Size: px
Start display at page:

Download ""

Transcription

1 This note is based on the popular mathematics mini-course that I gave at the department of mathematics of Kyoto University on August 6 8, The participants included high school students, first year university students and high school teachers The MacTutor History of Mathematics archive We believe that most of the images are in the public domain and that provided you use them on a website you are unlikely to encounter any difficulty Maple kawaguch(())math.kyoto-u.ac.jp

2 A (1.1) 36 B 38 x 2 f(x) = X x X x = 1 f 1 f f f f f x = 3 4 f 3 4 f 5 4 f 1 4 f 7 4 f 5 4 f 1 4 f f 1 4 f 7 4 f 5 4 f f f 3 4 f f A. (1) f(x) = X (2) c f(x) X 2 + c 1 3 c f(x) = X 2 + c A B. c 2 f(x) = X 2 + c A f

3 1 3 B c = f(x) = X f 7 4, 1 4, f 3 5 4, 3 4, 1 4, 3 4, c f(x) = X2 + c f 3 A f 4 6 B x x a b a, b b H(x) = max{ a, b} H(0) = max{0, 1} = 1 H(x) x height 1.1. (1) H(1) = max{1, 1} = 1. (2) H(0.999) = max{999, 1000} = (3) H( 0.255) = max{51, 200} = 200. H(x) 1.2. x (1) H(x) 1 (2) (1) x = 0, 1, 1 (3) B 1 B {x H(x) B}

4 1 4 (1) x a b b H(x) = max{ a, b} b 1 (2) H(x) = 1 b = 1 a b a a = 1, 0, 1 x = 1, 0, 1 (3) B = 3 H(x) 3 a 3 b 3 H(x) 3 x = a b a 3, 2, 1, 0, 1, 2, 3 7 b 1, 2, 3 3 H(x) = 21 a, b 21 B [B] B H(x) B [B],..., 0, 1,..., [B] 1, 2,..., [B] (2[B] + 1) [B] B N(B) # N(B) = #{x H(x) B} 1.2(1)(2) N(1) = 3 1.2(3) N(3) 21 N(3) x a b a, b H(x) 3 x N(3) = 15 3, 2, 1, 0, 1, 2, 3, 3 2, 1 2, 1 2, 3 2, 2 3, 1 3, 1 3, (1) B = 1, 2,..., 5 N(B) N(B) B B = 1, 3 2 B = 6,..., 10 B N(B) N(B)/B /9 = /36 = /49 = /64 = /81 = /100 = 1.27

5 1 5 (2) B N(B) N(B) B 2 B = 1, 2,..., 100 N(B) B ( B, N(B) B 2 ) B = 1, 2,..., N(1), N(2) 4, N(3) 9,..., N(B) B 2,... B (1.1) N(B) lim B B 2 = 12 π 2 = (1.1) A π H(x) 1.4. (1) x H( x) = H(x) (2) x H(x 2 ) = H(x) 2 (1) x = 0 H(0) = H(0) x 0 (1) x = a a b a, b b x x = b H( x) = max{ a, b} = max{ a, b} = H(x) (2) (1) x 0 (1) x = a b a, b b x 2 x 2 = a2 b a, b a 2, b 2 2 H(x 2 ) = max{a 2, b 2 } = (max{ a, b}) 2 = H(x) 2

6 1 6 H(x) (1.2) h(x) = log H(x) (= log max{ a, b}) h(x) x *1 h(0) = 0, h(1) = 0, h(0.999) = log 1000, h( 0.255) = log x a b a 1, 000 b 10, 000 b h(x) log b log(10 10,000 ) log 10 = h(x) 10, = 23, 000 h(x) x h(x) 1.5. x (1) h(x) 0 (2) (1) x = 0, 1, 1 (3) T 0 T {x h(x) T } (4) h( x) = h(x) (5) h(x 2 ) = 2h(x) 1.6. (1) n x h(x n ) = nh(x) (2) x, y h(x + y) max{h(x), h(y)} + log 2 H(x) h(x) h(x) 1.7. a 0 X d + a 1 X d a d (a 0,..., a d a 0 0) α 3 X 2 3 = 0 α p(x) = a 0 X n + a 1 X n a n (a 0,..., a n a 0 0) *1 h(x) x logarithmic height

7 1 7 p(α) = 0 p(x) a 0,..., a n a 0,..., a n a 0,..., a n a 0,..., a n 1 p(x) = a 0 X n + a 1 X n a n a 0,..., a n 1 n a 0 > 0 α p(x) p(x) = 0 α 1, α 2,..., α n α h(α) ( ) (1.3) h(α) = 1 n log a 0 + log max{1, α i } n i=1 α α = a b a, b b α p(x) bx a bx a 1 (1.3) a b ( a ) { h = log b + log max 1, a } = log max{b, a } b b (1.2) 3 p(x) X 2 3 p(x) = 0 3, 3 ( ) h 3 = 1 ( { log 1 + log max 1, } 3 2 { + log max 1, }) 3 = 1 2 log x x x = (x 1,..., x n ) i = 1,..., n x i ai b i d b 1,..., b n d b i d i (1.4) x i = a i = a id i b i d x 1,..., x n d x i = a id i d x = (x 1,..., x n ) H(x) (1.5) H(x) = max{ a 1 d 1,..., a n d n, d} n = 1 H(x) ( 1 4, 5 6, 5) 2 4, 6, 5 60 ( 1 4, 5 6, 2 ) 5 = ( 15 60, 50 60, 24 ) 60 (( 1 H 4, 5 6, 2 )) = max { 15, 50, 24, 60} = 60 5

8 n (1) x = (x 1,..., x n ) H(x) 1 (2) (1) i = 1,..., n x i 1, 0, 1 (3) B 1 B x = (x 1,..., x n ) {x = (x 1,..., x n ) Q n H(x) B} (1) x = (x 1,..., x n ) (1.4) d H(x) = max{ a 1 d 1,..., a n d n, d} d 1 (2) H(x) = 1 d = 1 a i d i 1 i = 1,..., n d i d d = 1 a i = 1, 0, 1 i = 1,..., n i = 1,..., n x i 1, 0, 1 (3) B = 3 H(x) 3 d 3 a i d i 3 i = 1,..., n x i ai b i, a i a i d i 3 b i d 3 x i = ai b i = aidi d ai b i a i 3, 2, 1, 0, 1, 2, 3 7 b i 1, 2, 3 x i 7 3 = 21 i 1,..., n n H(x) 3 (21) n (a i, b i b 1,..., b n d 3 (21) n.) B H(x) B ((2[B] + 1) [B]) n (1.1) H(x) B B A (1.6) X 2 = 2Y 2 (0, 0) 2

