し ファンビームの投影では左右非対称になる このずれは 線源の回転方向の違いによっても異なってくる (2) 式で示した関係は 線 i 原が反時計回りに回転するときのものであるが 逆に時計回りに回転するときの投影データの関係は gr(α, α, 8r-α) 図 5. 検出器が直線状に並んだファンビームの幾何学的配置 と表される 線源の回転方向が反時計四りと時計 回りの投影データをそれぞれ図 8(a) と (b) に示す 左右のずれが逆向きになっている このことより 再構成においてもファンビームの場合は線源の回転 方向が重要になる また 図 5 に示すように 検出器か直線状に並んで いる場合のファンビームの投影データを gf 8 f ) パラレルビームの投影データを gp 8p ) とし X 線 断層映像研究会雑誌第 36 巻第 3 号

3 連続講座 断層映像法の基礎第 29 回 : 篠原広行 他 源からファンビームの回転中心 ( 被写体空間の座標 軸の原点 ) まで の距離を Lo X 線源から検出器までの 距離を Ld (Xf 座標軸の中心 O と X 線源を結ぶ距離 ) とすると Xp=Loτ 三と 8p =fh+tan 一 l 手 L だファンビームで作成した投影のサイノグラムをそれぞれ図 9(a) と ( b) に示す 扇状の検出器の場合と比較すると 投影の横方向に多少ずれがある (5) 式は線源が反時計回りに回転するときの投影データの関係であるが 線 j 原が時計回りに回転する場合は gf(xf.8f)=gp(lo 一戸主二弓.8f-tan-J~ ユ ) と表すことができる よって投影データの関係は と表される g 仏. 8r) =gp(lo 下手ヒ. +tan- 1 手 ) となる 図 6 に示した数値ファントムに対して パラ レルビームで作成した投影と検出器が直線状に並ん 2. ファンパラ変換と投影再構成法ファンビームの投影からパラレルビームの投影に変換することをファンパラ変換と呼ぶ パラレルビームの投影がファンビームの投影のどの位置にな るかを図 10 に示す ファンビームは検出器が反時計 図 7. 図 4の配置で作成したファンビームの投影データ 図 6. 数値ファン卜ムの函像 ( a ) パラレルビームの投影データ ファン )2009 年 12 月 20 日 ( b ) ビームの投影データ ( 反時計回り 図 8. 回転方向を変えたファンビームの投影データ ( a ) 線源か反時計回りの場合の投影データ ( a ) パラレルビームの投影データ ( b ) 線源が時計回りの場合の投影データ ( b ) ファンビームの投影データ ( 反時計回り ) 左右のずれ方が逆向きになる 図 9. 図 5 の配置で作成したファンビームの投影データ

4 Aり連続講座 断層映像法の基礎第四回 : 篠原広行 他 回りに回転したもので 図 10(a) は扇形の検出器の 場合 図 10(b) は直線状の検出器の場合を示して いる 検出器が反時計回りに回転している場合は パラレルビームのデータはファンビーム上で右上がり になっている である これは 図 7 や図 9 を見ても明らか 実際のファンパラ変換では パラレルビームの投影 データを作成するので パラレルビームの位置が ファンビームのどの位置になるかを計算して その 位置のデータをファンビームの近接データから補間 することによって求める よって 線源が反時計 回りに回転している場合は (1) 式および (4) 式を 逆に解くことで計算式が求まる 検出器が扇状に 並んでいる場合は (1) 式を α と 8[ に対して解いて α=sm ' ーご一 8f=8p -sin- 1 手旦 となり 投影データの変換は g 仏 8p )=gc( sin- 1 手, 8p -sin- 1 手 ) となる また 検出器が直線状に並んで いる場合は (4) 式を X[ と 8[ に対して解いて [: 仙 l f= 一戸二二二二二二 J Lι_Xp 2 一一花王百 となり 投影データの変換は gp(xp,8p)= > 一一 一一一八花王王 ;z 江主主 7 ファンビームの投影データからファンパラ変換を 行ってパラレルビームの投影データに変換した結果 を図 11 に示す 図 11 (a) は検出器が扇状に並んで いる場合で 図 11 (b) は検出器が直線状に並んで いる場合を示している 拡大率の違いによって横方 向の大きさが多少異なっているが 左右のバランス は元のパラレルビームと同様に左右対称の形に戻っ ている ファンビームの投影データをパラレルビー ムの投影データに変換できれば 画像再構成は投影 再構成法 (FBP 法 ) をそのまま用いることができる ファンビームからの直接再構成法 フーリエ変換に関するよく知られた定理によれば 周波数空間でフィルタ関数 H(ω) を掛け算すること となる.EFα 宅 f - 司 -< め f 図 10. ファンビームの投影とパラレルビームの投影の関係 (a) 扇状の検出器の場合 ( b ) 直線状の検出器の場合 断層映像研究会雑誌第 36 巻第 3 号

5 連続講座 断層映像法の基礎第 29 回 : 篠原広行 他 は 実空間において この関数の逆変換,唱a E AhルEtcHωげ を重畳積分 ( convo lu tion integral) することと等価である したがって 投影再構成法において k 空間でフィルタ関数を掛け算する計算を 変数 X の領域 ( 実空間 ) で重畳積分により実行することもできる 具体的には フィルタ関数 ω と一致する関数を φ ( ω ) としフーリエ逆変換した関数をの ( X ) とすれば k 空間でフィルタを掛ける計算は q(x.8)= 工 : g(x'.8)φ(x-x')dx' のように表すこともできる このような投影データに対し実空間で重畳積分によってフィルタリングを実行するようなフィルタ補正逆投影法を とくに重畳積分法 あるいはコンボリューション法と呼んで いる 標本化された投影データにおいて フィルタ 関数が帯域制限された ω の Ramachandran Lakshiminarayanan フィルタと呼ばれるものを利用 する場合 実空間の φ ( Xj ) は φ(xi) i 2π 2( Ll X)2 となる ここでム X は標本化したときの X j の標本間隔である このフィルタの周波数空間での形と実空間での形を図 12 に示す ファンビームの投影データに対しファンパラ変換を用いずに直接再構成する場合は この重畳積分法を利用する この手法は計算が複雑なので 簡単な手順にして紹介する この手順も扇状の検出器の 同 ) 図 11. ファンパラ変換でパラレルビームの投影に変換した投影データ ( a ) 検出器か扇状に並んでいる場合のファンビームからパラレルビー ムに変換した投影データ ( b ) 検出器が直線状に並んでいる場合のファンビームからパラレル ビームに変換した投影データ 図 12. Lakshiminarayanan フィルタの形状 ( a ) 周波数空間 ( k 空間 ) での形状 ( b ) 実空間での形状 2009 年 12 月 20 日

6 連続講座 断層映像法の基礎第四回 : 篠原広行 他 場合と直線状の検出器の場合とで式が若干異なっ てくるので 両方の場合に分けて解説する 検出器が扇状の場合 手順 1 : ファンビームの投影データに Lo cosα を 手 }II 貢 2: 手順 3: 掛ける フィルタに (α /sinα) 2 を掛けたものを投影 データに重畳する ( フィルタ補正にあたる ) フィルタ補正した投影データを以下の式で 重み付けして逆投影する この重み付け重畳積分法でファンビームから直接再構成が可能である 実際にはファンパラ変換を行った方が計算時間においても有利なのでファンパラ変換が使われることが多い しかし この考え方は 3 次元のコーンビーム再構成に応用されている 謝辞 : 本研究で使用したプログラムの開発は平成 17 年度 ~ 平成 22 年度首都大学東京共同研究費 ( 富士フィルム RI ファーマ株式会社 ) および平成 21 年度首都大学東京傾斜的配分研究費によるものである f(x, y)=lfzπ--1-- gf'(α, ß)dß Wl(X,y,ß)2 ここで ß=8f 一 α で (x,y,ß)=j llo+t sin(ß ー φ)1 2 + COS(ß- φ)1 2 cosφ sinφ である 検出器が直線状の場合手順 1 : ファンビームの投影データに Lo /' 江戸支 ;E を掛ける手順 2 : フィルタを投影データに重畳する ( フィルタ補正にあたる ) 手順 3: フィルタ補正した投影データを以下の式で重み付けして逆投影する f(x, y)=1f 2π 1 n,~ gf'(xf,ß)dß W2(X,y, ß)2 ここで ß=8f-tan- 1 手 L で 自 Lo +t sin(ß-φ) W2(x,y,F)=L cosφ sinφ である 184 ( 64 ) 断層映像研究会雑誌第 36 巻第 3 号

