Microsoft Word - FT_2010.doc

Size: px
Start display at page:

Download "Microsoft Word - FT_2010.doc"

Transcription

1 3. フーリエ変換 3. 周期的な複雑な波形 (t) si(ωt), (t) si(ωt), (t) si(3ωt) のグラフを図 3 に示す 単純にこれらの波形を重ね合わ せると (t) si(ωt) + si(ωt) + si(3ωt) は右図のように複雑な波形となる この合成波の時間方向の移 動は見られない ( 時間方向を波の位相と呼ぶ ) しかし 振幅の変調が見られる 3 3Hz (t) Hz (t) - Hz ime (sec) ime (sec) 図 3 周期関数 一方 (t) cos(ωt) + si(ωt) は 図 3 のようになる 振幅の変調はないが 位相のズレが見られる 例えば ( t) A cos( ωt) + B si( ωt) A B A + B cos( ωt) + si( ωt) A + B A + B (t) - A + B A + B si t { si( φ) cos( ωt) + cos( φ) si( ωt) } ( ω +φ) ime (sec) (3 ) 図 3 si(ωt) + cos(ωt) となるので 位相 φだけずれる つまり si と cos の適当な組み合わせで任意の周期関数を表すことができる この考えに基づいて式に表すと (t) a + a cos(ωt) + a cos(ωt) + a3 cos(3ωt) + + b si(ωt) + b si(ωt) + b3 si(3ωt) + (3 ) となる ( フーリエ級数 )

2 3. 波形合成の意味 周期的な波形は振幅 ( a, b ) と位相 ( ω π ) で特徴付けられることがわかったが 実際にはどういう意味なのか? 例えば 色は 3 原色 ( 赤 (R) 緑(G) 青(B)) の混ぜ方ですべての色を表すことができる 色は周波数 ( 波長 ) で決まり 色の明るさ ( 強度 ) は振幅で決まる つまり a, b, ω の組み合わせであらゆる色が作り出される つまり 料理では砂糖 塩 醤油を何グラムずつ配合するかによっていろいろな味ができるのと同じである 音は 基本振動数 倍振動数 3 倍振動数 の割合で波形が決まり いろいろな音の 音色 が生み出される 3.3 波の構成要素 (3 ) 式のように 簡単な波の重ね合わせで複雑な波形を作れることがわかったが ここでは逆に複雑 な波形から 基本的な波の構成要素 (ω, ω, に対応する a, a, b, a, b, ) を求める あ る音の複雑な繰り返しパターンの基本振動数を ( ω π ) とする 図 3 の場合は 周期 (sec) なので 周波数 (Hz) となる まず si, cos の積分を計算してみる ( ω t) si cos( ω t) dt ( ω π ) ω si ( ω t) cos dt ω ( ω t) となるので cos( ω t) dt, ( 3ω t) dt,, ( ω t) dt, ( 3ω t) dt cos が求まる 結局 (3 ) 式の積分は ( t) dt a si になり si, a ( t) dt (3 3) ここで 複雑な波形の 周期分を積分すれば a が求まることがわかった 次に a, b, a, b, を 計算する その前に { a cos( ω t) a cos( ω t) } dt の計算をしてみる cos どうしの掛け算の積分 ( ) ( A+ B) + cos( A B) cos cosa cosb の公式を用いて aa { a cos( ω t) a cos( ω t) } dt cos( 3ω t) dt+ cos( ω t) dt

3 cos どうしの掛け算の積分 ( ) ( A) cos + cos A から a となる a dt + ( ω t) cos( ω t) dt cos( ω t) dt cos a 3 si どうしの掛け算の積分 ( ) cosa+ B 同様に sia sib b si ( ) cos( A B) bb を利用して ( ω t) b si( ω t) dt cos( 3ω t) dt cos( ω t) dt 4 si どうしの掛け算の積分 ( ) ( A) cos si A から となる b b si( ωt) si( ωt) dt dt cos( ωt) dt b 5 si cos の掛け算の積分 ( ) si sia cosb ( A+ B) + si( A B) ba b si ( ω t) a cos( ω t) dt si( 3ω t) dt+ si( ω t) dt 6 si cos の掛け算の積分 ( ) si A cosa si( A) ba b si ( ω t) a cos( ω t) dt si( ω t) dt まとめると cos どうしの掛け算の積分 ( ) と si どうしの掛け算の積分 ( ) の場合だけ 積分値 が にならない b siωt b siωt a cosωt a cosωt siωt b / cosωt a /