9 1 9 (0, 0) (x 1, x 2 ) (1.7) x 2 1 = 2x 2 2 x 1, x 2 0 (x 1, x 2 ) x 2 (x 1, x 2 ) x 2 1 x 1 x 1 = 2x 3 x 3 (1.6) 2 (1.8) x 2 2 = 2x 3 0 (x 2, x 3 ), (1.6) (1.7) x 1 > x 2 (1.8) x 2 > x 3 (x 1, x 2 ) (x 2, x 3 ) (x 2, x 3 ) (x 1, x 2 ) (x 3, x 4 ) 0 (1.6) (1.6) (x 1, x 2 ) (x 2, x 3 )..., (x i, x i+1 )... x 1 > x 2 > > x i+1 x 1,..., x i+1 (x i, x i+1 ) (x i, x i+1 ) 0 (1.5) H ((x i, x i+1 )) = max{ x i, x i+1, 1} = max{ x i, x i+1 } (x 1, x 2 ) B x 1 > x 2 > > x i+1 H ((x i, x i+1 )) H ((x 1, x 2 )) = B i = 1, 2,... {y Q 2 H(y) B} i (x i, x i+1 ) 1.8(3) 1.9 X 2 = 2Y 2 (0, 0) (0, 0) X 2 = 2Y 2 descent B 1.8(3) size descent size 17 6

10 (1) (1.9) X 4 + Y 4 = Z 2 (x, y, z) x = 0 y = 0 (2) (a, b) b 2 = a (a, b) = (0, ±1) * (1) (1.9) (x, y, z) x 0, y 0 (x, y, z) (1.9) (r, s, t) r 0 s 0. (r, s, t) (x, y, z) (r, s, t) (x, y, z) (1.9) 1.8(3) x > 0, y > 0, z > 0 x y x y x 4 + y z 2 4 x, y y x y x 1.11 a > 0, b > 0, (1.10) x 2 = a 2 b 2, y 2 = 2ab, z = a 2 + b 2 a b x b x 2 + b 2 = a p > 0, q > 0, (1.11) x = p 2 q 2, b = 2pq, a = p 2 + q 2 a p q *2 L. Mordell, Diophantine equations, Academic Press, 1969.

11 1 11 y 2 = 2ab = 4pq(p 2 + q 2 ) p, q, p 2 + q 2 2 r > 0, s > 0, t > 0 (1.12) p = r 2, q = s 2, p 2 + q 2 = t 2 p q r s r 4 + s 4 = t 2 (1.9) (x, y, z) (1.9) (r, s, t) (r, s, t) (x, y, z) (r, s, t) (x, y, z) (1.10) (1.11) (1.12) z = a 2 + b 2 = (p 2 + q 2 ) 2 + (2pq) 2 = t 4 + (2r 2 s 2 ) 2 > t 4 z > t (r, s, t) (x, y, z) x 4 + y 4 = z 2 x, y, z z x, y, z H ((x, y, z)) = max{x, y, z, 1} = z H ((r, s, t)) = t z > t (r, s, t) (x, y, z) (1.9) (x, y, z) x 0, y 0 (1.9) (r, s, t) r 0, s 0 (r, s, t) (x, y, z) (1.9) 1.8(3) (1) (2) a = x y, z b = z y 2 x, y, z x 4 + y 4 = z 2 (1) x = 0 (a, b) = (0, ±1) x > 0, y > 0, z > 0 x 2 + y 2 = z 2 x, y, x y a > 0, b > 0 x = a 2 b 2, y = 2ab, z = a 2 + b 2 y 2 = z 2 x 2 = (z + x)(z x) z x z + x s, t z + x = 2s, z x = 2t d s, t d z = s + t x = s t x y x z d = 1 s t y 2 = 4st s t a > 0, b > 0, s = a 2, t = b 2

12 2 12 a, b x = a 2 b 2, y = 2ab, z = a 2 + b x = a b h(x) = log max{ a, b} 1.2 c 2 f c (X) = X 2 + c 2 2 f c (X) x x 2 f c f c (x) x h(x) f c (x) h(f c (x)) x h(x) h(f c (x)) 2.1. f 0 (X) = X 2 1.5(5) x (2.1) h(f 0 (x)) = 2h(x) f 0 (x) x f 1 (X) = X x a b ( a ) 2 a 2 + b 2 f 1 (x) = + 1 = b a b a 2 + b 2 b 2 f 1 (x) a2 +b 2 b 2 h(f 1 (x)) = log max{a 2 + b 2, b 2 } = log(a 2 + b 2 ). h(x) = log max{ a, b} (max{ a, b}) 2 = max{a 2, b 2 } max{a 2, b 2 } a 2 + b 2 2 max{a 2, b 2 } b 2 2h(x) h(f 1 (x)) log 2 + 2h(x) x h (f 1 (x)) 2h(x) log 2 f 1 (x) x 2 log 2

13 2 13 f c (X) = X 2 + c 2 2 x f c (x) x 2 c 2.3. c f c (X) = X 2 + c 2 c C x (2.2) h (f c (x)) 2h(x) C c C 1 x (2.3) h (f c (x)) 2h(x) + C 1 c C 2 x (2.4) 2h(x) h (f c (x)) + C 2 C C 1, C 2 (2.3) (2.4) (2.2) c = p q p, q q c x a b ( a ) 2 p fc(x) = + b q = a2 q + b 2 p b 2. q (2.5) h(f c (x)) max log { a 2 q + b 2 p, b 2 q } a2 q+b 2 p b 2 q (2.6) log max { a 2 q + b 2 p, b 2 q } log max {( a 2 q + b 2 p ), b 2 q } log max{a 2, b 2 } + log( p + q) + log 2 = 2 log max{ a, b} + log( p + q) + log 2 C 1 = log( p + q) + log 2 c log max{ a, b} x h(x) (2.5) (2.6) x h (f c (x)) 2h(x) + C 1,

14 2 14 (2.3) c = p q x = a b f c (x) = a2 q + b 2 p b 2 q h(f c (x)) log max{ a, b} log max{ a 2 q + b 2 p, b 2 q} log max{ a 2 q+b 2 p, b 2 q} log max{ a, b} h(f c (x)) log max{ a 2 q+b 2 p, b 2 q} a 2 q b 2 p qb 2 p +q a2 b 2 q a 2 q b 2 p a 2 q q p + q a2 p = q2 p + q a2 { } q max{ a 2 q + b 2 p, b 2 q} max{a 2 q b 2 p, b 2 2 q} max p + q a2, qb 2 a 2 q b 2 p qb 2 (2.7) q p +q a2 b 2 log max { a 2 q + b 2 p, b 2 q } { } q 2 log max p + q a2, b 2 q { } q log max{a 2, b 2 2 } + log min p + q, q { } q 2 = 2 log max{ a, b} + log min p + q, q b 2 q d b 2 = Bd q = q d B q ( a ) 2 p f c (x) = + b q = a2 q + Bp dbq m a 2 q + Bp dbq m dbq m 1, m 2, m 3 m = m 1 m 2 m 3 m 1, m 2, m 3 d, B, q, m 2 = 1 m 2 m a 2 q + Bp m 2 B m 2 a 2 q a b a 2 B m 2 B m 2 a 2 m 2 q B q m 2 = 1 m = m 1 m 3 dq = q f c (x) f c (x) = (a2 q + Bp)/m (dbq )/m

15 2 15 (dbq )d = b 2 q (a 2 q + Bp)d = a 2 q + b 2 p { a 2 q } + Bp (2.8) h(f c (x)) = log max, dbq m m = log max { a 2 q + Bp, dbq } log m = log max { a 2 q + b 2 p, b 2 q } log d log m log max { a 2 q + b 2 p, b 2 q } 2 log q { } q 2 C 2 = 2 log q log min p + q, q c log max{ a, b} x h(x) (2.7) (2.8) x 2h(x) h(f c (x)) + C 2, (2.4) d x 1.7 f(x) 2 2 d c 0,..., c d c 0 0 f(x) = c 0 X d + c 1 X d c d f C x (2.9) h (f(x)) dh(x) C [1, Chapter 4, Theorem 1.8] 2.5. x (2.9) 1 h (f(x)) h(x) d C d { 1 d n h (f n (x)) } f n (x) f(f( (f(x)) )) x f n 1 ĥ f (x) = lim n d n h (f n (x)) ĥf (x) x f ĥf