7

連続講座 断層映像法の基礎第 34 回 : 篠原 広行 他 放射状に 線を照射し 対面に検出器の列を置いておき 一度に 1 つの角度データを取得する 後は全体を 1 回転しながら次々と角度データを取得することで計測を終了する この計測で得られる投影はとなる ここで l はファンビームのファンに沿った

連続講座 断層映像法の基礎第 34 回 : 篠原 広行 他 放射状に 線を照射し 対面に検出器の列を置いておき 一度に 1 つの角度データを取得する 後は全体を 1 回転しながら次々と角度データを取得することで計測を終了する この計測で得られる投影はとなる ここで l はファンビームのファンに沿った 連続講座 断層映像法の基礎第 34 回 : 篠原広行 他 篠原 広行 桑山 潤 小川 亙 中世古 和真 断層映像法の基礎第 34 回スパイラルスキャン CT 1) 軽部修平 2) 橋本雄幸 1) 小島慎也 1) 藤堂幸宏 1) 3) 首都大学東京人間健康科学研究科放射線科学域 2) 東邦大学医療センター大橋病院 3) 横浜創英短期大学情報学科 1) はじめに第 33 回では検出確率 C ij の関係を行列とベクトルの計算式に置き換えて解を求める最小二乗法を利用した方法について解説した

More information

連続講座 断層映像法の基礎第 32 回 : 篠原広行 他 断層映像法の基礎 第 32 回 ML-EM 法と OS-EM 法 篠原広行 1) 桑山潤 1) 小川亙 1) 2) 橋本雄幸 1) 首都大学東京人間健康科学研究科放射線科学域 2) 横浜創英短期大学情報学科 はじめに第 31 回では繰り返しを

連続講座 断層映像法の基礎第 32 回 : 篠原広行 他 断層映像法の基礎 第 32 回 ML-EM 法と OS-EM 法 篠原広行 1) 桑山潤 1) 小川亙 1) 2) 橋本雄幸 1) 首都大学東京人間健康科学研究科放射線科学域 2) 横浜創英短期大学情報学科 はじめに第 31 回では繰り返しを 断層映像法の基礎 第 32 回 ML-EM 法と OS-EM 法 篠原広行 1) 桑山潤 1) 小川亙 1) 2) 橋本雄幸 1) 首都大学東京人間健康科学研究科放射線科学域 2) 横浜創英短期大学情報学科 はじめに第 31 回では繰り返しを利用して徐々に解に近づけていく方法を紹介した 本稿ではその繰り返しを使った方法で最も多く使われている ML-EM 法と OS-EM 法について解説する また その方法を利用した数値シミュレーションの結果についても紹介する

More information

2004 年 9 月 30 日 という関係がある この確率密度関数 p(x) は 様々な 形をとる 代表的な形には 一様ノイズに相当する一 定の値を持つ関数や ガウス型ノイズに相当するガウ ス関数などがある その形を図 2( 司と (b) に示す 計測において この確率密度関数の形が必ずしも分 かっ

2004 年 9 月 30 日 という関係がある この確率密度関数 p(x) は 様々な 形をとる 代表的な形には 一様ノイズに相当する一 定の値を持つ関数や ガウス型ノイズに相当するガウ ス関数などがある その形を図 2( 司と (b) に示す 計測において この確率密度関数の形が必ずしも分 かっ 断層映像研究会雑誌 第 3 1 巻 第 3 号 連続講座 断層映像法の基礎第 17 回 MRI 再構成画像へのノイズの影響 篠原広行 1) 坂口和也 1) 今江禄ー 1) 薄葉大輔 1 ) 橋本雄幸 2) 1) 東京都立保健科学大学放射線学科 2) 横浜創英短期大学情報処理学科 はじめに今までの解説やシミュレーションの中では ノイズなどの変動成分については無視して純粋な信号について解説し シミュレーションを行ってきた

More information

逐次近似法の基礎と各種補正方法

逐次近似法の基礎と各種補正方法 逐次近似法の基礎と各種補正方法 横浜創英大学橋本雄幸 画像再構成における逐次近似法の歴史は長く,X 線 CT においても解析的方法が見つかる前は, 逐次近似法を用いて画像を再構成していた. 解析的方法が見つかってからは, 計算時間の長さから逐次近似法はあまり使われなくなった. しかし, コンピュータの発展に伴い, 繰り返しても計算時間がそれほどかからなくなったこともあり, 解析的方法が確立できない

More information

PowerPoint Presentation

PowerPoint Presentation 付録 2 2 次元アフィン変換 直交変換 たたみ込み 1.2 次元のアフィン変換 座標 (x,y ) を (x,y) に移すことを 2 次元での変換. 特に, 変換が と書けるとき, アフィン変換, アフィン変換は, その 1 次の項による変換 と 0 次の項による変換 アフィン変換 0 次の項は平行移動 1 次の項は座標 (x, y ) をベクトルと考えて とすれば このようなもの 2 次元ベクトルの線形写像

More information

Microsoft PowerPoint - 第3回2.ppt

Microsoft PowerPoint - 第3回2.ppt 講義内容 講義内容 次元ベクトル 関数の直交性フーリエ級数 次元代表的な対の諸性質コンボリューション たたみこみ積分 サンプリング定理 次元離散 次元空間周波数の概念 次元代表的な 次元対 次元離散 次元ベクトル 関数の直交性フーリエ級数 次元代表的な対の諸性質コンボリューション たたみこみ積分 サンプリング定理 次元離散 次元空間周波数の概念 次元代表的な 次元対 次元離散 ベクトルの直交性 3

More information

臨床画像技術学Ⅱ

臨床画像技術学Ⅱ 核医学機器工学概論 2 断層画像 CT( Computed Tomography) を得る方法 1. フィルタ重畳逆投影法 FBP ( Filtered Back Projection ) 2. 逐次近似再構成法 Iterative Reconstruction MLEM (Maximum Likelihood Expectation Maximization) OSEM ( Ordered Subsets

More information

<4D F736F F D F385F322089E6919C8DC48D5C90AC82CC8AEE B CC8CB4979D815B>

<4D F736F F D F385F322089E6919C8DC48D5C90AC82CC8AEE B CC8CB4979D815B> 画像再構成の基礎 1-FBP 法の原理 - Basic of Image Reconstruction 1-Fundamentals of FBP method- 首都大学東京篠原広行 Shinohara Hiroyuki はじめに画像再構成は被写体の積分変換 ( 投影 ) から被写体を求める逆問題であり, 解析的方法と逐次近似法に大別される. フィルタ補正逆投影 (filtered back projection:

More information

Microsoft PowerPoint - ロボットの運動学forUpload'C5Q [互換モード]

Microsoft PowerPoint - ロボットの運動学forUpload'C5Q [互換モード] ロボットの運動学 順運動学とは 座標系の回転と並進 同次座標変換行列 Denavit-Hartenberg の表記法 多関節ロボットの順運動学 レポート課題 & 中間試験について 逆運動学とは ヤコビアン行列 運動方程式 ( 微分方程式 ) ロボットの運動学 動力学 Equation of motion f ( ( t), ( t), ( t)) τ( t) 姿勢 ( 関節角の組合せ ) Posture

More information

0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生

0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生 0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生まれ, コンピューテーショナルフォトグラフィ ( 計算フォトグラフィ ) と呼ばれている.3 次元画像認識技術の計算フォトグラフィへの応用として,

More information

Microsoft PowerPoint - ip02_01.ppt [互換モード]

Microsoft PowerPoint - ip02_01.ppt [互換モード] 空間周波数 周波数領域での処理 空間周波数 (spatial frquncy) とは 単位長さ当たりの正弦波状の濃淡変化の繰り返し回数を表したもの 正弦波 : y sin( t) 周期 : 周波数 : T f / T 角周波数 : f 画像処理 空間周波数 周波数領域での処理 波形が違うと 周波数も違う 画像処理 空間周波数 周波数領域での処理 画像処理 3 周波数領域での処理 周波数は一つしかない?-

More information

スライド 1

スライド 1 (8) 2017.6.7 電気通信大学大学院情報理工学研究科末廣尚士 9. ロボットアームの逆運動学 ( 幾何 学的 ( 解析的 ) 解法 ) 何をしたいか 手首, 手先, ツールの 3 次元空間での位置や姿勢から, それを実現する関節角度を計算する. アームソリューション, アームの解とも呼ぶ 何のために たとえばビジョンで認識された物をつかむ場合, 物の位置 姿勢は 3 次元空間で表現されることが普通である.