4 これらのことを考慮して (3 ) 式の両辺に cosωt をかけて積分すると ( t) cos( ω t) dt a cos( ω t) dt+ a cos( ω t) cos( ω t) dt+ a cos( ω t) cos( ω t) L dt+ + ( ω t) cos( ω t) dt+ b si( ω t) cos( ω t) L b si dt+ a a ( t) cos( ωt) dt 一般に 次のような関係が求められる a ( t) cos( ωt) dt (3 4) b ( t) si( ωt) dt (3 5) 結局 (3 3) 式 (3 4) 式 (3 5) 式によって フーリエ級数の係数の求め方がわかった 3.4 数値積分 測定データに対して 積分をしないとフーリエ係数が求まらないので まずは 数値積分のプログラムを作る 実際の測定データは離散データになるので 積分から和になる ( x) dx ( ) x x (3 6) si θ..5 Δx が小さくなれば連続関数の積分値に近づいていく 実際に siθ ( θ π / ) の離散データ 数値積分を行ってみる 図 3 3 のように 通りの近似 の仕方がある さらに近似度を上げるには 棒状近似 から台形近似 ( シンプソンの台形近似 ) にする ( x ) + ( x ) ( x) x x (3 7) 3 つの場合の計算プログラムは次のようになる 変数 Sum, Sum, Sum に計算結果が代入される シンプ ソンの台形公式 (Sum) が真の値に近いことがわかる また dx を小さくしていくと Sum, Sum, Sum の差が 小さくなっていく 離散データの 3 点を使って 次関数近似 計算もあるが 少し複雑になるので ここでは述べない si θ θ (deg.) θ (deg.) 図 3 3 siθ の数値積分 3

5 Dim pi As Double Sub iteg() pi 4# * At(#) ' π 円周率 X_max 9 ' 積分範囲 ( ) dx ' X #: X dx I : Sum #: Sum #: Sum # Do I I + Y Si(X * pi / 8#) Y Si(X * pi / 8#) Sum Sum + dx * Y Sum Sum + dx * Y Sum Sum + dx * (Y + Y) / # Cells(I, ) X Cells(I, ) Y Cells(I, 3) X Cells(I, 4) Y X X + dx: X X + dx Loop While X < X_max Cells(I +, ) X_max / dx Cells(I +, ) Sum * pi / 8# Cells(I +, 3) Sum * pi / 8# Cells(I +, 4) Sum * pi / 8# Ed Sub 3.5 離散フーリエ変換 (DF: Discrete Fourier rasorm) (3 ) 式を書き直すと ( t) a + { a cos( ωt) + b si( ω )} t (3 8) i θ e θ iθ + e e オイラーの公式より e i cosθ+ isiθ cosθ siθ ( t) a + a iωt iωt iωt iωt ( e + e ) b ( e e ) + i e i i θ iθ を (3 8) 式に代入して ( t) a + iωt ( a ib ) e ( a ib ) + + e iωt c a ib c a + ib とすると iωt ce iωt iωt iωt ( t) c + { ce + c e } c + ce + ( ) t c e iωt 4 (3 9)

6 また c a ib (3 4) 式と (3 5) 式より c ( t) { cos( ωt) i si( ωt) } ( t) e iωt dt dt (3 ) プログラムで Hz の複雑な波形を作り フーリエ変換してみる (3 8) 式の が4までの級数でそれぞれの係数の値を以下のようにすると 図 3.4 のようになる a.5 a.5 b.8 a. b -.4 a3 -.7 b3. a4 -. b4.3 (t) t (sec.) (t) cos(ωt) +. cos(ωt) -.7 cos(3ωt) -. cos(4ωt) +.8 si(ωt) -.4 si(ωt) +. si(3ωt) +.3 si(4ωt) 図 3 4 複雑な波形 (Hz) 計算結果は次のようになる 初期値 N a b c 計算値 N a b c