16 f(x) 2 x h(f(x)) = 2h(x) f(x) = X 2 f(x) = X f c (X) = X 2 + c f c (X) 2 2 f c (X) = X 2 + c 3.1 f(x) 2 2 d c 0,..., c d c 0 0 f(x) = c 0 X d + c 1 X d c d x x f iteration f n (x) f(f( (f(x)) )) x f n f 1 (x) = f(x) f 2 (x) = f(f(x)) f 3 (x) = f(f(f(x))) (3.1) x, f(x), f 2 (x), f 3 (x),... f x x x {f i (x )} {f i (x)} x Fatou set x Julia set f(x) = X 2 x x < 1 x x x < 1 {f i (x)} {f i (x )} 0 x x > 1 x x x > 1 {f i (x)} {f i (x )} x x = 1 {f i (x)} f i (x) = 1 x x x > 1 {f i (x )} x = 1 x x {f i (x)} {f i (x )} f(x) = X 2 J = {x C x = 1}

17 f(x) = X 2 {x C x = 1}. f(x) = X 2 f 4 f(x) = X 2 1. f (3.1) x 3.1. f(x) 2 x (1) x f-f-periodic point n f n (x) = x f n (x) = x n x prime period *3 *3 exact period minimal period

18 f(x) = X 2 + i. (2) x f- f-preperiodic point m f m (x) f- f- f-x n f- f- m n x f- f f f 0 (X) = X 2 f 1 (X) = X f 0-3.2(1) f f(x) = X 2 (1) f(0) = 0 0 f-0 1 (2) f(1) = 1 1 f-1 1 (3) ω = ω 1 3 f(ω) = ω 2 f 2 (ω) = f(ω 2 ) = ω 4 = ω ω f-f(ω) ω f 2 (ω) = ω ω 2 (4) i = 1 f(i) = i 2 = 1, f 2 (i) = f( 1) = 1 (2) 1 f- i f- (5) η = η 1 6 f(η) = ω (3) ω f- η f f(x) = X 2 n n f- 3.2(1)(2) n = 1 3.2(3) n = 2

19 3 19 f(x) f(x) 3.3 *4 3.4 (). f(x) 2 f(x) ax 2 (2b+1)X + (ab 2 + 2b) a 0 b n n f f(x) = ax 2 (2b + 1)X + (ab 2 + 2b) 2 f- 2 n n f- x n (f n ) (x) > 1 x repelling periodic point *5 z f z f. f(x) = X 2 f n (X) = X 2n f(x) = X 2 x = 0 x = cos ( ) 2πk 2 n + ( ) 2πk 1 sin 1 2 n 1 (n 1; 1 k 2 n 1) x = 0 P P {z C z = 1} (f n ) (X) = (2 n )X 2n 1 (f n ) (0) = 0 x = 0 P x (f n ) (x) = 2 n x 2n 1 = 2 n > 1 f(x) = X 2 P x =. z z = 1 z ε z P ε z z = 1, P z P {z C z = 1} f(x) = X 2 *4 I. N. Baker, Fixpoints of polynomials and rational functions, J. London Math. Soc. 39 (1964), *5 x O(x) = {f n (x) n 1} x! d f(x) (2d 2). f(x).

20 f- f-rational f-periodic point f- f- rational f-preperiodic point 3.6. c 2 f c (X) = X 2 + c f c - {x Q x f c - } f c - f c c f C 2.3 x (3.2) h (f(x)) 2h(x) C x f-h(x) < 2C (3.3) {x Q x f- } {x Q h(x) < 2C} (3.3) 2C 1.5(3) f- (3.3) x h(x) 2C n 1 (3.4) h(f n (x)) (2 n + 1) C n = 1 (3.2) h(f(x)) 2h(x) C 3C n = k (3.4) x f k (x) (3.2) x f k (x) h(f k+1 (x)) 2h(f k (x)) C h(f k (x)) h(f k+1 (x)) 2h(f k (x)) C 2 ( 2 k + 1 ) C C = ( 2 k ) C n = k + 1 (3.4) (3.4) (3.3) x f- i, j 1 f i (x) = f i+j (x) f i (x) = f i+j (x) = f i+2j (x) = f i+3j (x) = (3.5) h(f i (x)) = h(f i+j (x)) = h(f i+2j (x)) = h(f i+3j (x)) = (3.4) (3.5) x f-h(x) < 2C (3.3)

21 d d d 2 f(x) d f- {x Q x f- } f d α 3.6 c 2 f c (X) = X 2 + c n { x C x n f c - } n f c - f c (X) d ( 2) f(x) α f(x) 2 α 1.7 p(x) p(α) = 0 p(x) = 0 G(α) G(α) = {β C P (β) = 0}. α α ĥ(α) 2.5 G(α) Autissier *6, Baker Hsia *7, Chambert-Loir, Baker Rumely, Favre Rivera-Letelier, Pineiro Szpiro Tucker *6 P. Autissier, Points entiers sur les surfaces arithmétiques, J. Reine Angew. Math. 531 (2001), *7 M. Baker and L.-C. Hsia, Canonical heights, transfinite diameters, and polynomial dynamics, J. Reine Angew. Math. 585 (2005),

22 f c (X) = X 2 + c c f c - f c - c f c (X) f c - f c c = 1 f 1 (X) = X , , 1 2 f f f 1-0, 1 f 1-0, 1, c = , , 5 4 f 21 (X) = X , f f , , , , 7 4, 1 4, 5 4 f 21 (X) c = f 29 (X) = X , 7 4, f 29-16

23 c = f c , 2 2 f c c = f c- c c 4 f c - f c - 5 f c - 9 *8, *9 4.5 (, ). c 2 f c (X) = X 2 + c x f c -x (). 4.5 f c - 4 f c c * 10 c c f c (X) = X 2 + c c x f c -x d g(x) = X d + c 1 X d c d (c 1,..., c d ) x g(x) = 0 x x a b a, b b g(x) = 0 b n 1 a n a n 1 a n 2 b n + c 1 b n 1 + c 2 b n 2 + c d = 0 a n b = c 1a n 1 c 2 a n 2 b c d b n 1 b = 1 x *8 P. Morton, J. H. Silverman, Rational periodic points of rational functions, Internat. Math. Res. Notices 2 (1994), *9 B. Poonen, The classification of preperiodic points of quadratic polynomials over Q: a refined conjecture, Math. Z. 228 (1998), *10 R. Benedetto, Preperiodic points of polynomials over global fields, J. Reine Angew. Math. 608 (2007),

