untitled
|
|
|
- ともみ おえづか
- 6 years ago
- Views:
Transcription
1
2 9. (FEM, nite element method) (element) (mesh discretization) DT LOK DT M([ ],[ ] )=[ ] DIMENSION M(,NF) DT M/,4,5,,5,,,5,6,,6,,,6,7, 4,8,9, 4,9,5,.../ DIMENSION M(4,NF) DO I=,IF- DO J=,JF K=(I-)*JF+J N=(I-)*(JF-)+J M(,N)=K M(,N)=K+JF M(,N)=K+JF+ M(4,N)=K+ ONTINUE nodal pt number element number 9.: ( ) 9. (a) (b) 7% (b)
3 5 (a) 67.7 (b) (a) / 9.: (a) (b) 9.: 9.. u(x) u(x) (interpolation function) u(x) u (x) i (x)u i = (x)u (9.) (shape function base function) U u ( u j u jk ::: ) FEM u(x) U u(x) u j u j = i ju i u jk i jk U i u(x) ud X n u k u l d X e u d = X i (x) d U i n e i k j l d U i U j n e u j = u=xj u jk = u=xj xk u i k = ui=xk
4 4 R d R e d P n u (x y) u (x y) = nx = c (x y) c + c x+c y + c 4 x +c 5 xy+c 6 y + c 7 x +c 8 x y+c 9 xy +c y + (9.) c (9.) U i = u (x i y i )= nx = c (x i y i ) (i = ::: n) (9.) (9.) (9.) 6 (9.) (9.) (9.) c (x) = (x ) ++ (x n ) n... n(x) = n (x ) ++ n (x n ) n ::: n T T = b T ; = b (9.4) b x y x y x y x y x x y y x y x x y y x y x x y y x 4 y 4 x4 x 4y 4 y4 x 5 y 5 x5 x 5y 5 y5 x 6 y 6 x6 x 6y 6 y6 b x y x y x xy y (9.4) ramer = x y x y x y x y x y x y x y x y (9.5) x y
5 5 = jj = x y x y x y = (x ; x )(x ; x ) (9.5) 4 4P 4P 4P (area coordinates) cc cc c c : c c ; HH c P c x = y ;y y ;y y ;y y x ;x x ;x x ;x (9.6) e l m n d = l m n (l+m+n+) (9.7) 6 - P t dt ds X X? 6 P PPPPPPP s?? a - h 9.4: (9.7) = as= = fa(h;s);htg= = ht= (9.7) I = l m n d = al h m+n h l+m+n s l ds e a(;s=h) fa(;s=h) ; tg m t n dt
6 6 b (b;t) m t n dt = n m+ b (b;t) m+ t n; dt = = m n (m+n) t s I = m n a l+m+n+ h ; h (m+n+) l+m+n (h;s) m+n+ s l l m n ds = (l+m+n+) b (b;t) m+n dt = m n bm+n+ (m+n+) [ ] i i = jj i b b u u x u y Hermite (9.) u u x u y u U = u u x u y u u x u y u u x u y u 4 = jj b Hermite x y x x y y x x y x y y x y x x y y x y x x y y x y x x y y x x y x y y x y x x y y x y x x y y x y x x y y x x y x y y x y x x y y x y x x y y x 4 y 4 x4 x 4y 4 y4 x4 x4 y 4 x 4y4 y4 ( x y x xy y b x x y xy y ) xy u u = u(x y) u u n
7 7 s u(s) =d +d s+d s d d d u u u n u n (s) =d +d s Hermite u u(s) =d +d s+d s +d s 4 u u s u n u n (s) =e +e s+e s u n 5 u u x u y u xx u xy u yy u n 5 Hermite u n u(x y) = c + c x + c 5 x + c y + c 4 xy + c 7 x y + c 6 y + c 8 xy + c 9 x y (9.8) 4 xy Lagrange 8 Lagrange Lagrange (9.4) b Lagrange x y x y x y x y x y x y x 4 y 4 x 4y 4 x y x x y y x y x y x y x y x x y y x y x y x y :::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::: x 9 y 9 x9 x 9y 9 y9 x9 y 9 x 9y9 x9 y9 b x y xy ; x y x xy y x y xy x y ; ( i ) i = i = 4