More information

p tn tn したがって, 点 の 座標は p p tn tn tn また, 直線 l と直線 p の交点 の 座標は p p tn p tn よって, 点 の座標 (, ) は p p, tn tn と表され p 4p p 4p 4p tn tn tn より, 点 は放物線 4 p 上を動くこと

p tn tn したがって, 点 の 座標は p p tn tn tn また, 直線 l と直線 p の交点 の 座標は p p tn p tn よって, 点 の座標 (, ) は p p, tn tn と表され p 4p p 4p 4p tn tn tn より, 点 は放物線 4 p 上を動くこと 567_ 次曲線の三角関数による媒介変数表示 次曲線の三角関数による媒介変数表示 次曲線 ( 放物線 楕円 双曲線 ) の標準形の, についての方程式と, 三角関数による媒介変数表示は次のように対応している.. 放物線 () 4 p (, ) ( ptn, ptn ) (). 楕円. 双曲線 () () (, p p ), tn tn (, ) ( cos, sin ) (, ), tn cos (,

More information

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X ( 第 週ラプラス変換 教科書 p.34~ 目標ラプラス変換の定義と意味を理解する フーリエ変換や Z 変換と並ぶ 信号解析やシステム設計における重要なツール ラプラス変換は波動現象や電気回路など様々な分野で 微分方程式を解くために利用されてきた ラプラス変換を用いることで微分方程式は代数方程式に変換される また 工学上使われる主要な関数のラプラス変換は簡単な形の関数で表されるので これを ラプラス変換表

More information

Microsoft Word - 断面諸量

Microsoft Word - 断面諸量 応用力学 Ⅱ 講義資料 / 断面諸量 断面諸量 断面 次 次モーメントの定義 図 - に示すような形状を有する横断面を考え その全断面積を とする いま任意に定めた直交座標軸 O-, をとり また図中の斜線部の微小面積要素を d とするとき d, d () で定義される, をそれぞれ与えられた横断面の 軸, 軸に関する断面 次モーメント (geometrcal moment of area) という

More information

vecrot

vecrot 1. ベクトル ベクトル : 方向を持つ量 ベクトルには 1 方向 2 大きさ ( 長さ ) という 2 つの属性がある ベクトルの例 : 物体の移動速度 移動量電場 磁場の強さ風速力トルクなど 2. ベクトルの表現 2.1 矢印で表現される 矢印の長さ : ベクトルの大きさ 矢印の向き : ベクトルの方向 2.2 2 個の点を用いて表現する 始点 () と終点 () を結ぶ半直線の向き : ベクトルの方向

More information

連続講座 画像再構成 : 臨床医のための解説第 2 回 : 篠原 広行 他 ラムと呼ばれる 上部の 度の位置から矩形 台形 三角形となる様子が観察される 投影が三角形と なる 5 度 35 度の投影角度で値が最大となる 図 2 は空白の画面に投影を得た方向に投影の値 を戻し重なった部分を足し算する逆

連続講座 画像再構成 : 臨床医のための解説第 2 回 : 篠原 広行 他 ラムと呼ばれる 上部の 度の位置から矩形 台形 三角形となる様子が観察される 投影が三角形と なる 5 度 35 度の投影角度で値が最大となる 図 2 は空白の画面に投影を得た方向に投影の値 を戻し重なった部分を足し算する逆 連続講座 画像再構成 : 臨床医のための解説第 2 回 : 篠原広行 他 画像再構成 : 臨床医のための解説第 2 回逐次近似画像再構成法 篠原 広行 ) 小島慎也 2) 橋本雄幸 3) 2) 上野惠子 2) ) 首都大学東京東京女子医科大学東医療センター放射線科 3) 横浜創英大学こども教育学部 はじめに 画像再構成は被写体の積分変換 ( 投影 ) から被 写体を求める逆問題であり 解析的方法と逐次近似

More information

断面の諸量

断面の諸量 断面の諸量 建設システム工学科高谷富也 断面 次モーメント 定義 G d G d 座標軸の平行移動 断面 次モーメント 軸に平行な X Y 軸に関する断面 次モーメント G X G Y を求める X G d d d Y 0 0 G 0 G d d d 0 0 G 0 重心 軸に関する断面 次モーメントを G G とし 軸に平行な座標軸 X Y の原点が断面の重心に一致するものとする G G, G G

More information

応用数学A

応用数学A 応用数学 A 米田 戸倉川月 7 限 1930~2100 西 5-109 V を :x 2 + y 2 + z 2 = 4 で囲まれる内部とする F = ye x xe y + ze z FdV = V e x e y e z F = = 2e z 2e z dv = 2e z 3 23 = 64π 3 e z y x z 4π V n Fd = 1 F nd 2 F nd 法線ベクトル n g x,

More information

2010年度 筑波大・理系数学

2010年度 筑波大・理系数学 00 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ f( x) x ax とおく ただしa>0 とする () f( ) f() となるa の範囲を求めよ () f(x) の極小値が f ( ) 以下になる a の範囲を求めよ () x における f(x) の最小値をa を用いて表せ -- 00 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ つの曲線 C : y six ( 0

More information

連続講座 画像再構成 : 臨床医のための解説第 2 回 : 篠原広行 他 画像再構成 : 臨床医のための解説第 2 回逐次近似画像再構成法 篠原 広行 1) 小島慎也 2) 橋本雄幸 3) 2) 上野惠子 2) 1) 首都大学東京東京女子医科大学東医療センター放射線科 3) 横浜創英大学こども教育学

連続講座 画像再構成 : 臨床医のための解説第 2 回 : 篠原広行 他 画像再構成 : 臨床医のための解説第 2 回逐次近似画像再構成法 篠原 広行 1) 小島慎也 2) 橋本雄幸 3) 2) 上野惠子 2) 1) 首都大学東京東京女子医科大学東医療センター放射線科 3) 横浜創英大学こども教育学 連続講座 画像再構成 : 臨床医のための解説第 回 : 篠原 画像再構成 : 臨床医のための解説第 回逐次近似画像再構成法 篠原 広行 ) 小島慎也 ) 橋本雄幸 3) ) 上野惠子 ) ) 首都大学東京東京女子医科大学東医療センター放射線科 3) 横浜創英大学こども教育学部 はじめに 画像再構成は被写体の積分変換 ( 投影 ) から被 写体を求める逆問題であり 解析的方法と逐次近似 法に大別される

More information

2011年度 大阪大・理系数学

2011年度 大阪大・理系数学 0 大阪大学 ( 理系 ) 前期日程問題 解答解説のページへ a a を自然数とする O を原点とする座標平面上で行列 A= a の表す 次変換 を f とする cosθ siθ () >0 および0θ

More information

ディジタル信号処理

ディジタル信号処理 ディジタルフィルタの設計法. 逆フィルター. 直線位相 FIR フィルタの設計. 窓関数法による FIR フィルタの設計.5 時間領域での FIR フィルタの設計 3. アナログフィルタを基にしたディジタル IIR フィルタの設計法 I 4. アナログフィルタを基にしたディジタル IIR フィルタの設計法 II 5. 双 次フィルタ LI 離散時間システムの基礎式の証明 [ ] 4. ] [ ]*

More information

振動学特論火曜 1 限 TA332J 藤井康介 6 章スペクトルの平滑化 スペクトルの平滑化とはギザギザした地震波のフーリエ スペクトルやパワ スペクトルでは正確にスペクトルの山がどこにあるかはよく分からない このようなスペクトルから不純なものを取り去って 本当の性質を浮き彫

振動学特論火曜 1 限 TA332J 藤井康介 6 章スペクトルの平滑化 スペクトルの平滑化とはギザギザした地震波のフーリエ スペクトルやパワ スペクトルでは正確にスペクトルの山がどこにあるかはよく分からない このようなスペクトルから不純なものを取り去って 本当の性質を浮き彫 6 章スペクトルの平滑化 スペクトルの平滑化とはギザギザした地震波のフーリエ スペクトルやパワ スペクトルでは正確にスペクトルの山がどこにあるかはよく分からない このようなスペクトルから不純なものを取り去って 本当の性質を浮き彫りにするために スペクトルを滑らかにする操作のことをいう 6.1 合積のフーリエ変換スペクトルの平滑化を行う際に必要な 合積とそのフーリエ変換について説明する 6.2 データ

More information

Microsoft PowerPoint - 画像工学2007-2印刷用++++

Microsoft PowerPoint - 画像工学2007-2印刷用++++ 教室 : 14-202 OCTOBER 09 画像工学 2007 年度版 Imaging Science and Technolog 画像工学 2007 年度版 2 慶応義塾大学理工学部 教授 中島真人 1 ( 例 ) 画像システムとしてのカメラ 入力 f(,) ( 紙に書かれた文字 ) カメラ ( フィルムカメラ デジタルカメラ どちらでも OK ) (u,v) SYSTEM ( フィルム上または