7 Dim pi As Double, D As Iteger, DF As Iteger,,, X(5) As Double, Y(5) As Double Dim a(, ) As Sigle Sub iit_wave() pi 4# * At(#) ' π 円周率 ' Frequecy (Hz) # / ' 周期 (sec) dt / 5 ' t t_max ' 積分範囲 ( 周期 ) ~t~ DF 4 ' a.5 ' 初期値 a(, ).5: a(, ).: a(, 3) -.7: a(, 4) -. a(, ).8: a(, ) -.4: a(, 3).: a(, 4).3 ' t #: I Do I I + X(I) t Y(I) a For K o DF Y(I) Y(I) + a(, K) * Cos(K * # * pi * * t) + a(, K) * Si(K * # * pi * * t) Next K Cells(I, ) X(I) Cells(I, ) Y(I) t t + dt Loop While t < t_max + dt D I Cells(, 4) Cells(, 7) a For I o DF Cells(I +, 4) I Cells(I +, 5) a(, I) Cells(I +, 6) a(, I) Cells(I +, 7) Sqr(a(, I) ^ + a(, I) ^ ) / # Next I '**************** DF '**************** Ed Sub Sub DF() dt X() - X() For N o DF c #: s # For I o D c c + Y(I) * dt * Cos(-N * # * pi * * X(I)) s s + Y(I) * dt * Si(-N * # * pi * * X(I)) Next I c c / s s / Cells(N + 8, 4) N Cells(N + 8, 5) c Cells(N + 8, 6) s Cells(N + 8, 7) Sqr(c ^ + s ^ ) Next N Ed Sub 6

8 3.6 周期のわからないフーリエ変換 これまでは周期のある波形のフーリエ変換であったが 実際の波形は周期がはっきりしていないものが多い ( 図 3 5) それならば周期を無限大と考えれば 周期があいまいな複雑な波形の周期を決める必要がなくなる (3 ) 式は 周期分の積分だから次式のように書き換えられる Curret (µa) 5 ( t) / iωt c e dt (3 ) / この式を (3 9) 式に代入すると time (sec.) ω ω ( ) / i t i t t ( t) e dt e 図 3 5 実際の波形 / とすると / Δ となる の連続関数 (ω ω) になるので和 ( Δ) は積分 (d) に なる ( t) lim / ( t) iωt iωt πit { e dt} e { ( t) e dt} πit e d / ( ) ( t) G πit e dt とすると (3 ) ( t) { G ( ) } πit e d (3 3) (3 ) 式をフーリエ変換 (3 3) 式を逆フーリエ変換 と呼ぶ 実際に簡単な関数 ( 図 3 6) のフーリエ変換を計算し てみる (t) (t) ( -Δt/ t Δt/ ) (t) ( t < -Δt/, Δt/ < t ) この (t) を (3 ) 式に代入すると ( t < -Δt/, Δt/ < t ) の範囲で になるので ( -Δt/ t Δt/ ) の範囲だけを図 3 6 考えればよい ( ) t / πit πit π e dt e { e i t π e i t } G t/ πi t / t / πi -Δt/ Δt/ t 7

9 e siθ G e i i θ iθ siπ t π なので 結局 siπ t π t ( ) t siθ となる また lim θ θ の関係を使うと のとき G( ) t t となる 実は Δt に したとき G() となるデルタ関数である つまり 一定関数のフーリエ変換はデルタ関数となる G() プログラムを作って確かめてみる 図 (Hz) t t t4 3.7 周期がわからない離散フーリエ変換 (DF: Discrete Fourier rasorm) Dim pi As Double Sub iit_wave() pi 4# * At(#) ' π 円周率 ' dt ' t (sec) ' div dt / 5 ' _max 5 ' (Hz) d _max / 5 -_max I Do I I + t -dt / c : s Do c c + div * Cos(-# * pi * * t) s s + div * Si(-# * pi * * t) t t + div Loop While t < dt / + div Cells(I, ) Cells(I, ) c + d Loop While < _max + d Ed Sub (3 ) 式の積分でフーリエ変換の計算が行われるが プログラムを使っての数値計算では図 3 8 のような短冊の和で計算する 短冊の幅を τとすると t kτとなる (kは整数) G πit ( ) ( t) e dt ( kτ) N k e πikτ 短冊が合計 N 本あるとすると Nτとなる 基本周波数は /なので 倍周波数は τ (t) t (sec.) 8