24 Narkiewicz * 11 x f c - n n = 1 n = 2 n 3 x g n (X) = f n c (X) X c g n (X) 1 g 2 (X) = f c (f c (X)) X = (X 2 + c) 2 + c X = X 4 + 2cX 2 X + c 2 + c g 2 (X) 1 4 x n g n (x) = x x 0, x 1,..., x n 1 (4.1) x 0 = x, x 1 = f c (x 0 ), x 2 = f c (x 1 ),..., x n 1 = f c (x n 2 ) x f c (X) x 0, x 1,..., x n 1 x n x 0, x 1,..., x n 1 x 0 = f c (x n 1 ) x n = x 0, x n+1 = x 1 x, y f c (y) f c (x) y x = y + x x y x i x i+1 f c (x i ) = x i+1 f c (x i+1 ) = x i+2 (4.2) x i+2 x i+1 x i+1 x i = x i + x i+1 i = 0, 1,..., n 1 (4.3) x 2 x 1 x 1 x 0 x 3 x 2 x 2 x 1 xn+1 x n x n x n 1 = (x 0 + x 1 )(x 1 + x 2 ) (x n 1 + x n ) x n = x 0, x n+1 = x 1 1 (x 0 + x 1 )(x 1 + x 2 ) (x n 1 + x 0 ) = 1. x 0,..., x n 1 i = 0, 1,..., n 1 x i + x i+1 1 1, i x i + x i+1 = 1 (4.2) x i+2 = x i n 3 x 0,..., x n 1 i x i + x i+1 = 1 x 0 + x 1 = 1 x 1 + x 2 = 1 x 0 = x 2 x 0,..., x n 1 n 3 n *11 W. Narkiewicz, Polynomial cycles in algebraic number fields, Colloq. Math. 58 (1989),

25 d 2 1 d f(x) = X d + c 1 X d c d c 1,..., c d f n n f c - n = 4, 5 n f c - (n 6.) c 2 f c (X) = X 2 + c x f c - (1) * 12 x 4 (2) * 13 x f c (X) 4 5 f 4 c (X) f 2 c (X) = f c (f c (X)) = (X 2 + c) 2 + c = X 4 + 2cX 2 + c 2 + c f 4 c (X) = f 2 c (f 2 c (X)) = (f 2 c (X)) 4 + 2c(f 2 c (X)) 2 + c 2 + c = X cX 14 + ( 28c 2 + 4c ) X 12 + ( 56c c 2) X 10 + ( 70c c 3 + 6c 2 + 2c ) X 8 + ( 56c c c 3 + 8c 2) X 6 + ( 28c c c c 3 + 4c 2 + ) X 4 + ( 8c c c c 4 + 8c 3) X 2 + ( c 8 + 4c c 6 + 6c 5 + 5c 4 + 2c 3 + c 2 + c ) f 4 c (X) X (4.4) f 4 c (X) X = ( f 2 c (X) X ) Φ c (X) Φ c (X) X 12 (4.5) Φ c (X) := X cX 10 + X 9 + ( 15c 2 + 3c ) X 8 + 4cX 7 + ( 20c c ) X 6 + ( 6c 2 + 2c ) X 5 + ( 15c c 3 + 3c 2 + 4c ) X 4 + ( 4c 3 + 4c ) X 3 + ( 6c c 4 + 6c 3 + 5c 2 + c ) X 2 + ( c 4 + 2c 3 + c 2 + 2c ) X + ( c 6 + 3c 5 + 3c 4 + 3c 3 + 2c ). 4 f c - x fc 4 (x) = x (4.4) fc 2 (x) x = 0 Φ c (x) = 0 fc 2 (x) = x x 2 x 4 Φ c (x) = 0 4 f c - Φ c (X) = 0 *12 P. Morton, Arithmetic properties of periodic points of quadratic maps. II., Acta Arith. 87 (1998), *13 E. V. Flynn, B. Poonen and E. F. Schaefer, Cycles of quadratic polynomials and rational points on a genus-2 curve, Duke Math. J. 90 (1997),

26 y x 6 Φ(X, Y ) = 0 xy Maple. 4.10(1) (x, y) x, y 5 f 5 c (X) X f 4 c (X) X = (f c (X) X) Ψ c (X) Ψ c (X) X 30 5 f c - Ψ c (X) = 0 30 Ψ c (X) Φ c (X) = 0 c x Ψ c (X) = 0 c x 4.10 Φ c (X) c Y Φ(X, Y ) Ψ c (X) c Y Ψ(X, Y ) (4.5) (4.6) Φ(X, Y ) = X Y X 10 + X 9 + ( 15Y 2 + 3Y ) X 8 + 4Y X 7 + ( 20Y Y ) X 6 + ( 6Y 2 + 2Y ) X 5 + ( 15Y Y 3 + 3Y 2 + 4Y ) X 4 + ( 4Y 3 + 4Y ) X 3 + ( 6Y Y 4 + 6Y 3 + 5Y 2 + Y ) X 2 + ( Y 4 + 2Y 3 + Y 2 + 2Y ) X + ( Y 6 + 3Y 5 + 3Y 4 + 3Y 3 + 2Y ). 2 X, Y Ψ(X, Y ) 2 X, Y Φ c (X) = 0 Ψ c (X) = 0 c x Φ(X, Y ) Ψ(X, Y ) (x, y) * 14 3 *14

27 Φ(X, Y ) = 0 Ψ(X, Y ) = F (X, Y ) 2 X, Y 4 Φ(X, Y ) Ψ(X, Y ) F (x, y) = 0 x, y (x, y) F (X, Y ) (5.1) F (X, Y ) = X + Y 1 F (X, Y ) = 0 t (x, y) = (t, 1 t) y x X + Y 1 = 0 xy t (t, 1 t). F (x, y) = (5.2) F (X, Y ) = X 2 + Y 2 1 ( ) 2t F (X, Y ) = 0. t (x, y) = 1+t, 1 t2 2 1+t 2 F (x, y) = 0 (x, y) = ( 3 5, ) ( 4 5, 5 12, ) ( 11 12, 8 17, 17) 15,... F (x, y) = 0

28 y x ( ) X 2 + Y 2 2t 1 = 0 xy t, 1 t2. 1+t 2 1+t x, y x 2 + y 2 = 1 (x, y) = ( 1, 0) ( ) 2t t (x, y) = 1+t, 1 t2 2 1+t (5.3) F (X, Y ) = X 3 Y 2 2 F (X, Y ) = 0 30 y x X 3 Y 2 2 = 0 xy (3, 5) ( 129 ( , ) ,...., ), (x, y) F (X, Y ) = 0 (5.4) ( x x 4y 2, x6 + 40x 3 ) y 3 F (X, Y ) = (x, y) = (3, 5) F (X, Y ) = 0, (x 1, y 1 ) = (3, 5)

29 5 29 (5.4) (x, y) (x n, y n ) (x n+1, y n+1 ) ( 129 (x 2, y 2 ) = 100, 383 ), 1000 ( (x 3, y 3 ) = , ) (x 4, y 4 ) y , (x 5, y 5 ) y (x 6, y 6 ) y (5.4) (x n, y n ) h(x) x (x n, y n ) (x n+1, y n+1 ) (x n, y n ) { 1 4 n 1 h(x n, y n ) } x. (x, y) = (3, 5) (5.4) F (X, Y ) = X 3 Y 2 2 = 0 (5.1) (5.2) (5.3) 5.5. P = (a, b) b 0 E : Y 2 = X 3 2 (1) E P l (2) E l P Q l P Q = P Q ( a a 4b 2, a6 + 40a 3 ) b 3, 2 F (X, Y ) F (X, Y ) = 0 genus 0 X + Y 1 = 0 X 2 + Y 2 1 = 0 0 X 3 Y = 0 1 F (X, Y ) = 0 1 F (X, Y ) = 0 2 F (x, y) = 0 x, y 5.6 (). F (X, Y ) 2 X, Y F (X, Y ) = 0 2 F (x, y) = 0 x, y