More information

CG

CG Grahics with Processig 7-6 座標変換と同次座標 htt://vilab.org 塩澤秀和 6-7 H. SHIOZAWA htt://vilab.org 6. * 座標系 座標系の変換 座標系 目盛りのつけかた 原点の位置 軸と 軸の方向 軸と 軸の目盛りの刻み 論理座標系 描画命令で使う目盛り ( 座標系 ) をつけかえることができる 論理座標系 描画命令で使う 座標 画面座標系

More information

Microsoft PowerPoint - 画像工学 print

Microsoft PowerPoint - 画像工学 print 教室 : 14-22 画像工学 28 年度版 Imaging Science and Technology 画像工学 28 年度版 2 慶応義塾大学理工学部 教授 慶応義塾大学理工学部 准教授 中島真人青木義満 ( 例 ) 画像システムとしてのカメラ y 入力 f(x,y) x ( 紙に書かれた文字 ) カメラ ( フィルムカメラ デジタルカメラ どちらでも OK ) (u,v) ) SYSTEM

More information

数学 t t t t t 加法定理 t t t 倍角公式加法定理で α=β と置く. 三角関数

数学 t t t t t 加法定理 t t t 倍角公式加法定理で α=β と置く. 三角関数 . 三角関数 基本関係 t cot c sc c cot sc t 還元公式 t t t t t t cot t cot t 数学 数学 t t t t t 加法定理 t t t 倍角公式加法定理で α=β と置く. 三角関数 数学. 三角関数 5 積和公式 6 和積公式 数学. 三角関数 7 合成 t V v t V v t V V V V VV V V V t V v v 8 べき乗 5 6 6

More information

Chap2.key

Chap2.key . f( ) V (V V ) V e + V e V V V V ( ) V V ( ) E. - () V (0 ) () V (0 ) () V (0 ) (4) V ( ) E. - () V (0 ) () V (0 ) O r θ ( ) ( ) : (r θ) : { r cos θ r sn θ { r + () V (0 ) (4) V ( ) θ θ arg( ) : π π

More information

Microsoft PowerPoint - SPECTPETtheory.ppt [互換モード]

Microsoft PowerPoint - SPECTPETtheory.ppt [互換モード] SPECT( Single Photon Emission CT ) PET( Positron Emission CT ) の原理 断層画像を得る方法 フィルタ重畳逆投影法 FBP ( Filtered Back Projection ) 逐次近似再構成法 Iterative Reconstruction MLEM ( Maximun Likelihood Expectation ti Maximization

More information

スライド 1

スライド 1 (10) 2016.6.22 電気通信大学大学院情報理工学研究科末廣尚士 14. ロボットアームの逆運動学 ( 幾何 学的 ( 解析的 ) 解法 ) 何をしたいか 手首, 手先, ツールの 3 次元空間での位置や姿勢から, それを実現する関節角度を計算する. アームソリューション, アームの解とも呼ぶ 何のために たとえばビジョンで認識された物をつかむ場合, 物の位置 姿勢は 3 次元空間で表現されることが普通である.

More information

連 続 講 座 断 層 映 像 法 の 基 礎 第 34 回 : 篠 原 広 行 他 図 2 放 射 状 に 線 を 照 射 し 対 面 に 検 出 器 の 列 を 置 い ておき 一 度 に 1 つの 角 度 データを 取 得 する 後 は 全 体 を 1 回 転 しながら 次 々と 角 度 デー

連 続 講 座 断 層 映 像 法 の 基 礎 第 34 回 : 篠 原 広 行 他 図 2 放 射 状 に 線 を 照 射 し 対 面 に 検 出 器 の 列 を 置 い ておき 一 度 に 1 つの 角 度 データを 取 得 する 後 は 全 体 を 1 回 転 しながら 次 々と 角 度 デー 連 続 講 座 断 層 映 像 法 の 基 礎 第 34 回 : 篠 原 広 行 他 篠 原 広 行 桑 山 潤 小 川 亙 中 世 古 和 真 断 層 映 像 法 の 基 礎 第 34 回 スパイラルスキャン CT 1) 軽 部 修 平 2) 橋 本 雄 幸 1) 小 島 慎 也 1) 藤 堂 幸 宏 1) 3) 首 都 大 学 東 京 人 間 健 康 科 学 研 究 科 放 射 線 科 学 域

More information

パソコンシミュレータの現状

パソコンシミュレータの現状 第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に

More information

2009 年 11 月 16 日版 ( 久家 ) 遠地 P 波の変位波形の作成 遠地 P 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに P U () t = S()* t E()* t P() t で近似的に計算できる * は畳み込み積分 (convolution) を表す ( 付録

2009 年 11 月 16 日版 ( 久家 ) 遠地 P 波の変位波形の作成 遠地 P 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに P U () t = S()* t E()* t P() t で近似的に計算できる * は畳み込み積分 (convolution) を表す ( 付録 遠地 波の変位波形の作成 遠地 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに U () t S() t E() t () t で近似的に計算できる は畳み込み積分 (convolution) を表す ( 付録 参照 ) ここで St () は地震の断層運動によって決まる時間関数 1 E() t は地下構造によって生じる種々の波の到着を与える時間関数 ( ここでは 直達 波とともに 震源そばの地表での反射波や変換波を与える時間関数

More information

Microsoft PowerPoint - H22制御工学I-2回.ppt

Microsoft PowerPoint - H22制御工学I-2回.ppt 制御工学 I 第二回ラプラス変換 平成 年 4 月 9 日 /4/9 授業の予定 制御工学概論 ( 回 ) 制御技術は現在様々な工学分野において重要な基本技術となっている 工学における制御工学の位置づけと歴史について説明する さらに 制御システムの基本構成と種類を紹介する ラプラス変換 ( 回 ) 制御工学 特に古典制御ではラプラス変換が重要な役割を果たしている ラプラス変換と逆ラプラス変換の定義を紹介し

More information

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 1 16 10 5 1 2 2.1 a a a 1 1 1 2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 4 2 3 4 2 5 2.4 x y (x,y) l a x = l cot h cos a, (3) y = l cot h sin a (4) h a

More information

フィルタ補正逆投影法・逐次近似法について

フィルタ補正逆投影法・逐次近似法について Title フィルタ補正逆投影法 逐次近似法について Author(s) 久保, 直樹 CitationSTART, 48: 13-15 Issue Date 2012-07-31 Doc URL http://hdl.handle.net/2115/50168 Type article (author version) File Information START48_13-15.pdf Instructions

More information

スライド タイトルなし

スライド タイトルなし 次元フーリエ変換 講義内容 空間周波数の概念 次元フーリエ変換代表的な 次元フーリエ変換対 次元離散フーリエ変換 フーリエ変換と逆変換 F.T. j F } ep{ 連続系離散系 } / ep{ N N N j N F F I. F.T. F ただし ここでは絶対値をとって画像化 } / ep{ N N N j F N 順変換逆変換 3 次元フーリエ変換の具体的なイメージ } / ep{ N N N

More information

スライド 1

スライド 1 断層画像 (CT,SPECT,PET) を得るためのフィルタは 2 種類ある Pre-filter 前処理フィルタ 断層画像の元になるプロジェクション像の雑音除去 Butterworth, Wiener フィルタなど Reconstruction filter 再構成フィルタ FBP( フィルタ畳重逆投影法 ) で断層画像を作成する場合に フーリエ空間 ( 周波数空間 ) で行う処理と同じ計算結果を得る実空間フィルタ

More information

ユニセフ表紙_CS6_三.indd

ユニセフ表紙_CS6_三.indd 16 179 97 101 94 121 70 36 30,552 1,042 100 700 61 32 110 41 15 16 13 35 13 7 3,173 41 1 4,700 77 97 81 47 25 26 24 40 22 14 39,208 952 25 5,290 71 73 x 99 185 9 3 3 3 8 2 1 79 0 d 1 226 167 175 159 133

More information

2011年度 筑波大・理系数学

2011年度 筑波大・理系数学 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ O を原点とするy 平面において, 直線 y= の を満たす部分をC とする () C 上に点 A( t, ) をとるとき, 線分 OA の垂直二等分線の方程式を求めよ () 点 A が C 全体を動くとき, 線分 OA の垂直二等分線が通過する範囲を求め, それ を図示せよ -- 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ

More information

断層映像研究会雑誌第 32 巻第 3 号 連続講座 断層映像法の基礎第 18 回 篠原広行 1 ) 妹尾淳史 1) 橋本雄幸 2) I) 首都大学東京健康福祉学部放射線学科 2) 横浜創英短期大学情報処理学科 はじめに 第 1 2 固と第 1 5 固において MRI の計測中に被写体 が動いたときに