10 N τ N ( ) π N G τ ( τ) ik/ G k e (3 4) Nτ k 実際に図 3 4 の基本周波数 (Hz) の 4 の計算をプログラムで計算すると.3 図 3 9 のようになる G() は,, 3, 4 で値を持ち (t) の c, c, c3, c4 の値に比例している G() (Hz) 図 3 9 9

11 Dim pi As Double, D As Iteger, DF As Iteger Dim Y(5) As Double Dim a(, ) As Sigle, tau As Double Sub iit_wave() pi 4# * At(#) ' π 円周率 ' Frequecy (Hz) # / ' 周期 (sec) dt / 5 ' t t_max * 4 ' 積分範囲 DF 4 ' ' a.5 ' 初期値 a(, ).5: a(, ).: a(, 3) -.7: a(, 4) -. a(, ).8: a(, ) -.4: a(, 3).: a(, 4).3 ' t #: I Do I I + X(I) t Y(I) a For K o DF Y(I) Y(I) + a(, K) * Cos(K * # * pi * * t) + a(, K) * Si(K * # * pi * * t) Next K Cells(I, ) X(I) Cells(I, ) Y(I) t t + dt Loop While t < t_max + dt D I tau t_max / (D - ) Cells(, 3) D '**************** DF '**************** Ed Sub Sub DF() For N o 3 c #: s # N / D / tau For K o D - c c + Y(K) * tau * Cos(-# * pi * K * N / D) s s + Y(K) * tau * Si(-# * pi * K * N / D) Next K Cells(N, 4) Cells(N, 5) c Cells(N, 6) s Cells(N, 7) Sqr(c ^ + s ^ ) Next N Ed Sub

12 3.8 FF (FF: Fast Fourier rasorm) まず 最低何個の点で波を表現できるか考えてみる ω では最低 個のデータ店が必要になる ω 個 ω 4 個 ω3 6 個 ω4 8 個 ω5 個 図 3 データ点と波数 つまり データ点が N 個の場合 N/ 個の波数の波まで作れる これをサンプリング理論と呼ぶ サンプリ ング理論を考慮して周期のわからないデータを (3 4) 式の DF で計算すると 莫大な計算量になる 例 えば 周波数 4Hz までの音のデータをとる サンプリング理論から 秒間で N8 点のデータが必 要になる m 秒観測するならば 8 点のデータを取らなければならない (τ.5m 秒 ) ひとつの周波 数で 8 回 ( kτ) N π N τ e ik/ の和の計算を行う また 図 3 より 8 個のデータに対して 4 個 k の ω が作れる 結局 8 43, 回の計算をしないといけない そこで 計算回数を減らすために FF が考え出された DF の計算では もとの (t) に cos(ωt), cos(ωt), cos(3 ωt), cos(4ωt), cos(5ωt), をかけるが 図 3 を見 るとある時間 t で同じ値をかけていることがわかる この 同じ値の計算を省略すれば計算回数を減らせることができ πi/ N る (3 4) 式のτ 秒として W e を導入する と N N k G ( k) W (3 5) N k 図 3. cos(ωt) cos(3ωt) cos(5ωt) πi/ 8 つぎに N8 の場合の計算をすると W e となるので W 8 W, W 9 W の関係が求まる のとき G() ()W + ()W + ()W + (3)W + (4)W + (5)W + (6)W + (7)W のとき G(/8)()W + ()W + ()W + (3)W 3 + (4)W 4 + (5)W 5 + (6)W 6 + (7)W 7 のとき G(/8)()W + ()W + ()W 4 + (3)W 6 + (4)W 8 + (5)W + (6)W + (7)W 4 3 のとき G(3/8)()W + ()W 3 + ()W 6 + (3)W 9 + (4)W + (5)W 5 + (6)W 8 + (7)W (3.6) W 8 W, W 9 W の関係を利用すると 結局