30 Φ(X, Y ) Ψ(X, Y ) Φ(X, Y ) = 0 2 Ψ(X, Y ) = 0 14 Φ(x, y) = 0 Ψ(x, y) = 0 (x, y) 4 5 f c - c c c ( 10 ). N F (X 1,..., X N ) F (X 1,..., X N ) = N F (X 1,..., X N ) F (X 1,..., X N ) = 0 YES NO 1960 F (X 1,..., X N ) 1970

31 F (X 1,..., X N ) = 0 N N = 2 2 F (X 1, X 2 ) F (X 1, X 2 ) = 0 F (X 1, X 2 ) = 0 2 F (X 1, X 2 ) 2 F (X 1, X 2 ) F (X 1, X 2 ) = 0 N = (1) N = 1 1 f(x) f(x) = 0 f(x) = c 0 X d + c 1 X d c d (c 0,..., c d ) f(x) = 0 (2) 1 f(x) f(x) f(x) f(x) = g(x)h(x) g(x), h(x) g(x) = ±1 h(x) = ±1 * 15 *15 III 4(2).

32 n 3 x n + y n = z n x, y, z 1 z 2 F (X, Y ) = X n + Y n 1 F (x, y) = 0 x = 0 y = 0 2 y x 1 12 X 3 + Y 3 = 1 xy (1, 0), (0, 1) ( ). 2 * 16 *16!

33 y x X 4 + Y 4 = 1 xy (±1, 0) (0, ±1) f c (1)

34 Φ(X, Y ) (4.6) X, Y X, Y (6.5) X = U 1 2(U + 1) + V 2U(U 1) Y = U 6 3U 5 3U 4 10U U 2 3U 1 4U(U 1) 2 (U + 1) 2 U, V Φ(X, Y ) X, Y U, V Φ(X, Y ) Θ(U, V ) = V 2 U(U 2 + 1)(1 + 2U U 2 ) Φ(X, Y ) Θ(U, V ) C Φ D Φ C Φ = {(x, y) C 2 Φ(x, y) = 0}, D Φ = {(u, v) C 2 Θ(u, v) = 0}. (x, y) (u, v) P 1,, P n C Φ Q 1,, Q m D Φ π : D Φ \ {Q 1,..., Q m } C Φ \ {P 1,..., P n }, (u, v) (x, y) π D Φ {Q 1,..., Q m } u = 0, 1, 1 (6.5) x, y π D Φ \ {Q 1,..., Q m } U, V C Φ \ {P 1,..., P n } π 1 1 C Φ D Φ D Φ 6.1 D Φ (0, 0), (±1, ±2) 5 5 D Φ {Q 1,..., Q m }, C Φ, C Φ \ {P 1,..., P n } C Φ {P 1,..., P n } C Φ 6.1. V 2 U(U + 1)(1 + 2U U 2 ) = 0 (u, v) (0, 0) (±1, ±2) 4 x y x = y 2 x square (u, v) v 2 = u(u + 1)(1 + 2u u 2 ) u, v u, u 2 + 1, 1 + 2u u 2 u u + 1, 1 + 2u u 2 2

35 u = a 2 u = b 2 a, b b 2 = a (2) (a, b) = (0, ±1) (u, v) = (0, 0) u = a 2 u = 2b 2 a, b 2b 2 = a (3) (a, b) = (±1, ±1) (u, v) = (±1, ±2) 6.2. (1) X 4 + Y 4 = 2Z 2 (x, y, z) x y (x, y) = (±1, ±1) (2) (a, b) 2b 2 = a (a, b) = (±1, ±1) f c (2) 4.10 Ψ c (X) fc 5 (X) X = (f c (X) X) Ψ c (X) x Ψ c (x) = 0 x 5 f c - 2 Ψ(X, Y ) Ψ c (X) c Y Ψ(X, Y ) (x, y) Ψ(X, Y ) X 30 Y 15 Ψ(X, Y ) = 0 x 5 f c - f c (x) 5 f c -, x Ψ c (x) = 0 Ψ c (f c (x)) = 0 Ψ(X, Y ) C Ψ C Ψ = {(x, y) C 2 Ψ(x, y) = 0}. (x, y) C 2 C Ψ (x 2 + y, y) C 2 C Ψ σ σ : C Ψ C Ψ, (x, y) (x 2 + y, y) x 5 f c -fc 5 (x) = x σ 5 : C Ψ C Ψ σ 5 (x, y) = (x, y) C Ψ P = (x, y) P, σ(p ), σ 2 (P ), σ 3 (P ), σ 4 (P ) 5 D Ψ π : C Ψ D Ψ

36 A (1.1) 36 P = (x, y) C Ψ π(p ) = π(σ(p )) = π(σ 2 (P )) = π(σ 3 (P )) = π(σ 4 (P )) Q D Ψ P C Ψ π 1 (Q) = {P, σ(p ), σ 2 (P ), σ 3 (P ), σ 4 (P )} π D Ψ, D Ψ (6.6) D Ψ : Y 2 = X 6 + 8X X X 3 + 5X 2 + 6X + 1 P = (x, y) C Ψ π(q) D Ψ C Ψ D Ψ C Ψ D Ψ 6.3. (6.6) (x, y) (0, 1), (0, 1), ( 3, 1), ( 3, 1), 4 6.3, Chabauty C Ψ P = (x, y) π(p ) D Ψ 4 2 π 1 ((0, 1)) C Ψ C Ψ P = (x, y) A (1.1) (1.1) k=1 1 k 2 = p: (1 1p 2 ) 1 = π2 6 p 1 (e = 0) µ(p e ) = 1 (e = 1) 0 (e 2)

37 A (1.1) 37 a a a = p e1 1 pe k k e 1,..., e k µ(a) = µ(p e 1 1 ) µ(pe k 1 ) p 1,..., p k µ(1) = 1 µ B, { M(B) = # (i, j) } i j 1 i, j B M(B) = #{x Q x H(x) B} 0 N(B) = 2M(B) + 1 B N(B) M(B) d { M d (B) = # (i, j) } i j d 1 i, j B [ B d ] B d i d, 2d,..., [ B d ]d [ B d ], i d, 2d,..., [ B d ]d [ B d ] M d(b) = [ ] B 2 d B B [ ] 2 B M(B) = µ(d)m d (B) = µ(d) d d=1 d=1 M(B) B 2 = B B d µ(d)[ B 2 = d=1 ] 2 B µ(d) 1 d 2 + R(B) d=1 R(B) B d=1 µ(d) 1 B 1 2 B d=1 µ(d) d 2 = p: e=0 N(B) = 2M(B) + 1 (1.1) µ(p e ) (p e ) 2 = p: M(B) lim B B 2 = 6 π 2 N(B) lim B B 2 = 12 π 2 (1 1p ) ( 2 = k=1 ) 1 1 k 2 = 6 π 2