断層映像研究会雑誌第 32 巻第 3 号 連続講座 断層映像法の基礎第 18 回 篠原広行 1 ) 妹尾淳史 1) 橋本雄幸 2) I) 首都大学東京健康福祉学部放射線学科 2) 横浜創英短期大学情報処理学科 はじめに 第 1 2 固と第 1 5 固において MRI の計測中に被写体 が動いたときに 断層映像研究会雑誌第 32 巻第 3 号 連続講座 断層映像法の基礎第 18 回 篠原広行 1 ) 妹尾淳史 1) 橋本雄幸 2) I) 首都大学東京健康福祉学部放射線学科 2) 横浜創英短期大学情報処理学科 はじめに 第 1 2 固と第 1 5 固において MRI の計測中に被写体 が動いたときに生じるモーションアーチファクトを 取り上げた そこでは データを収集しているとき に被写体が動くと 計測データにどのような影響が

More information

Gmech08.dvi

Gmech08.dvi 63 6 6.1 6.1.1 v = v 0 =v 0x,v 0y, 0) t =0 x 0,y 0, 0) t x x 0 + v 0x t v x v 0x = y = y 0 + v 0y t, v = v y = v 0y 6.1) z 0 0 v z yv z zv y zv x xv z xv y yv x = 0 0 x 0 v 0y y 0 v 0x 6.) 6.) 6.1) 6.)

More information

Microsoft PowerPoint - 10.pptx

Microsoft PowerPoint - 10.pptx m u. 固有値とその応用 8/7/( 水 ). 固有値とその応用 固有値と固有ベクトル 行列による写像から固有ベクトルへ m m 行列 によって線形写像 f : R R が表せることを見てきた ここでは 次元平面の行列による写像を調べる とし 写像 f : を考える R R まず 単位ベクトルの像 u y y f : R R u u, u この事から 線形写像の性質を用いると 次の格子上の点全ての写像先が求まる

More information

座標系.rtf

座標系.rtf 2 章座標系 場 空間は3 次元なので, ベクトルを表現するには少なくとも3 成分を指定する必要がある. そのために座標系が必要となる. 座標系として最も一般的なものは,,, 成分を使った直角座標系である. しかし, 他にも円柱座標, 球座標, だ円座標, 放物線座標など様々なものがある. 現在までに3 成分で変数分離可能な座標系は11 個あるといわれている (Moon & Spencer, Field

More information

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように 3 章 Web に Link 解説 連続式 微分表示 の誘導.64 *4. 連続式連続式は ある領域の内部にある流体の質量の収支が その表面からの流入出の合計と等しくなることを定式化したものであり 流体における質量保存則を示したものである 2. 連続式 微分表示 の誘導図のような微小要素 コントロールボリューム の領域内の流体の増減と外部からの流体の流入出を考えることで定式化できる 微小要素 流入

More information

代数 幾何 < ベクトル > 1 ベクトルの演算 和 差 実数倍については 文字の計算と同様 2 ベクトルの成分表示 平面ベクトル : a x e y e x, ) ( 1 y1 空間ベクトル : a x e y e z e x, y, ) ( 1 1 z1

代数 幾何 < ベクトル > 1 ベクトルの演算 和 差 実数倍については 文字の計算と同様 2 ベクトルの成分表示 平面ベクトル : a x e y e x, ) ( 1 y1 空間ベクトル : a x e y e z e x, y, ) ( 1 1 z1 代数 幾何 < ベクトル > ベクトルの演算 和 差 実数倍については 文字の計算と同様 ベクトルの成分表示 平面ベクトル :, 空間ベクトル : z,, z 成分での計算ができるようにすること ベクトルの内積 : os 平面ベクトル :,, 空間ベクトル :,,,, z z zz 4 ベクトルの大きさ 平面上 : 空間上 : z は 良く用いられる 5 m: に分ける点 : m m 図形への応用

More information

例題1 転がり摩擦

例題1 転がり摩擦 重心 5.. 重心問題解法虎の巻. 半円 分円. 円弧. 扇形. 半球殻 5. 半球体 6. 厚みのある半球殻 7. 三角形 8. 円錐 9. 円錐台. 穴あき板. 空洞のある半球ボール 重心問題解法虎の巻 関西大学工学部物理学教室 齊藤正 重心を求める場合 質点系の重心の求め方が基本 実際の物体では連続体であるので 積分形式で求める場合が多い これらの式は 次元のベクトル形式で書かれている通り つの式は実際には

More information

Microsoft Word - 微分入門.doc

Microsoft Word - 微分入門.doc 基本公式 例題 0 定義式 f( ) 数 Ⅲ 微分入門 = の導関数を定義式にもとづいて計算しなさい 基本事項 ( f( ), g( ) が微分可能ならば ) y= f( ) g( ) のとき, y = y= f( ) g( ) h( ) のとき, y = ( f( ), g( ) が微分可能で, g( ) 0 ならば ) f( ) y = のとき, y = g ( ) とくに, y = のとき,

More information

スライド 1

スライド 1 5.5.2 画像の間引き 5.1 線形変換 5.2 アフィン変換 5.3 同次座標 5.4 平面射影変換 5.5 再標本化 1. 画素数の減少による表現能力の低下 画像の縮小 変形を行う際 結果画像の 画素数 < 入力画像の 画素数 ( 画素の密度 ) ( 画素の密度 ) になることがある この場合 結果画像の表現力 < 入力画像の表現力 ( 情報量 ) ( 情報量 ) 結果的に 情報の損失が生じる!

More information

連続講座 画像再構成 : 臨床医のための解説第 1 回 : 篠原広行 他 画像再構成 : 臨床医のための解説第 1 回 MRI における折り返しアーチファクトの発生機序と対策 篠原 広行 1) 小島慎也 2) 橋本雄幸 3) 2) 上野恵子 2) 1) 首都大学東京東京女子医科大学東医療センター放射

連続講座 画像再構成 : 臨床医のための解説第 1 回 : 篠原広行 他 画像再構成 : 臨床医のための解説第 1 回 MRI における折り返しアーチファクトの発生機序と対策 篠原 広行 1) 小島慎也 2) 橋本雄幸 3) 2) 上野恵子 2) 1) 首都大学東京東京女子医科大学東医療センター放射 連続講座 画像再構成 : 臨床医のための解説第 1 回 : 篠原 画像再構成 : 臨床医のための解説第 1 回 MRI における折り返しアーチファクトの発生機序と対策 篠原 広行 1) 小島慎也 2) 橋本雄幸 3) 2) 上野恵子 2) 1) 首都大学東京東京女子医科大学東医療センター放射線科 3) 横浜創英大学こども教育学部 はじめに M R I では折り返しアーチファクトやモーションア ーチファクト

More information

2018年度 神戸大・理系数学

2018年度 神戸大・理系数学 8 神戸大学 ( 理系 ) 前期日程問題 解答解説のページへ t を < t < を満たす実数とする OABC を 辺の長さが の正四面体とする 辺 OA を -t : tに内分する点を P, 辺 OB を t :-tに内分する点を Q, 辺 BC の中点を R とする また a = OA, b = OB, c = OC とする 以下の問いに答えよ () QP と QR をt, a, b, c を用いて表せ

More information

DVIOUT

DVIOUT 第 章 離散フーリエ変換 離散フーリエ変換 これまで 私たちは連続関数に対するフーリエ変換およびフーリエ積分 ( 逆フーリエ変換 ) について学んできました この節では フーリエ変換を離散化した離散フーリエ変換について学びましょう 自然現象 ( 音声 ) などを観測して得られる波 ( 信号値 ; 観測値 ) は 通常 電気信号による連続的な波として観測機器から出力されます しかしながら コンピュータはこの様な連続的な波を直接扱うことができないため

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

<4D F736F F D EBF97CD8A B7982D189898F4B A95748E9197BF4E6F31312E646F63>

<4D F736F F D EBF97CD8A B7982D189898F4B A95748E9197BF4E6F31312E646F63> 土質力学 Ⅰ 及び演習 (B 班 : 小高担当 ) 配付資料 N.11 (6.1.1) モールの応力円 (1) モールの応力円を使う上での3つの約束 1 垂直応力は圧縮を正とし, 軸の右側を正の方向とする 反時計まわりのモーメントを起こさせるせん断応力 の組を正とする 3 物体内で着目する面が,θ だけ回転すると, モールの応力円上では θ 回転する 1とは物理的な実際の作用面とモールの応力円上との回転の方向を一致させるために都合の良い約束である