13 () () () (3) (4) (5) (6) (7) G(/8) W W W W W W W W G(/8) W W W W 3 W 4 W 5 W 6 W 7 G(/8) W W W 4 W 6 W W W 4 W 6 G(3/8) W W 3 W 6 W W 4 W 7 W W 5 G(4/8) W W 4 W W 4 W W 4 W W 4 G(5/8) W W 5 W W 7 W 4 W W 6 W 3 G(6/8) W W 6 W 4 W W W 6 W 4 W G(7/8) W W 7 W 6 W 5 W 4 W 3 W W 表 3. これを偶数と奇数に分けると 偶数 () () (4) (6) 同じ G(/8) W W W W G(/8) W W W 4 W 6 G(/8) W W 4 W W 4 G(3/8) W W 6 W 4 W G(4/8) W W W W G(5/8) W W W 4 W 6 G(6/8) W W 4 W W 4 G(7/8) W W 6 W 4 W 奇数 表 3. () (3) (5) (7) G(/8) W W W W G(/8) W W 3 W 5 W 7 G(/8) W W 6 W W 6 G(3/8) W 3 W W 7 W 5 G(4/8) W 4 W 4 W 4 W 4 G(5/8) W 5 W 7 W W 3 G(6/8) W 6 W W 6 W G(7/8) W 7 W 5 W 3 W 奇数の場合は W をくくりだすと 表 3.3 のとき G(/8) odd W { ()W + (3)W + (5)W + (7)W } のとき G(/8) odd W { ()W + (3)W + (5)W 4 + (7)W 6 } のとき G(/8) odd W { ()W + (3)W 4 + (5)W + (7)W 4 } 3 のとき G(3/8) odd W 3 { ()W + (3)W 6 + (5)W 4 + (7)W } 4 のとき G(4/8) odd W 4 { ()W + (3)W + (5)W + (7)W } 5 のとき G(5/8) odd W { ()W + (3)W + (5)W 4 + (7)W 6 } 6 のとき G(6/8) odd W { ()W + (3)W 4 + (5)W + (7)W 4 } 7 のとき G(7/8) odd W 3 { ()W + (3)W 6 + (5)W 4 + (7)W }

14 W をくくりだした奇数は次のようにまとめられる () (3) (5) (7) 同じ G(/8) W W W W G(/8) W W W 4 W 6 G(/8) W W 4 W W 4 G(3/8) W W 6 W 4 W G(4/8) W W W W G(5/8) W W W 4 W 6 G(6/8) W W 4 W W 4 G(7/8) W W 6 W 4 W 表 3.4 偶数と奇数部分で上の部分と下の部分が共通なので計算回数が半分になることがわかる 但し偶数の部分で W を 4 回かけないといけないので 6 + (6+4) 36 回になる 64 回 36 回 同じ操作をするとさらに回数が減る (k) の偶数部分の (k) を p(k) とする k k となることに注意して ( W k V k ) W 8 W なので V 4 V となる p() p() p() p(3) G(/8) V V V V G(/8) V V V V 3 G(/8) V V V V G(3/8) V V 3 V V G(4/8) V V V V G(5/8) V V V V 3 G(6/8) V V V V G(7/8) V V 3 V V が求まる 偶数と奇数の部分に分けると 表 3.5 p() p() G(/8) V V G(/8) V V G(/8) V V G(3/8) V V G(4/8) V V G(5/8) V V G(6/8) V V G(7/8) V V 表 3.6 3

15 また 奇数部の V をくくりだしたものは V 4 V を考慮して p() p(3) G(/8) V V G(/8) V V G(/8) V V G(3/8) V V G(4/8) V V G(5/8) V V G(6/8) V V G(7/8) V V 表 3.7 問題 N8 の DF の計算 (64 回 ) は FF の計算で何回に減らすことができるか? FF の計算では 半分 半分 と分けて考えているので データは 個でなければならない 周期のわからない (t) を DF で計算したが ( 図 3 9) 同じ (t) を FF のプログラムで計算してみる G() (Hz) 4

16 Dim pi As Double, D As Iteger, Poly As Iteger Dim Xr(5) As Double, Xi(5) As Double Dim ce(, ) As Sigle, tau As Double Sub iit_wave() pi 4# * At(#) ' π 円周率 ' Frequecy (Hz) # / ' 周期 (sec) tau / 5 ' τ (sec) D ^ ' umber o DAA ' Poly 4 a.5 ' 初期値 ce(, ).5: ce(, ).: ce(, 3) -.7: ce(, 4) -. ce(, ).8: ce(, ) -.4: ce(, 3).: ce(, 4).3 ' t # For I o D t (I - ) * tau Xr(I) a ' Real part (Iput DAA) Xi(I) # ' Imagiary part For K o Poly Xr(I) Xr(I) + ce(, K) * Cos(K * # * pi * * t) + ce(, K) * Si(K * # * pi * * t) Next K Cells(I, ) t Cells(I, ) Xr(I) t t + dt Next I '**************** FF_D '**************** For I o D / I / D / tau Cells(I, 4) Cells(I, 5) Xr(I) Cells(I, 6) Xi(I) Cells(I, 7) Sqr(Xr(I) ^ + Xi(I) ^ ) Next I Ed Sub ' 5