8 8 u () =() u = u + u + u + 4 u 4 i = 4 (+ i)(+ i ) (i = 4) (9.9) i i i 4 i ; ; i ; ; (9.9) u x y u x y x = x ; (x y) (x y) y = y ; (x y) (x y) (9.) x y = x x + x x = x y + x y = y x + y x = y y + y y (metrics) x = y =J x = ;y =J y = ;x =J y = x =J (9.) J Jacobian (x y) ( ) = x y ;x y (9.) (9.) x = x x y y y = J y ;y ;x x (9.) x = y ;y = y J ;x x J y ; y ; x x (9.4) ;+ ; + ;; = 4 ;+ ;; + ; (x y) = x y x y x y x 4 y 4 (9.5)
9 9 (9.9) x x() =() x x = x ( i ) = i (+ i )=4 ( i ) = i (+ i )=4 e k (x) j (x)d = ; ; k () j ()J()dd (9.6) 6.. auss (auss-legendre ) s = r = serendipity element Lagrange element 9.5: 8 (8-node quadratic serendipity element) i = 8 >< >: 4 (+ i)(+ i )( i + i ;) ( i = i = ) (; )(+ i ) ( i = i = ) (+ i)(; ) ( i = i = ) 9 (quadratic Lagrangian element) u( ) = 9X i= i ( )u i = X X r= s= L r Lagrange (9.7) L r ()L s ()u i (i = r+(s;)) (9.8) L () =; (;) L () =; L () = (+) ( ) =L ()L () =;(; )(;)= serendipity (;)(+) ;4(;) ;(; ) = 4 (;)(+) ;(; ) ;4(;) Horace Walpole \The Three Princes of Serendip"( ) () i i( ) i = a i(a ) = a +i (a b) = ( ;a )+( ;b ) =
10 Lagrange (;)(;) 4(;) (+)(+) = 4 (;)(;) ;(; )(;) (+)(+) x u x() = i ()x i u() = i ()u i i () i () i () i () u x HH sub-parametric element isoparametric element super-parametric element serendipity Lagrange Lagrange serendipity 5 (9.4) b x y z x y z x y z x 4 y 4 z 4 x y z y z z x x y x y z x y z y z z x x y x y z ::::::::::::::::::::::::::: ::::::::::::::::::::::::::: x 8 y 8 z 8 y 8z 8 z 8x 8 x 8y 8 x 8y 8z 8 b x y z ; x y z yz zx xy xyz
11 9.. (calculus of variations) FEM Fermat astigliano FEM x x u(x ) u(x ) (functional) x J[u] = F (x u u )dx =min (9.9) x 4 F x u u (= du=dx) u x J[u] u(x) u J u(x) x u u u+u u+(x) (9.9) x J[u+] = F (x u+ u + )dx x d d J[u+] = x x x (F u + F u )dx = (x )=(x )= x F u ; d dx F u dx = d dx F u ; F u = (9.) u F u u + u F u u + F u x ; F u = (9.) Euler (extremal) df u =dx;f u F u (variational derivative) Legendre F u u 6= (9.) 4 R. ourant and D. Hilbert, Methods of Mathematical Physics, Vol.I, 95, Interscience Publishers.