More information

2014年度 千葉大・医系数学

2014年度 千葉大・医系数学 04 千葉大学 ( 医系 ) 前期日程問題 解答解説のページへ 袋の中に, 赤玉が 3 個, 白玉が 7 個が入っている 袋から玉を無作為に つ取り出し, 色を確認してから, 再び袋に戻すという試行を行う この試行を N 回繰り返したときに, 赤玉を A 回 ( ただし 0 A N) 取り出す確率を p( N, A) とする このとき, 以下の問いに答えよ () 確率 p( N, A) を N と

More information

05 年度センター試験数学 ⅡB () において,cos q 0 であるから,P ( cos q, sin q) より, 直線 OP を表す方程式は y sin q sin q x cos q cos q x すなわち, (sin q) x - (cos q) y 0 ( ) ク 点 O,P,Q が

05 年度センター試験数学 ⅡB () において,cos q 0 であるから,P ( cos q, sin q) より, 直線 OP を表す方程式は y sin q sin q x cos q cos q x すなわち, (sin q) x - (cos q) y 0 ( ) ク 点 O,P,Q が 05 年度大学入試センター試験解説 数学 ⅡB 第 問 []() 点間の距離の公式から, OP ( cos q ) + ( sin q ) ( cos q + sin q ) ア PQ { ( cos q + cos 7q ) - cos q } + { ( sin q + sin 7q ) - sin q } cos q + sin q 7 7 イ である また, OQ ( cos q + cos

More information

dy + P (x)y = Q(x) (1) dx dy dx = P (x)y + Q(x) P (x), Q(x) dy y dx Q(x) 0 homogeneous dy dx = P (x)y 1 y dy = P (x) dx log y = P (x) dx + C y = C exp

dy + P (x)y = Q(x) (1) dx dy dx = P (x)y + Q(x) P (x), Q(x) dy y dx Q(x) 0 homogeneous dy dx = P (x)y 1 y dy = P (x) dx log y = P (x) dx + C y = C exp + P (x)y = Q(x) (1) = P (x)y + Q(x) P (x), Q(x) y Q(x) 0 homogeneous = P (x)y 1 y = P (x) log y = P (x) + C y = C exp{ P (x) } = C e R P (x) 5.1 + P (x)y = 0 (2) y = C exp{ P (x) } = Ce R P (x) (3) αy

More information

20~22.prt

20~22.prt [ 三クリア W] 辺が等しいことの証明 ( 円周角と弦の関係利用 ) の の二等分線がこの三角形の外接円と交わる点をそれぞれ とするとき 60 ならば であることを証明せよ 60 + + 0 + 0 80-60 60 から ゆえに 等しい長さの弧に対する弦の長さは等しいから [ 三クリア ] 方べきの定理 接線と弦のなす角と円周角を利用 線分 を直径とする円 があり 右の図のように の延長上の点

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

円筒面で利用可能なARマーカ

円筒面で利用可能なARマーカ 円筒面で利用可能な AR マーカ AR Marker for Cylindrical Surface 2014 年 11 月 14 日 ( 金 ) 眞鍋佳嗣千葉大学大学院融合科学研究科 マーカベース AR 二次元マーカはカメラ姿勢の推定, 拡張現実等広い研究分野で利用されている 現実の風景 表示される画像 デジタル情報を付加 カメラで撮影し, ディスプレイに表示 使用方法の単純性, 認識の安定性からマーカベース

More information

DVIOUT

DVIOUT 3 第 2 章フーリエ級数 23 フーリエ級数展開 これまで 関数 f(x) のフーリエ級数展開に関して 関数の定義区間やフーリエ級数の積分区間を断りなく [, ] に取ってきました これは フーリエ級数を構成する三角関数が基本周期 2 を持つためです すなわち フーリエ級数の各項 cos nx および sin nx (n =1, 2, 3, 4, ) の周期は それぞれ 2, 2 2, 2 3,

More information

2 Hermite-Gaussian モード 2-1 Hermite-Gaussian モード 自由空間を伝搬するレーザ光は次のような Hermite-gaussian Modes を持つ光波として扱う ことができる ここで U lm (x, y, z) U l (x, z)u m (y, z) e

2 Hermite-Gaussian モード 2-1 Hermite-Gaussian モード 自由空間を伝搬するレーザ光は次のような Hermite-gaussian Modes を持つ光波として扱う ことができる ここで U lm (x, y, z) U l (x, z)u m (y, z) e Wavefront Sensor 法による三角共振器のミスアラインメント検出 齊藤高大 新潟大学大学院自然科学研究科電気情報工学専攻博士後期課程 2 年 214 年 8 月 6 日 1 はじめに Input Mode Cleaner(IMC) は Fig.1 に示すような三角共振器である 懸架鏡の共振などにより IMC を構成する各ミラーが角度変化を起こすと 入射光軸と共振器軸との間にずれが生じる

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) 電磁波 ( 光 ) の角運動量. 復習 : 電磁波 ( 光 ) のエネルギー. 運動量 角運動量 ( 実空間 ) 3. 軌道 スピン角運動量 4. 円偏光状態 5. 螺旋状態 付録 8 のアプローチ. 本付録では電磁波 ( 光 ) の軌道 スピン角運動量ついて古典的に扱う. スピン角運動量は直線偏光状態では零 円偏光状態では非零 右 左回りで大きさは同じ

More information

(Microsoft Word - 10ta320a_\220U\223\256\212w\223\301\230__6\217\315\221O\224\274\203\214\203W\203\201.docx)

(Microsoft Word - 10ta320a_\220U\223\256\212w\223\301\230__6\217\315\221O\224\274\203\214\203W\203\201.docx) 6 章スペクトルの平滑化 スペクトルの平滑化とはフーリエスペクトルやパワ スペクトルのギザギザを取り除き 滑らかにする操作のことをいう ただし 波のもっている本質的なものをゆがめてはいけない 図 6-7 パワ スペクトルの平滑化 6. 合積のフーリエ変換スペクトルの平滑化を学ぶ前に 合積とそのフーリエ変換について説明する 6. データ ウィンドウデータ ウィンドウの定義と特徴について説明する 6.3

More information

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d m v = mg + kv m v = mg k v v m v = mg + kv α = mg k v = α e rt + e rt m v = mg + kv v mg + kv = m v α + v = k m v (v α (v + α = k m ˆ ( v α ˆ αk v = m v + α ln v α v + α = αk m t + C v α v + α = e αk m

More information

DVIOUT

DVIOUT 第 3 章 フーリエ変換 3.1 フーリエ積分とフーリエ変換 第 章では 周期を持つ関数のフーリエ級数について学びました この章では 最初に 周期を持つ関数のフーリエ級数を拡張し 周期を持たない ( 一般的な ) 関数のフーリエ級数を導きましょう 具体的には 関数 f(x) を区間 L x L で考え この L を限りなく大きくするというアプローチを取ります (L ) なお ここで扱う関数 f(x)

More information

2018年度 東京大・理系数学

2018年度 東京大・理系数学 08 東京大学 ( 理系 ) 前期日程問題 解答解説のページへ関数 f ( ) = + cos (0 < < ) の増減表をつくり, + 0, 0 のと sin きの極限を調べよ 08 東京大学 ( 理系 ) 前期日程問題 解答解説のページへ n+ 数列 a, a, を, Cn a n = ( n =,, ) で定める n! an qn () n とする を既約分数 an p として表したときの分母

More information

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ 1 (1) ( i ) 60 (ii) 75 (iii) 15 () ( i ) (ii) 4 (iii) 7 1 ( () r, AOB = θ 0 < θ < ) OAB A OB P ( AB ) < ( AP ) (4) 0 < θ < sin θ < θ < tan θ 0 x, 0 y (1) sin x = sin y (x, y) () cos x cos y (x, y) 1 c

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

ÿþŸb8bn0irt

ÿþŸb8bn0irt 折戸の物理 スペシャル補習 http://orito-buturi.com/ NO.3 今日の目的 : 1 微分方程式をもう一度 三角関数の近似について学ぶ 3 微分の意味を考える 5. 起電力 の電池, 抵抗値 の抵抗, 自己インダクタンス のコイルとスイッチを用いて右図のような回路をつくった 始めスイッチは 開かれている 時刻 t = でスイッチを閉じた 以下の問に答えよ ただし, 電流はコイルに

More information

測量試補 重要事項

測量試補 重要事項 用地測量面積計算 < 試験合格へのポイント > 座標法による面積計算に関する問題は その出題回数からも定番問題と言えるが 計算自体はさほど難しいものではなく 計算表を作成しその中に数値を当てはめていくことで答えを導くことができる 過去問をしっかりとこなし 計算手順を覚えれば点の取りやすい問題と言える 士補試験に出題される問題は過去の例を見ても 座標が簡単な数値に置き換えることができるようになっている

More information

Microsoft Word - 卒業論文.doc

Microsoft Word - 卒業論文.doc 006 年度卒業研究 画像補間法を用いた拡大画像の比較 岡山理科大学総合情報学部情報科学科 澤見研究室 I03I04 兼安俊治 I03I050 境永 目次 はじめに ラスタ画像 3 画像補間法 3. ニアレストネイバー法 3. バイリニア法 3.3 バイキュービック法 4 DCT を用いた拡大画像手法 5 FIR 法 6 評価 6. SNR 6. PSNR 7 実験 7. 主観評価 7. 客観評価

More information

喨微勃挹稉弑

喨微勃挹稉弑 == 全微分方程式 == 全微分とは 変数の関数 z=f(, ) について,, の増分を Δ, Δ とするとき, z の増分 Δz は Δz z Δ+ z Δ で表されます. この式において, Δ 0, Δ 0 となる極限を形式的に dz= z d+ z d (1) で表し, dz を z の全微分といいます. z は z の に関する偏導関数で, を定数と見なし て, で微分したものを表し, 方向の傾きに対応します.