17 Sub FF_D() Dim s(5) As Double, c(5) As Double Dim A As Double, B As Double, da As Double Dim M As Iteger, H As Iteger, G As Iteger, P As Iteger, Q As Iteger M Log(D) / Log() ' N ^m A # da # * pi / D ' π/n For I o D / s(i) Si(A) ' W^k exp{ -i(π/n)k } c(i) Cos(A) A A + da Next I L D H For G o M L L / K For Q o H P For I K o L + K - J L + I A Xr(I) - Xr(J) B Xi(I) - Xi(J) Xr(I) Xr(I) + Xr(J) Xi(I) Xi(I) + Xi(J) I P he Xr(J) A Xi(J) B Else Xr(J) A * c(p) + B * s(p) Xi(J) B * c(p) - A * s(p) Ed I P P + H Next I K K + L + L Next Q H H + H Next G J D / For I o D - K D I J < I he Dummy Xr(I): Xr(I) Xr(J): Xr(J) Dummy Dummy Xi(I): Xi(I) Xi(J): Xi(J) Dummy Ed I Do K K / I J > K he J J - K Else Exit Do Loop J J + K Next I Ed Sub 6

DVIOUT

DVIOUT 第 章 離散フーリエ変換 離散フーリエ変換 これまで 私たちは連続関数に対するフーリエ変換およびフーリエ積分 ( 逆フーリエ変換 ) について学んできました この節では フーリエ変換を離散化した離散フーリエ変換について学びましょう 自然現象 ( 音声 ) などを観測して得られる波 ( 信号値 ; 観測値 ) は 通常 電気信号による連続的な波として観測機器から出力されます しかしながら コンピュータはこの様な連続的な波を直接扱うことができないため

More information

横浜市環境科学研究所

横浜市環境科学研究所 周期時系列の統計解析 単回帰分析 io 8 年 3 日 周期時系列に季節調整を行わないで単回帰分析を適用すると, 回帰係数には周期成分の影響が加わる. ここでは, 周期時系列をコサイン関数モデルで近似し単回帰分析によりモデルの回帰係数を求め, 周期成分の影響を検討した. また, その結果を気温時系列に当てはめ, 課題等について考察した. 気温時系列とコサイン関数モデル第 報の結果を利用するので, その一部を再掲する.

More information

Microsoft PowerPoint - 第3回2.ppt

Microsoft PowerPoint - 第3回2.ppt 講義内容 講義内容 次元ベクトル 関数の直交性フーリエ級数 次元代表的な対の諸性質コンボリューション たたみこみ積分 サンプリング定理 次元離散 次元空間周波数の概念 次元代表的な 次元対 次元離散 次元ベクトル 関数の直交性フーリエ級数 次元代表的な対の諸性質コンボリューション たたみこみ積分 サンプリング定理 次元離散 次元空間周波数の概念 次元代表的な 次元対 次元離散 ベクトルの直交性 3

More information

ギリシャ文字の読み方を教えてください

ギリシャ文字の読み方を教えてください 埼 玉 工 業 大 学 技 術 資 料 ( 小 西 克 享 ) Excel によるデジタルフィルタ-1/14 テーマ: Excel によるデジタルフィルタ 観 測 波 形 をフーリエ 変 換 してフーリエ スペクトルを 求 めたのち, 成 分 の 一 部 を 減 衰 さ せたスペクトルを 逆 フーリエ 変 換 すると, 元 の 観 測 波 形 にフィルタを 掛 けた 波 形 が 得 られ る.これをデジタルフィルタという.Excel