12 (extremum) u(x) u = u 6= u = u (variation) x x (F u u+f u u )dx = F u ; d x dx F u u dx +(F u u) x=x ; (F u u) x=x x J (rst derivative) J u+u Euler u(x) v(x) ::: x x F (x u v : : : u v :::)dx = min u+u v+v ::: x x (F u u+f u u + F v v+f v v +)dx = F u u x + F v v x + x x Euler x x F u ; d dx F u u dx + x x F v ; d dx F v v dx + = d dx F u ; F u = d dx F v ; F v = u F u u + u F u u + F u x ; F u = v F v v + v F v v + F v x ; F v = u ::: u (n) x F (x u u u ::: u (n) )dx = min x u(x ) u (x ) ::: u (n) (x ) u(x ) u (x ) ::: u (n) (x ) x x (F u u+f u u ++F u(n) u (n) )dx = x x F u ; d dx F u + d dx F u ;+(;) n dn dx n F u (n) u dx =
13 Euler F u ; d dx F u + d dx F u ;+(;) n dn dx n F (n) u = n = F u ; (u F u u + u F u u + u F u u + F u x) + u (4) F u u + u (u F u u u + u F u u u + u F u uu + F u xu ) + u F u u + u (u F u u u + u F u u u + u F u uu + F u xu ) + u F u u + u (u F u u u + u F u u u + u F u uu + F u xu) +(u F u u x + u F u u x + u F u ux + F u xx) = u(x y) 5 I F (x y u u x u y )dxdy = min (F u u + F ux u x + F uy u y )dxdy = (F ux dy ; F uy dx)u + ; u Euler (F u ; x F u x (F u ; x F u x ; y F u y )u dxdy = x F u x + y F u y ; F u = ; y F u y )u dxdy = u xx F uxu x +u xy F uxu y + u yy F uyu y + u x F uxu + u y F uyu + F uxx + F uyy ; F u = Euler F = ruru = ux + u y (u x + u y )dxdy =min (u xu x +u y u y )dxdy = 5 RR a ru dxdy a ru = r(au);r au auss RR r (au)dxdy = H anu ds n ds nds =(dy ;dx)
14 4 u x u x +u y u y = ruru = r(uru);ur u auss nru = u n I u n u ds ; ; (u xx +u yy )u dxdy = Euler Laplace r u u xx +u yy = Poisson u xx +u yy = g n (u x + u y )+gu o dxdy F =(r u) = u xx +u xx u yy +u yy (u xx +u xx u yy +u yy )dxdy = min (u xx u xx +u yy u xx +u xx u yy +u yy u yy )dxdy = r ur u dxdy = r ur u = r(r uru) ;rr uru = r(r uru) ;r(rr uu) + r r uu auss I (r uu n ;r u n u)ds + ; r r u u dxdy = Euler (biharmonic equation) r r u u xxxx +u xxyy +u yyyy = u x x F (x u u )dx = min (F u u) x=x ; (F u u) x=x + x x F u ; d dx F u u dx = Euler F u = (x = x x = x ) (natural boundary condition) x F (x u u )dx+' (u ) ; ' (u ) = min x (F u +' )u x=x ; (F u +' )u x=x + x x F u ; d dx F u u dx =
15 5 F u +' = (x = x ) F u +' = (x = x ) Poisson n I (u x +u y odxdy )+gu + ;u u ds = min ; (u xx +u yy ;g)u dxdy + (u n +u;)u ds = ; ; I u n +u = on ; 9..4 FEM Laplace r u = FEM alerkin 6X k= (u k ;u )= x = x x = x k xy Taylor u k = u +ha k ru + a (a k r) u + a (a k r) u + 4 a4 (a k r) 4 u + 5 a5 (a k r) 5 u + a a = ( ) a = (= p =) a = (;= p =) a 4 = (; ) a 5 =(;= ; p =) a 6 =(= ; p =) u k Taylor u u x u y u xx u xy u yy u xxx u xxy u xyy u yyy p p p p u 4 8 u u ; ; ; ; u 4 4 ;8 u 5 ; ; ; ; ; ; u 6 ; ; ; ; sum 6
16 6 u xxxx u xxxy u xxyy u xyyy u yyyy u xxxxx u xxxxy u xxxyy u xxyyy u xyyyy u yyyyy 6 p 6 6 p p p 9 9 p ;4 6 ;4 ; 5 ; ;5 6 ; ; ;5 ; ; ;5 ; ;4 6 ;4 ;5 ; 5 ; 9/4 8/4 9/4 sum 6X k= (u k ;u )= a r u a4 r r u +O(a 6 ) Laplace r r u = r u = a 6X k= (u k ;u )+O(a 4 ) (9.) Laplace Poisson r u = ; = c + c x + c y c c c Laplace I K S SSS a b S SS g S S ((((((((((((((( h O E hhhhh EE h c J 9.6: 9.4
Microsoft Word - 計算力学2007有限要素法.doc
95 2 x y yz = zx = yz = zx = { } T = { x y z xy } () {} T { } T = { x y z xy } = u u x y u z u x x y z y + u y (2) x u x u y x y x y z xy E( ) = ( + )( 2) 2 2( ) x y z xy (3) E x y z z = z = (3) z x y
II 1 3 2 5 3 7 4 8 5 11 6 13 7 16 8 18 2 1 1. x 2 + xy x y (1 lim (x,y (1,1 x 1 x 3 + y 3 (2 lim (x,y (, x 2 + y 2 x 2 (3 lim (x,y (, x 2 + y 2 xy (4 lim (x,y (, x 2 + y 2 x y (5 lim (x,y (, x + y x 3y
31 33
17 3 31 33 36 38 42 45 47 50 52 54 57 60 74 80 82 88 89 92 98 101 104 106 94 1 252 37 1 2 2 1 252 38 1 15 3 16 6 24 17 2 10 252 29 15 21 20 15 4 15 467,555 14 11 25 15 1 6 15 5 ( ) 41 2 634 640 1 5 252
Untitled
II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j
5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)
5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h 0 f(a + h, b) f(a, b) h............................................................... ( ) f(x, y) (a, b) x A (a, b) x
5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................