More information

医用工学概論  Medical Engineering (ME)   3年前期の医用工学概論実習と 合わせ、 医療の現場で使用されている 医用機器を正しく安全に使用するために必要な医用工学(ME)の 基礎知識を習得する。

医用工学概論  Medical Engineering (ME)   3年前期の医用工学概論実習と 合わせ、 医療の現場で使用されている 医用機器を正しく安全に使用するために必要な医用工学(ME)の 基礎知識を習得する。 http://chtgkato3.med.hokudai.ac.jp/kougi/me_practice/ EXCEL でリサージュ曲線のシミュレーションを行う Excel を開いて Aカラムのセル1 に (A1に) t と入力. (Aカラム( 列 ) に時間 ( 秒 ) を入れる ) ツールバーの中央揃えボタンを押すと 文字がセルの中央に配置される. Aカラムのセル2,3,4に (A2 A3 A4

More information

重要例題113

重要例題113 04_ 高校 数学 Ⅱ 必須基本公式 定理集 数学 Ⅱ 第 章式の計算と方程式 0 商と余り についての整式 A をについての整式 B で割ったときの商を Q, 余りを R とすると, ABQ+R (R の次数 ) > 0

More information

ユニセフ表紙_CS6_三.indd

ユニセフ表紙_CS6_三.indd 16 179 97 101 94 121 70 36 30,552 1,042 100 700 61 32 110 41 15 16 13 35 13 7 3,173 41 1 4,700 77 97 81 47 25 26 24 40 22 14 39,208 952 25 5,290 71 73 x 99 185 9 3 3 3 8 2 1 79 0 d 1 226 167 175 159 133

More information

. 角の二等分線と調和平均 平面上に点 を端点とする線分 と を重ならないようにとる, とし とする の二等分線が線分 と交わる点を とし 点 から に垂直に引いた直線が線分 と交わる点 とする 線分 の長さを求めてみよう 点 から に垂直な直線と および との交点をそれぞれ, Dとする つの直角三

. 角の二等分線と調和平均 平面上に点 を端点とする線分 と を重ならないようにとる, とし とする の二等分線が線分 と交わる点を とし 点 から に垂直に引いた直線が線分 と交わる点 とする 線分 の長さを求めてみよう 点 から に垂直な直線と および との交点をそれぞれ, Dとする つの直角三 角の二等分線で開くいろいろな平均 札幌旭丘高校中村文則 0. 数直線上に現れるいろいろな平均下図は 数 (, ) の調和平均 相乗平均 相加平均 二乗平均を数直線上に置いたものである, とし 直径 中心 である円を用いていろいろな平均の大小関係を表現するもっとも美しい配置方法であり その証明も容易である Q D E F < 相加平均 > (0), ( ), ( とすると 線分 ) の中点 の座標はである

More information

Math-Aquarium 例題 図形と計量 図形と計量 1 直角三角形と三角比 P 木の先端を P, 根元を Q とする A 地点の目の位置 A' から 木の先端への仰角が 30,A から 7m 離れた AQB=90 と なる B 地点の目の位置 B' から木の先端への仰角が 45 であ るとき,

Math-Aquarium 例題 図形と計量 図形と計量 1 直角三角形と三角比 P 木の先端を P, 根元を Q とする A 地点の目の位置 A' から 木の先端への仰角が 30,A から 7m 離れた AQB=90 と なる B 地点の目の位置 B' から木の先端への仰角が 45 であ るとき, 図形と計量 直角三角形と三角比 P 木の先端を P, 根元を Q とする 地点の目の位置 ' から 木の先端への仰角が 0, から 7m 離れた Q=90 と なる 地点の目の位置 ' から木の先端への仰角が であ るとき, 木の高さを求めよ ただし, 目の高さを.m とし, Q' を右の図のように定める ' 0 Q' '.m Q 7m 要点 PQ PQ PQ' =x とおき,' Q',' Q' を

More information

Microsoft PowerPoint - Robotics_13_review_1short.pptx

Microsoft PowerPoint - Robotics_13_review_1short.pptx 東北文化学園大学 科学技術学部知能情報システム学科 費 仙鳳 ロボットの概要 数学的基礎 座標変換 同次変換 オイラー角 ロールピッチヨウ角 座標系設定 リンクパラメータ 腕型ロボットの構造 腕型ロボットの順運動学 腕型ロボットの逆運動学 腕型ロボットのヤコビアン 速度 特異姿勢 1 2 3 4 1 三角関数 ベクトルと行列 並進変換と回転変換 同次変換行列の導入 オイラー角 (Z-Y-Z) ロール

More information

Chap2

Chap2 逆三角関数の微分 Arcsin の導関数を計算する Arcsin I. 初等関数の微積分 sin [, ], [π/, π/] cos sin / (Arcsin ) 計算力の体力をつけよう π/ π/ E. II- 次の関数の導関数を計算せよ () Arccos () Arctan E. I- の解答 不定積分あれこれ () Arccos n log C C (n ) n e e C log (log

More information

Microsoft Word - 1B2011.doc

Microsoft Word - 1B2011.doc 第 14 回モールの定理 ( 単純梁の場合 ) ( モールの定理とは何か?p.11) 例題 下記に示す単純梁の C 点のたわみ角 θ C と, たわみ δ C を求めよ ただし, 部材の曲げ 剛性は材軸に沿って一様で とする C D kn B 1.5m 0.5m 1.0m 解答 1 曲げモーメント図を描く,B 点の反力を求める kn kn 4 kn 曲げモーメント図を描く knm 先に得られた曲げモーメントの値を

More information

Microsoft PowerPoint - [150421] CMP実習Ⅰ(2015) 橋本 CG編 第1回 幾何変換.pptx

Microsoft PowerPoint - [150421] CMP実習Ⅰ(2015) 橋本 CG編 第1回 幾何変換.pptx コンテンツ メディア プログラミング実習 Ⅰ コンピュータグラフィックス編 1 幾何変換 橋本直 今日大事なのは プログラムをじっくり読んで なぜそうなるか? を考えよう 命令によって起きていることを頭の中でイメージしよう 2 本題の前に確認 Processingでは画面の 左上隅 が原点 (0,0) x 軸の正の向きは 右 y 軸の正の向きは 下 x y : (0,0) 3 幾何変換の基本 4 幾何変換とは

More information

Microsoft PowerPoint - 画像工学 印刷用

Microsoft PowerPoint - 画像工学 印刷用 教室 : 14-202 JURY 08 画像工学 2007 年度版 Imaging Science and Technology 画像工学 2007 年度版 11 慶応義塾大学理工学部 中島真人 教授 今日で最後です! 6. デジタル画像の性質と取り扱い 6-1. 画像のサンプリング サンプリングした画像のフーリエ変換 画像のサンプリング付随して生じるエラー 6-2. デジタル画像のフーリエ変換 周期関数のフーリエ変換

More information

コンピュータグラフィックス第6回

コンピュータグラフィックス第6回 コンピュータグラフィックス 第 6 回 モデリング技法 1 ~3 次元形状表現 ~ 理工学部 兼任講師藤堂英樹 本日の講義内容 モデリング技法 1 様々な形状モデル 曲線 曲面 2014/11/10 コンピュータグラフィックス 2 CG 制作の主なワークフロー 3DCG ソフトウェアの場合 モデリング カメラ シーン アニメーション テクスチャ 質感 ライティング 画像生成 2014/11/10 コンピュータグラフィックス