38 B 38 A , n x = (x 1,..., x n ), N n (B) = #{x = (x 1,..., x n ) Q n H(x) B} n = 1 N(B) (A.1) N n (B) lim B B n+1 = 2 n ζ Q (n + 1) ζ Q (n + 1) = 1 k=1 k (A.1) (1.1) n+1 B 1.3. (1) B = 2, 4, 5 N(2) = 7, N(2)/2 2 = 7/4 = 1.75, N(4) = 23, N(2)/4 2 = 23/16 = , N(5) = 39, N(5)/5 2 = 39/25 = (2) C #include <stdio.h> /* */ int gcd(int x, int y) { if (y==0) return x; else return gcd(y, x%y); } int main() { int i, j, count, B, ans; printf(" B "); scanf("%d", &B); /* 1 <= i,j <= B gcd(i,j)=1 */ count = 0; for (i = 1; i <= B; i++) { for (j =1; j <= B; j++) { if (gcd(i,j) == 1) count++; } } /* 0, count 2 1 */

39 B 39 ans = 2 * count + 1; } printf("%d\n", ans); return 0; 1.6. (1) 1.4(2) (2) a, b, c, d max{ ad + bc, bd } max{2 ad, 2 bc, bd } 2 max{ a, b } max{ c, d }, x = a b, y = c d x + y = ad+bc ad h(x + y) log max{ ad + bc, bd } log max{ a, b } + log max{ c, d } + log 2 = h(x) + h(y) + log 2 h(x + y) log max{ ad + bc, bd } ad+bc bd 2.6. f(x) = px 2 + qx + r p, q, r r 0 X = 0, 1, 1 h(f(0)) = 2h(0) = 0 1.5(2) f(0) = r 0, 1, 1 f(1) = p + q + r f( 1) = p q + r 0, 1, 1 (p, q, r) = (p, q, r) = (1, 0, 0), ( 1, 0, 0) f(0) = 0, f(1) = 1, f( 1) = 0 (p, q, r) = ( 1 2, 1 2, 0), f(x) = 1 2 X X 27 f(2) = 3 h(f(2)) = log(3) 2 log(2) = 2h(2) f(x) (p, q, r) = ( 1 2, 1 2, 0) 3.3. f n (X) = X 2n n f- ( ) ( ) 2π 2π x = cos 2 n + i sin 1 2 n x f x f 2 1(x) = x f 2 1(X) X = X 4 2X 2 X = X(X + 1)(X 2 X 1) x = 0 1 y y y 2 1 = 0 y = ±1 y 2 1 = 1 y = 0 y y 2 1 = 1. y f 1 -y = 0, 1, x f- n n 3 x 0,..., x n 1 x 0 = x, x i+1 = f i (x i ), x 0,..., x n 1

40 B 40 2 g(x, Y ) (B.1) f(y ) f(x) Y X = g(x, Y ) 4.7 g(x, Y ) = X + Y. i = 0,..., n 1 x i+2 x i+1 x i+1 x i = g(x i, x i+1 ) n 1 i=0 g(x i, x i+1 ) = 1 g(x i, x i+1 ) i g(x i, x i+1 ) 1 1 i g(x i, x i+1 ) = 1 (B.1) x i+2 = x i i g(x i, x i+1 ) = 1 (B.1) x 0 = = x n 1 n ( 1, 0) C : X 2 + Y 2 = 1 (x, y) ( 1, 0) ( 1, 0) (x, y) l t t l : Y = t(x + 1) (x, y) C l ( 1, 0) C l x = 2t 1 + t 2, y = 1 t2 1 + t (1) l Y = 3a2 2b X + 3a3 + 2b 2. 2b (2) l E Y b 2 = a 3 2 R X a4 +16a 2 4(a 3 2) = a4 +16a 2 4b 2 4(a 3 2)X 3 9a 4 X 2 + (6a a 2 )X (a a 3 ) = 0 (X a) 2 ( 4(a 3 2)X (a a 2 ) ) = 0. R Y a 2 2b a a 2 4b 2 + 3a3 + 2b 2 = a6 40a b 4b 3 (1) f(x) = 0 n c d = n(c 0 n d 1 + c 1 n d c d 1 )

41 41 n c d c d. 1 m c d m c d m. c d m 1,..., m k m i f(m 1 ),..., f(m k ) 0 f(m i ) = 0 i (i = 1,..., k) f(x) = 0 i f(x) = 0 (2) Kroneker β 0,..., β l l g(x) g(0) = β 0,..., g(l) = β l (B.2) g(x) = l i=0 ( 1) l i β i i!(l i)! X (X i + 1)(X i 1) (X l) g(x) l g(0) = β 0,..., g(l) = β l g 1 (X), g 2 (X) g 1 (X) g 2 (X) l (l + 1) 0, 1,..., l 0 g 1 (X) g 2 (X) 0 g(x) f(x) = g(x)h(x) g(x), h(x) g(x) l 1 l d i = 0, 1,..., l f(i) = g(i)h(i) f(i), g(i), h(i) g(i) f(i) 1 l d l f(i) i = 0,..., l m i1,..., m iki, m ij l g(x) g(i) = m 0j0,..., g(l) = m ljl 1 j 0 k 0,..., 1 j l k l (B.2) g(x) f(x) l 1 l d m iji 0 i l, 1 j i k i g(x) g(x) ±1, ±f(x), g(x) f(x) f(x) g(x) f(x) [1] S. Lang, Fundamentals of Diophantine Geometry, Springer-Verlag [2] J. Milnor, Dynamics in one complex variable. Introductory lectures. Friedr. Vieweg & Sohn, Braunschweig [3] J. H. Silverman The arithemtic of dynamical systems, Graduate Texts in Mathematics 241, Springer- Verlag [1] [2] [3]

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

function2.pdf

function2.pdf 2... 1 2009, http://c-faculty.chuo-u.ac.jp/ nishioka/ 2 11 38 : 5) i) [], : 84 85 86 87 88 89 1000 ) 13 22 33 56 92 147 140 120 100 80 60 40 20 1 2 3 4 5 7.1 7 7.1 1. *1 e = 2.7182 ) fx) e x, x R : 7.1)

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

( [1]) (1) ( ) 1: ( ) 2 2.1,,, X Y f X Y (a mapping, a map) X ( ) x Y f(x) X Y, f X Y f : X Y, X f Y f : X Y X Y f f 1 : X 1 Y 1 f 2 : X 2 Y 2 2 (X 1

( [1]) (1) ( ) 1: ( ) 2 2.1,,, X Y f X Y (a mapping, a map) X ( ) x Y f(x) X Y, f X Y f : X Y, X f Y f : X Y X Y f f 1 : X 1 Y 1 f 2 : X 2 Y 2 2 (X 1 2013 5 11, 2014 11 29 WWW ( ) ( ) (2014/7/6) 1 (a mapping, a map) (function) ( ) ( ) 1.1 ( ) X = {,, }, Y = {, } f( ) =, f( ) =, f( ) = f : X Y 1.1 ( ) (1) ( ) ( 1 ) (2) 1 function 1 ( [1]) (1) ( ) 1:

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2 On the action of the Weil group on the l-adic cohomology of rigid spaces over local fields (Yoichi Mieda) Graduate School of Mathematical Sciences, The University of Tokyo 0 l Galois K F F q l q K, F K,

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,, 01 10 18 ( ) 1 6 6 1 8 8 1 6 1 0 0 0 0 1 Table 1: 10 0 8 180 1 1 1. ( : 60 60 ) : 1. 1 e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1,

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P 6 x x 6.1 t P P = P t P = I P P P 1 0 1 0,, 0 1 0 1 cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ x θ x θ P x P x, P ) = t P x)p ) = t x t P P ) = t x = x, ) 6.1) x = Figure 6.1 Px = x, P=, θ = θ P

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

1 I

1 I 1 I 3 1 1.1 R x, y R x + y R x y R x, y, z, a, b R (1.1) (x + y) + z = x + (y + z) (1.2) x + y = y + x (1.3) 0 R : 0 + x = x x R (1.4) x R, 1 ( x) R : x + ( x) = 0 (1.5) (x y) z = x (y z) (1.6) x y =

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b 1 Introduction 2 2.1 2.2 2.3 3 3.1 3.2 σ- 4 4.1 4.2 5 5.1 5.2 5.3 6 7 8. Fubini,,. 1 1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)?