5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)
応力とひずみ.ppt
in [email protected] 2 3 4 5 x 2 6 Continuum) 7 8 9 F F 10 F L L F L 1 L F L F L F 11 F L F F L F L L L 1 L 2 12 F L F! A A! S! = F S 13 F L L F F n = F " cos# F t = F " sin# S $ = S cos# S S
i 18 2H 2 + O 2 2H 2 + ( ) 3K
i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................
phs.dvi
483F 3 6.........3... 6.4... 7 7.... 7.... 9.5 N (... 3.6 N (... 5.7... 5 3 6 3.... 6 3.... 7 3.3... 9 3.4... 3 4 7 4.... 7 4.... 9 4.3... 3 4.4... 34 4.4.... 34 4.4.... 35 4.5... 38 4.6... 39 5 4 5....
A
A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................
III No (i) (ii) (iii) (iv) (v) (vi) x 2 3xy + 2 lim. (x,y) (1,0) x 2 + y 2 lim (x,y) (0,0) lim (x,y) (0,0) lim (x,y) (0,0) 5x 2 y x 2 + y 2. xy x2 + y
III No (i) (ii) (iii) (iv) (v) (vi) x 2 3xy + 2. (x,y) (1,0) x 2 + y 2 5x 2 y x 2 + y 2. xy x2 + y 2. 2x + y 3 x 2 + y 2 + 5. sin(x 2 + y 2 ). x 2 + y 2 sin(x 2 y + xy 2 ). xy (i) (ii) (iii) 2xy x 2 +
II 1 II 2012 II Gauss-Bonnet II
II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................
(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)
2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x
C:/大宮司先生関連/大宮司先生原稿作業用1/圧縮性流れの解法3.dvi
8 aldwn-lomax hen 8. +ru = t (8.a) u+r(uu+) =r +f t (8.b) e +rhu = r ( u);r q+f u t (8.c) u e = (+u 2 =2) H = h+u 2 =2=(e+)= q f (8.) (comressble Naver-Stokes equatons) T h = += = RT d = c v dt dh = c
211 [email protected] 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,
W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)
3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)
CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b)
CALCULUS II (Hiroshi SUZUKI ) 16 1 1 1.1 1.1 f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b) lim f(x, y) = lim f(x, y) = lim f(x, y) = c. x a, y b
名称未設定
! = ( u v w = u i u = u 1 u u 3 u = ( u 1 u = ( u v = u i! 11! 1! 13 % T = $! 1!! 3 ' =! ij #! 31! 3! 33 & 1 0 0%! ij = $ 0 1 0 ' # 0 0 1& # % 1! ijm = $ 1 & % 0 (i, j,m = (1,,3, (, 3,1, (3,1, (i, j,m
24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x
24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),
f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x >
5.1 1. x = a f (x) a x h f (a + h) f (a) h (5.1) h 0 f (x) x = a f +(a) f (a + h) f (a) = lim h +0 h (5.2) x h h 0 f (a) f (a + h) f (a) f (a h) f (a) = lim = lim h 0 h h 0 h (5.3) f (x) x = a f (a) =
-
- - v vt t y r y W0W9WwWq c zx t - -4 ud d dr y r y x dx id d d d d x d d r Wq Wq d Uu Xd Xd -5 x dt r o Tx Ii Xd XdXd v c z x d t r o Ii Xd XdXd -6 -7 o y v vt t y W0W9WwWq -8 cc zx t d d v z r d y -9
I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%
1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: [email protected], http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n
.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,
.1.1 Y K L Y = K 1 3 L 3 L K K (K + ) 1 1 3 L 3 K 3 L 3 K 0 (K + K) 1 3 L 3 K 1 3 L 3 lim K 0 K = L (K + K) 1 3 K 1 3 3 lim K 0 K = 1 3 K 3 L 3 z = f(x, y) x y z x-y-z.1 z = e x +xy y 3 x-y ( ) z 0 f(x,
.....Z...^.[.......\..