More information

Microsoft PowerPoint - 電力回路h ppt

Microsoft PowerPoint - 電力回路h ppt 電力回路 対称座標法 平成 年 6 月 日 単位値から実値への変換 単位値は, 実値をベース値で割って得る 実値は, 単位値にベース値を掛けて求まる 電流 ( A) 電流 ( p. u.) ベース電流 ( A) 電圧 ( ) 電圧 ( p. u.) ベース電圧 ( ) インピーダンス( Ω) インピーダンス( p. u.) ベースインピーダンス( Ω) 三相電力回路 三相一回線送電線の回路 回路図

More information

Microsoft PowerPoint - 応用数学8回目.pptx

Microsoft PowerPoint - 応用数学8回目.pptx 8- 次の 標 : 複素関数 ( 正則関数 ) の積分 8- 実関数 : 定積分 講義内容 名城 学理 学部材料機能 学科岩 素顕 複素関数の積分について学ぶ 複素関数の積分 複素積分の性質 周回積分の解法 コーシーの積分定理 コーシーの積分公式 グルサーの公式 - 定義 複素関数の積分 : 線積分 今後の内容 区分的に滑らかな曲線に沿って複素関数の積分を計算する 複素関数の積分の性質に関して議論する

More information

技術者のための構造力学 2014/06/11 1. はじめに 資料 2 節点座標系による傾斜支持節点節点の処理 三好崇夫加藤久人 従来, マトリックス変位法に基づく骨組解析を紹介する教科書においては, 全体座標系に対して傾斜 した斜面上の支持条件を考慮する処理方法として, 一旦, 傾斜支持を無視した

技術者のための構造力学 2014/06/11 1. はじめに 資料 2 節点座標系による傾斜支持節点節点の処理 三好崇夫加藤久人 従来, マトリックス変位法に基づく骨組解析を紹介する教科書においては, 全体座標系に対して傾斜 した斜面上の支持条件を考慮する処理方法として, 一旦, 傾斜支持を無視した . はじめに 資料 節点座標系による傾斜支持節点節点の処理 三好崇夫加藤久人 従来, マトリックス変位法に基づく骨組解析を紹介する教科書においては, 全体座標系に対して傾斜 した斜面上の支持条件を考慮する処理方法として, 一旦, 傾斜支持を無視した全体座標系に関する構造 全体の剛性マトリックスを組み立てた後に, 傾斜支持する節点に関して対応する剛性成分を座標変換に よって傾斜方向に回転処理し, その後は通常の全体座標系に対して傾斜していない支持点に対するのと

More information

相対性理論入門 1 Lorentz 変換 光がどのような座標系に対しても同一の速さ c で進むことから導かれる座標の一次変換である. (x, y, z, t ) の座標系が (x, y, z, t) の座標系に対して x 軸方向に w の速度で進んでいる場合, 座標系が一次変換で関係づけられるとする

相対性理論入門 1 Lorentz 変換 光がどのような座標系に対しても同一の速さ c で進むことから導かれる座標の一次変換である. (x, y, z, t ) の座標系が (x, y, z, t) の座標系に対して x 軸方向に w の速度で進んでいる場合, 座標系が一次変換で関係づけられるとする 相対性理論入門 Lorentz 変換 光がどのような座標系に対しても同一の速さ で進むことから導かれる座標の一次変換である. x, y, z, t ) の座標系が x, y, z, t) の座標系に対して x 軸方向に w の速度で進んでいる場合, 座標系が一次変換で関係づけられるとすると, x A x wt) y y z z t Bx + Dt 弨弱弩弨弲弩弨弳弩弨弴弩 が成立する. 図 : 相対速度

More information

Taro-解答例NO3放物運動H16

Taro-解答例NO3放物運動H16 放物運動 解答のポイント 初速度, 水平との角度 θ で 高さ の所から投げあげるとき 秒後の速度 =θ =θ - 秒後の位置 =θ 3 ( 水平飛行距離 ) =θ - + 4 ( 高さ ) ~4 の導出は 基本問題 参照 ( 地上から投げた場合の図 : 教科書参照 ) 最高点の 高さ 最高点では において = 水平到達距離 より 最高点に到達する時刻 を求め 4に代入すると最高点の高さH 地上では

More information

2019 年 6 月 4 日演習問題 I α, β > 0, A > 0 を定数として Cobb-Douglas 型関数 Y = F (K, L) = AK α L β (5) と定義します. (1) F KK, F KL, F LK, F LL を求めましょう. (2) 第 1 象限のすべての点

2019 年 6 月 4 日演習問題 I α, β > 0, A > 0 を定数として Cobb-Douglas 型関数 Y = F (K, L) = AK α L β (5) と定義します. (1) F KK, F KL, F LK, F LL を求めましょう. (2) 第 1 象限のすべての点 09 年 6 月 4 日演習問題 I α, β > 0, A > 0 を定数として Cobb-Douglas 型関数 Y = F K, L) = AK α L β 5) と定義します. ) F KK, F KL, F LK, F LL を求めましょう. ) 第 象限のすべての点 K, L) R ++ に対して F KK K, L) < 0, かつ dethf )K, L) > 0 6) を満たす α,

More information

画像類似度測定の初歩的な手法の検証

画像類似度測定の初歩的な手法の検証 画像類似度測定の初歩的な手法の検証 島根大学総合理工学部数理 情報システム学科 計算機科学講座田中研究室 S539 森瀧昌志 1 目次 第 1 章序論第 章画像間類似度測定の初歩的な手法について.1 A. 画素値の平均を用いる手法.. 画素値のヒストグラムを用いる手法.3 C. 相関係数を用いる手法.4 D. 解像度を合わせる手法.5 E. 振れ幅のヒストグラムを用いる手法.6 F. 周波数ごとの振れ幅を比較する手法第

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

FEM原理講座 (サンプルテキスト)

FEM原理講座 (サンプルテキスト) サンプルテキスト FEM 原理講座 サイバネットシステム株式会社 8 年 月 9 日作成 サンプルテキストについて 各講師が 講義の内容が伝わりやすいページ を選びました テキストのページは必ずしも連続していません 一部を抜粋しています 幾何光学講座については 実物のテキストではなくガイダンスを掲載いたします 対象とする構造系 物理モデル 連続体 固体 弾性体 / 弾塑性体 / 粘弾性体 / 固体

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

数学 Ⅲ 微分法の応用 大学入試問題 ( 教科書程度 ) 1 問 1 (1) 次の各問に答えよ (ⅰ) 極限 を求めよ 年会津大学 ( 前期 ) (ⅱ) 極限値 を求めよ 年愛媛大学 ( 前期 ) (ⅲ) 無限等比級数 が収束するような実数 の範囲と そのときの和を求めよ 年広島市立大学 ( 前期

数学 Ⅲ 微分法の応用 大学入試問題 ( 教科書程度 ) 1 問 1 (1) 次の各問に答えよ (ⅰ) 極限 を求めよ 年会津大学 ( 前期 ) (ⅱ) 極限値 を求めよ 年愛媛大学 ( 前期 ) (ⅲ) 無限等比級数 が収束するような実数 の範囲と そのときの和を求めよ 年広島市立大学 ( 前期 数学 Ⅲ 微分法の応用 大学入試問題 ( 教科書程度 )1 問 1 (1) 次の各問に答えよ (ⅰ) 極限 を求めよ 年会津大学 ( 前期 ) (ⅱ) 極限値 を求めよ 年愛媛大学 ( 前期 ) (ⅲ) 無限等比級数 が収束するような実数 の範囲と そのときの和を求めよ 年広島市立大学 ( 前期 ) (2) 次の関数を微分せよ (ⅰ) を正の定数とする (ⅱ) (ⅳ) (ⅵ) ( 解答 )(1) 年群馬大学

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

自由落下と非慣性系における運動方程式 目次無重力... 2 加速度計は重力加速度を測れない... 3 重量は質量と同じ数値で kg が使える... 3 慣性系における運動方程式... 4 非慣性系における運動方程式... 6 見かけの力... 7 慣性系には実在する慣

自由落下と非慣性系における運動方程式 目次無重力... 2 加速度計は重力加速度を測れない... 3 重量は質量と同じ数値で kg が使える... 3 慣性系における運動方程式... 4 非慣性系における運動方程式... 6 見かけの力... 7 慣性系には実在する慣 自由落下と非慣性系における運動方程式 1 1 2 3 4 5 6 7 目次無重力... 2 加速度計は重力加速度を測れない... 3 重量は質量と同じ数値で kg が使える... 3 慣性系における運動方程式... 4 非慣性系における運動方程式... 6 見かけの力... 7 慣性系には実在する慣性力があるか... 7 1 2 無重力 (1) 非慣性系の住人は無重力を体感できる (a) 併進的な加速度運動をしている非慣性系の住人

More information