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

sakigake1.dvi

sakigake1.dvi (Zin ARAI) arai@cris.hokudai.ac.jp http://www.cris.hokudai.ac.jp/arai/ 1 dynamical systems ( mechanics ) dynamical systems 3 G X Ψ:G X X, (g, x) Ψ(g, x) =:Ψ g (x) Ψ id (x) =x, Ψ gh (x) =Ψ h (Ψ g (x)) (

More information

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,, 6,,3,4,, 3 4 8 6 6................................. 6.................................. , 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p,

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1.

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1. 1 1 n 0, 1, 2,, n 1 1.1 n 2 a, b a n b n a, b n a b (mod n) 1 1. n = 10 1567 237 (mod 10) 2. n = 9 1567 1826578 (mod 9) n II Z n := {0, 1, 2,, n 1} 1.2 a b a = bq + r (0 r < b) q, r q a b r 2 1. a = 456,

More information

) 2008 8 21 22 21 10:00 12:00 e iπ 1. i ). e π. T @ MacTutor History of Mathematics archive www-history.mcs.standrews.ac.uk/history/ FAQ kawaguch))math.sci.osaka-u.ac.jp 2008 8 21 Part 1 e πi = 1 e = 2.71828...

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

Dynkin Serre Weyl

Dynkin Serre Weyl Dynkin Naoya Enomoto 2003.3. paper Dynkin Introduction Dynkin Lie Lie paper 1 0 Introduction 3 I ( ) Lie Dynkin 4 1 ( ) Lie 4 1.1 Lie ( )................................ 4 1.2 Killing form...........................................

More information

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2 1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2007.11.5 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X 2 E 8 1, E 8, [6], II II, E 8, 2, E 8,,, 2 [14],, X/C, f : X P 1 2 3, f, (O), f X NS(X), (O) T ( 1), NS(X), T [15] : MWG(f) NS(X)/T, MWL(f) 0 (T ) NS(X), MWL(f) MWL(f) 0, : {f λ : X λ P 1 } λ Λ NS(X λ

More information

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ 1 (1) ( i ) 60 (ii) 75 (iii) 15 () ( i ) (ii) 4 (iii) 7 1 ( () r, AOB = θ 0 < θ < ) OAB A OB P ( AB ) < ( AP ) (4) 0 < θ < sin θ < θ < tan θ 0 x, 0 y (1) sin x = sin y (x, y) () cos x cos y (x, y) 1 c

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

, = = 7 6 = 42, =

, = = 7 6 = 42, = http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

agora04.dvi

agora04.dvi Workbook E-mail: kawahira@math.nagoya-u.ac.jp 2004 8 9, 10, 11 1 2 1 2 a n+1 = pa n + q x = px + q a n better 2 a n+1 = aan+b ca n+d 1 (a, b, c, d) =(p, q, 0, 1) 1 = 0 3 2 2 2 f(z) =z 2 + c a n+1 = a 2

More information

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4 20 20.0 ( ) 8 y = ax 2 + bx + c 443 ax 2 + bx + c = 0 20.1 20.1.1 n 8 (n ) a n x n + a n 1 x n 1 + + a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 444 ( a, b, c, d

More information

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

A S-   hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A % A S- http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r A S- 3.4.5. 9 phone: 9-8-444, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

untitled

untitled 1 ( 12 11 44 7 20 10 10 1 1 ( ( 2 10 46 11 10 10 5 8 3 2 6 9 47 2 3 48 4 2 2 ( 97 12 ) 97 12 -Spencer modulus moduli (modulus of elasticity) modulus (le) module modulus module 4 b θ a q φ p 1: 3 (le) module

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

untitled

untitled yoshi@image.med.osaka-u.ac.jp http://www.image.med.osaka-u.ac.jp/member/yoshi/ II Excel, Mathematica Mathematica Osaka Electro-Communication University (2007 Apr) 09849-31503-64015-30704-18799-390 http://www.image.med.osaka-u.ac.jp/member/yoshi/

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1. () 1.1.. 1. 1.1. (1) L K (i) 0 K 1 K (ii) x, y K x + y K, x y K (iii) x, y K xy K (iv) x K \ {0} x 1 K K L L K ( 0 L 1 L ) L K L/K (2) K M L M K L 1.1. C C 1.2. R K = {a + b 3 i a, b Q} Q( 2, 3) = Q( 2

More information

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 ( 1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +

More information

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/005431 このサンプルページの内容は, 初版 1 刷発行時のものです. Lebesgue 1 2 4 4 1 2 5 6 λ a

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È

¿ô³Ø³Ø½øÏÀ¥Î¡¼¥È 2011 i N Z Q R C A def B, A B. ii..,.,.. (, ), ( ),.?????????,. iii 04-13 04-20 04-27 05-04 [ ] 05-11 05-18 05-25 06-01 06-08 06-15 06-22 06-29 07-06 07-13 07-20 07-27 08-03 10-05 10-12 10-19 [ ] 10-26

More information

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1,

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, B 2, B 3 A i 1 B i+1 A i+1 B i 1 P i i = 1, 2, 3 3 3 P 1, P 2, P 3 1 *1 19 3 27 B 2 P m l (*) l P P l m m 1 P l m + m *1 A N

More information

II

II II 16 16.0 2 1 15 x α 16 x n 1 17 (x α) 2 16.1 16.1.1 2 x P (x) P (x) = 3x 3 4x + 4 369 Q(x) = x 4 ax + b ( ) 1 P (x) x Q(x) x P (x) x P (x) x = a P (a) P (x) = x 3 7x + 4 P (2) = 2 3 7 2 + 4 = 8 14 +

More information

6.1 (P (P (P (P (P (P (, P (, P.

6.1 (P (P (P (P (P (P (, P (, P. (011 30 7 0 ( ( 3 ( 010 1 (P.3 1 1.1 (P.4.................. 1 1. (P.4............... 1 (P.15.1 (P.16................. (P.0............3 (P.18 3.4 (P.3............... 4 3 (P.9 4 3.1 (P.30........... 4 3.

More information

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p 2012 IA 8 I 1 10 10 29 1. [0, 1] n x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 2. 1 x = 1 (n = 1, 2, 3,...) 2 f(x) = n 0 [0, 1] 1 0 f(x)dx 3. < b < c [, c] b [, c] 4. [, b] f(x) 1 f(x) 1 f(x) [, b] 5.