More information

コンピュータ概論

コンピュータ概論 4.1 For Check Point 1. For 2. 4.1.1 For (For) For = To Step (Next) 4.1.1 Next 4.1.1 4.1.2 1 i 10 For Next Cells(i,1) Cells(1, 1) Cells(2, 1) Cells(10, 1) 4.1.2 50 1. 2 1 10 3. 0 360 10 sin() 4.1.2 For

More information

ディジタル信号処理

ディジタル信号処理 ディジタルフィルタの設計法. 逆フィルター. 直線位相 FIR フィルタの設計. 窓関数法による FIR フィルタの設計.5 時間領域での FIR フィルタの設計 3. アナログフィルタを基にしたディジタル IIR フィルタの設計法 I 4. アナログフィルタを基にしたディジタル IIR フィルタの設計法 II 5. 双 次フィルタ LI 離散時間システムの基礎式の証明 [ ] 4. ] [ ]*

More information

周期時系列の統計解析 (3) 移動平均とフーリエ変換 nino 2017 年 12 月 18 日 移動平均は, 周期時系列における特定の周期成分の消去や不規則変動 ( ノイズ ) の低減に汎用されている統計手法である. ここでは, 周期時系列をコサイン関数で近似し, その移動平均により周期成分の振幅

周期時系列の統計解析 (3) 移動平均とフーリエ変換 nino 2017 年 12 月 18 日 移動平均は, 周期時系列における特定の周期成分の消去や不規則変動 ( ノイズ ) の低減に汎用されている統計手法である. ここでは, 周期時系列をコサイン関数で近似し, その移動平均により周期成分の振幅 周期時系列の統計解析 3 移動平均とフーリエ変換 io 07 年 月 8 日 移動平均は, 周期時系列における特定の周期成分の消去や不規則変動 ノイズ の低減に汎用されている統計手法である. ここでは, 周期時系列をコサイン関数で近似し, その移動平均により周期成分のがどのように変化するのか等について検討する. また, 気温の実測値に移動平均を適用した結果についてフーリエ変換も併用して考察する. 単純移動平均の計算式移動平均には,

More information

2009 年 11 月 16 日版 ( 久家 ) 遠地 P 波の変位波形の作成 遠地 P 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに P U () t = S()* t E()* t P() t で近似的に計算できる * は畳み込み積分 (convolution) を表す ( 付録

2009 年 11 月 16 日版 ( 久家 ) 遠地 P 波の変位波形の作成 遠地 P 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに P U () t = S()* t E()* t P() t で近似的に計算できる * は畳み込み積分 (convolution) を表す ( 付録 遠地 波の変位波形の作成 遠地 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに U () t S() t E() t () t で近似的に計算できる は畳み込み積分 (convolution) を表す ( 付録 参照 ) ここで St () は地震の断層運動によって決まる時間関数 1 E() t は地下構造によって生じる種々の波の到着を与える時間関数 ( ここでは 直達 波とともに 震源そばの地表での反射波や変換波を与える時間関数

More information

Microsoft Word - VBA基礎(3).docx

Microsoft Word - VBA基礎(3).docx 上に中和滴定のフローチャートを示しました この中で溶液の色を判断する部分があります このような判断はプログラムではどのように行うのでしょうか 判断に使う命令は IF 文を使います IF は英語で もし何々なら という意味になります 条件判断条件判断には次の命令を使います If 条件式 1 Then ElseIf 条件式 2 Then ElseIf 条件式 3 Then 実行文群 1 実行文群 2 実行文群

More information

Microsoft PowerPoint - ip02_01.ppt [互換モード]

Microsoft PowerPoint - ip02_01.ppt [互換モード] 空間周波数 周波数領域での処理 空間周波数 (spatial frquncy) とは 単位長さ当たりの正弦波状の濃淡変化の繰り返し回数を表したもの 正弦波 : y sin( t) 周期 : 周波数 : T f / T 角周波数 : f 画像処理 空間周波数 周波数領域での処理 波形が違うと 周波数も違う 画像処理 空間周波数 周波数領域での処理 画像処理 3 周波数領域での処理 周波数は一つしかない?-