15 10 16 42 55 55 56 60 62 199310 1995 134 10 8 15 1 13 1311 a s d f 141412 2 g h j 376104 3 104102 232 4 5 51 30 53 27 36 6 Y 7 8 9 10 8686 86 11 1310 15 12 Z 13 14 15 16 102193 23 1712 60 27 17 18 Z
1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =
1 8, : 8.1 1, z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = a ii x i + i
,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.
9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,
I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT
I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345
2
D 1 2 3 XX XY ( ) 4 5 GID ( ) ( ) ( ) ( ) WHO( ) ( ) ( ) WHO ( ) WHO ( ) 6 7 8 9 X Y XX XY XO XXY XXXY Y Y SRY Y SRY X XX XY SRY XY XX Y Y X Y Y DNA DNA 10 XY XY 11 12 13 F M T 14 U H R 15 K N F 16 M T
k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x
k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m A f i x i B e e e e 0 e* e e (2.1) e (b) A e = 0 B = 0 (c) (2.1) (d) e
. p.1/14
. p.1/14 F(x,y) = (F 1 (x,y),f 2 (x,y)) (x,y). p.2/14 F(x,y) = (F 1 (x,y),f 2 (x,y)) (x,y) (x,y) h. p.2/14 F(x,y) = (F 1 (x,y),f 2 (x,y)) (x,y) (x,y) h h { F 2 (x+ h,y) F 2 2(x h,y) F 2 1(x,y+ h)+f 2 1(x,y
all.dvi
5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0
数値計算:有限要素法
( ) 1 / 61 1 2 3 4 ( ) 2 / 61 ( ) 3 / 61 P(0) P(x) u(x) P(L) f P(0) P(x) P(L) ( ) 4 / 61 L P(x) E(x) A(x) x P(x) P(x) u(x) P(x) u(x) (0 x L) ( ) 5 / 61 u(x) 0 L x ( ) 6 / 61 P(0) P(L) f d dx ( EA du dx
y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =
[ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =
genron-3
" ( K p( pasals! ( kg / m 3 " ( K! v M V! M / V v V / M! 3 ( kg / m v ( v "! v p v # v v pd v ( J / kg p ( $ 3! % S $ ( pv" 3 ( ( 5 pv" pv R" p R!" R " ( K ( 6 ( 7 " pv pv % p % w ' p% S & $ p% v ( J /
25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3
構造と連続体の力学基礎
II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton
d dt A B C = A B C d dt x = Ax, A 0 B 0 C 0 = mm 0 mm 0 mm AP = PΛ P AP = Λ P A = ΛP P d dt x = P Ax d dt (P x) = Λ(P x) d dt P x =
3 MATLAB Runge-Kutta Butcher 3. Taylor Taylor y(x 0 + h) = y(x 0 ) + h y (x 0 ) + h! y (x 0 ) + Taylor 3. Euler, Runge-Kutta Adams Implicit Euler, Implicit Runge-Kutta Gear y n+ y n (n+ ) y n+ y n+ y n+
II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re
II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier
Microsoft Word - 99
ÿj~ ui ~ 伊万里道路 ~{Êu ÊËu ÎÍÊ Êy y Ê~ Ê~Êu}Ì ÐÑÒdÌÊh ÿj~ ui ~ ~{Êu ÿj~ 497 ui ~ Êu ui ~Êud~{ÊÿÉÉvÍÉ~{ÉÆÍÂu ÊÆÇÍÊÂ~ÊÊÇÇÍÌÊÉÆÍÂ {dêîzééââââîé ÊiÍ MO Êÿj~i ~{ÉÆÍÂ Ë ÊÇÍÎ~ÌÉÇÉÆÍÂÌÉÊ,%6 +% ~{Êÿ Â,%6 ÌÊÉ +% ~{É~{Ê
21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........