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

n ( (

n ( ( 1 2 27 6 1 1 m-mat@mathscihiroshima-uacjp 2 http://wwwmathscihiroshima-uacjp/~m-mat/teach/teachhtml 2 1 3 11 3 111 3 112 4 113 n 4 114 5 115 5 12 7 121 7 122 9 123 11 124 11 125 12 126 2 2 13 127 15 128

More information

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10 1 2007.4.13. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 0. 1. 1. 2. 3. 2. ɛ-δ 1. ɛ-n

More information

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 ( . 28 4 14 [.1 ] x > x 6= 1 f(x) µ 1 1 xn 1 + sin + 2 + sin x 1 x 1 f(x) := lim. 1 + x n (1) lim inf f(x) (2) lim sup f(x) x 1 x 1 (3) lim inf x 1+ f(x) (4) lim sup f(x) x 1+ [.2 ] [, 1] Ω æ x (1) (2) nx(1

More information

/02/18

/02/18 3 09/0/8 i III,,,, III,?,,,,,,,,,,,,,,,,,,,,?,?,,,,,,,,,,,,,,!!!,? 3,,,, ii,,,!,,,, OK! :!,,,, :!,,,,,, 3:!,, 4:!,,,, 5:!,,! 7:!,,,,, 8:!,! 9:!,,,,,,,,, ( ),, :, ( ), ( ), 6:!,,, :... : 3 ( )... iii,,

More information

C による数値計算法入門 ( 第 2 版 ) 新装版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 新装版 1 刷発行時のものです.

C による数値計算法入門 ( 第 2 版 ) 新装版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.  このサンプルページの内容は, 新装版 1 刷発行時のものです. C による数値計算法入門 ( 第 2 版 ) 新装版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009383 このサンプルページの内容は, 新装版 1 刷発行時のものです. i 2 22 2 13 ( ) 2 (1) ANSI (2) 2 (3) Web http://www.morikita.co.jp/books/mid/009383

More information

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. R-space ( ) Version 1.1 (2012/02/29) i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. ii 1 Lie 1 1.1 Killing................................

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0. () 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

(4) P θ P 3 P O O = θ OP = a n P n OP n = a n {a n } a = θ, a n = a n (n ) {a n } θ a n = ( ) n θ P n O = a a + a 3 + ( ) n a n a a + a 3 + ( ) n a n

(4) P θ P 3 P O O = θ OP = a n P n OP n = a n {a n } a = θ, a n = a n (n ) {a n } θ a n = ( ) n θ P n O = a a + a 3 + ( ) n a n a a + a 3 + ( ) n a n 3 () 3,,C = a, C = a, C = b, C = θ(0 < θ < π) cos θ = a + (a) b (a) = 5a b 4a b = 5a 4a cos θ b = a 5 4 cos θ a ( b > 0) C C l = a + a + a 5 4 cos θ = a(3 + 5 4 cos θ) C a l = 3 + 5 4 cos θ < cos θ < 4

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

Chap9.dvi

Chap9.dvi .,. f(),, f(),,.,. () lim 2 +3 2 9 (2) lim 3 3 2 9 (4) lim ( ) 2 3 +3 (5) lim 2 9 (6) lim + (7) lim (8) lim (9) lim (0) lim 2 3 + 3 9 2 2 +3 () lim sin 2 sin 2 (2) lim +3 () lim 2 2 9 = 5 5 = 3 (2) lim

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π 4 4.1 4.1.1 A = f() = f() = a f (a) = f() (a, f(a)) = f() (a, f(a)) f(a) = f 0 (a)( a) 4.1 (4, ) = f() = f () = 1 = f (4) = 1 4 4 (4, ) = 1 ( 4) 4 = 1 4 + 1 17 18 4 4.1 A (1) = 4 A( 1, 4) 1 A 4 () = tan

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1, 17 ( ) 17 5 1 4 II III A B C(1 ) 1,, 6, 7 II A B (1 ), 5, 6 II A B (8 ) 8 1 I II III A B C(8 ) 1 a 1 1 a n+1 a n + n + 1 (n 1,,, ) {a n+1 n } (1) a 4 () a n OA OB AOB 6 OAB AB : 1 P OB Q OP AQ R (1) PQ

More information

85 4

85 4 85 4 86 Copright c 005 Kumanekosha 4.1 ( ) ( t ) t, t 4.1.1 t Step! (Step 1) (, 0) (Step ) ±V t (, t) I Check! P P V t π 54 t = 0 + V (, t) π θ : = θ : π ) θ = π ± sin ± cos t = 0 (, 0) = sin π V + t +V

More information

kokyuroku.dvi

kokyuroku.dvi On Applications of Rigorous Computing to Dynamical Systems (Zin ARAI) Department of Mathematics, Kyoto University email: arai@math.kyoto-u.ac.jp 1 [12, 13] Lorenz 2 Lorenz 3 4 2 Lorenz 2.1 Lorenz E. Lorenz

More information

,2,4

,2,4 2005 12 2006 1,2,4 iii 1 Hilbert 14 1 1.............................................. 1 2............................................... 2 3............................................... 3 4.............................................

More information

6.1 (P (P (P (P (P (P (, P (, P.101

6.1 (P (P (P (P (P (P (, P (, P.101 (008 0 3 7 ( ( ( 00 1 (P.3 1 1.1 (P.3.................. 1 1. (P.4............... 1 (P.15.1 (P.15................. (P.18............3 (P.17......... 3.4 (P................ 4 3 (P.7 4 3.1 ( P.7...........

More information

Chap11.dvi

Chap11.dvi . () x 3 + dx () (x )(x ) dx + sin x sin x( + cos x) dx () x 3 3 x + + 3 x + 3 x x + x 3 + dx 3 x + dx 6 x x x + dx + 3 log x + 6 log x x + + 3 rctn ( ) dx x + 3 4 ( x 3 ) + C x () t x t tn x dx x. t x

More information

Microsoft Word - 信号処理3.doc

Microsoft Word - 信号処理3.doc Junji OHTSUBO 2012 FFT FFT SN sin cos x v ψ(x,t) = f (x vt) (1.1) t=0 (1.1) ψ(x,t) = A 0 cos{k(x vt) + φ} = A 0 cos(kx ωt + φ) (1.2) A 0 v=ω/k φ ω k 1.3 (1.2) (1.2) (1.2) (1.1) 1.1 c c = a + ib, a = Re[c],

More information

Collatzの問題 (数学/数理科学セレクト1)

Collatzの問題 (数学/数理科学セレクト1) / AICHI UNIVERSITY OF EDUCATION A { z = x + iy 0.100

More information

高校生の就職への数学II

高校生の就職への数学II II O Tped b L A TEX ε . II. 3. 4. 5. http://www.ocn.ne.jp/ oboetene/plan/ 7 9 i .......................................................................................... 3..3...............................

More information

2011 8 26 3 I 5 1 7 1.1 Markov................................ 7 2 Gau 13 2.1.................................. 13 2.2............................... 18 2.3............................ 23 3 Gau (Le vy

More information

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h 009 IA I, 3, 4, 5, 6, 7 7 7 4 5 h fx) x x h 4 5 4 5 1 3 1.1........................... 3 1........................... 4 1.3..................................... 6 1.4.............................. 8 1.4.1..............................

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information