13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x
i
mailto: tomita@physhkyoto-uacjp 2000 3 2000 8 2001 7 2002 9 2003 9 2000 2002 9 i 1 1 11 { : : : : : : : : : : : : : : : : : : : : : : : : 1 12 : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3
40 6 y mx x, y 0, 0 x 0. x,y 0,0 y x + y x 0 mx x + mx m + m m 7 sin y x, x x sin y x x. x sin y x,y 0,0 x 0. 8 x r cos θ y r sin θ x, y 0, 0, r 0. x,
9.. x + y + 0. x,y, x,y, x r cos θ y r sin θ xy x y x,y 0,0 4. x, y 0, 0, r 0. xy x + y r 0 r cos θ sin θ r cos θ sin θ θ 4 y mx x, y 0, 0 x 0. x,y 0,0 x x + y x 0 x x + mx + m m x r cos θ 5 x, y 0, 0,
変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,
変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +
30 I .............................................2........................................3................................................4.......................................... 2.5..........................................
D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco
post glacial rebound 3.1 Viscosity and Newtonian fluid f i = kx i σ ij e kl ideal fluid (1.9) irreversible process e ij u k strain rate tensor (3.1) v i u i / t e ij v F 23 D v D F v/d F v D F η v D (3.2)
IA [email protected] Last updated: January,......................................................................................................................................................................................
( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n
i
009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3
II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (
II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )
v er.1/ c /(21)
12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,
2011de.dvi
211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37
1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D
1W II K200 : October 6, 2004 Version : 1.2, [email protected], http://www.math.nagoa-u.ac.jp/~kawahira/courses.htm TA M1, [email protected] TA Talor Jacobian 4 45 25 30 20 K2-1W04-00
(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y
[ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)
x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x
[ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),
II 2 II
II 2 II 2005 [email protected] 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................
-
- - v vt t y r y W0W9WwWq czx t - -4 u d d dr y r y x dx dd dd d d Wt Wq Wq f d x dt r o rd Wt XdXd Xd tx d Uu Xd Xd -5 v czx d t r o XdXd Xd -6 -7 o t t v vt t y y W0 W9WwWq -8 cc zx t d d y r Xd v iz
( ) ( )
20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))
a,, f. a e c a M V N W W c V R MN W e sin V e cos f a b a ba e b W c V e c e F af af F a a c a e be a f a F a b e f F f a b e F e ff a e F a b e e f b e f F F a R b e c e f F M N DD s n s n D s s nd s
6 6.1 B A: Γ d Q S(B) S(A) = S (6.1) T (e) Γ (6.2) : Γ B A R (reversible) 6-1
6 6.1 B A: Γ d Q S(B) S(A) = S (6.1) (e) Γ (6.2) : Γ B A R (reversible) 6-1 (e) = Clausius 0 = B A: Γ B A: Γ d Q A + d Q (e) B: R d Q + S(A) S(B) (6.3) (e) // 6.2 B A: Γ d Q S(B) S(A) = S (6.4) (e) Γ (6.5)
( ) 5. VSS (VIM ) 10. ( ) 11. (ANN ) ( )
1.... ( ) 5. VSS.. 8. 9. (VIM ) 1. ( ) 11. (ANN ) 1. 1. ( ) 1 Lagrange 1..1 Lagrange q, Lagrange D(q)q + C(q; _q)_q + G(q) = (1.1) D(q)q C(q; _q)_q G(q) ( ) D(q) D(q) m ; M < M m (D(q)) (1.) (D(q)) M
II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2
II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh
微分積分学2
ver. 6 8 8 f f G f fx df x fx dx fx, y f G f x, y, z z fx, y G f fx, y fx, y fx, y x a y ψy fa, y y b x φx fx, b x φx fx, y f x, b x y ψy fx, y f a, y y fx, y R x, y a x b, c y d fx, y G f xy R f x, y,
9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x
2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin
φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m
2009 10 6 23 7.5 7.5.1 7.2.5 φ s i m j1 x j ξ j s i (1)? φ i φ s i f j x j x ji ξ j s i (1) φ 1 φ 2. φ n m j1 f jx j1 m j1 f jx j2. m j1 f jx jn x 11 x 21 x m1 x 12 x 22 x m2...... m j1 x j1f j m j1 x
Z: Q: R: C: 3. Green Cauchy
7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................
No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2
No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j
= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k
7 b f n f} d = b f n f d,. 5,. [ ] ɛ >, n ɛ + + n < ɛ. m. n m log + < n m. n lim sin kπ sin kπ } k π sin = n n n. k= 4 f, y = r + s, y = rs f rs = f + r + sf y + rsf yy + f y. f = f =, f = sin. 5 f f =.
( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1
2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h