More information

パソコンシミュレータの現状

パソコンシミュレータの現状 第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に

More information

Microsoft PowerPoint - 配布資料・演習18.pptx

Microsoft PowerPoint - 配布資料・演習18.pptx 学年学科学籍番号氏名 宿題 ( 複素正弦波 jω ) メディアと信号処理第 回 ( 金田 ). 複素数とは 実数部と虚数部を持った数である 例えば 虚数単位を j と表すと 4+ j は複素数で 実数部は 4 で 虚数部が である 一般的に 実数部を 虚数部を とすると 複素数 z は z = + j と表される 複素数の 大きさ は 絶対値 (r jθ の r ) で定義される z の絶対値は z

More information

第 4 週コンボリューションその 2, 正弦波による分解 教科書 p. 16~ 目標コンボリューションの演習. 正弦波による信号の分解の考え方の理解. 正弦波の複素表現を学ぶ. 演習問題 問 1. 以下の図にならって,1 と 2 の δ 関数を図示せよ δ (t) 2

第 4 週コンボリューションその 2, 正弦波による分解 教科書 p. 16~ 目標コンボリューションの演習. 正弦波による信号の分解の考え方の理解. 正弦波の複素表現を学ぶ. 演習問題 問 1. 以下の図にならって,1 と 2 の δ 関数を図示せよ δ (t) 2 第 4 週コンボリューションその, 正弦波による分解 教科書 p. 6~ 目標コンボリューションの演習. 正弦波による信号の分解の考え方の理解. 正弦波の複素表現を学ぶ. 演習問題 問. 以下の図にならって, と の δ 関数を図示せよ. - - - δ () δ ( ) - - - 図 δ 関数の図示の例 δ ( ) δ ( ) δ ( ) δ ( ) δ ( ) - - - - - - - -

More information

ギリシャ文字の読み方を教えてください

ギリシャ文字の読み方を教えてください 埼玉工業大学機械工学学習支援セミナー ( 小西克享 ) 単振り子の振動の近似解と厳密解 -/ テーマ H: 単振り子の振動の近似解と厳密解. 運動方程式図 のように, 質量 m のおもりが糸で吊り下げられている時, おもりには重力 W と糸の張力 が作用しています. おもりは静止した状態なので,W と F は釣り合った状態注 ) になっています. すなわち, W です.W は質量 m と重力加速度

More information

Microsoft Word - H26mse-bese-exp_no1.docx

Microsoft Word - H26mse-bese-exp_no1.docx 実験 No 電気回路の応答 交流回路とインピーダンスの計測 平成 26 年 4 月 担当教員 : 三宅 T A : 許斐 (M2) 齋藤 (M) 目的 2 世紀の社会において 電気エネルギーの占める割合は増加の一途をたどっている このような電気エネルギーを制御して使いこなすには その基礎となる電気回路をまず理解する必要がある 本実験の目的は 電気回路の基礎特性について 実験 計測を通じて理解を深めることである

More information

DVIOUT

DVIOUT 第 3 章 フーリエ変換 3.1 フーリエ積分とフーリエ変換 第 章では 周期を持つ関数のフーリエ級数について学びました この章では 最初に 周期を持つ関数のフーリエ級数を拡張し 周期を持たない ( 一般的な ) 関数のフーリエ級数を導きましょう 具体的には 関数 f(x) を区間 L x L で考え この L を限りなく大きくするというアプローチを取ります (L ) なお ここで扱う関数 f(x)

More information

Chap2

Chap2 逆三角関数の微分 Arcsin の導関数を計算する Arcsin I. 初等関数の微積分 sin [, ], [π/, π/] cos sin / (Arcsin ) 計算力の体力をつけよう π/ π/ E. II- 次の関数の導関数を計算せよ () Arccos () Arctan E. I- の解答 不定積分あれこれ () Arccos n log C C (n ) n e e C log (log

More information

ÿþŸb8bn0irt

ÿþŸb8bn0irt 折戸の物理 スペシャル補習 http://orito-buturi.com/ NO.3 今日の目的 : 1 微分方程式をもう一度 三角関数の近似について学ぶ 3 微分の意味を考える 5. 起電力 の電池, 抵抗値 の抵抗, 自己インダクタンス のコイルとスイッチを用いて右図のような回路をつくった 始めスイッチは 開かれている 時刻 t = でスイッチを閉じた 以下の問に答えよ ただし, 電流はコイルに

More information

Microsoft PowerPoint - DigitalMedia2_3b.pptx

Microsoft PowerPoint - DigitalMedia2_3b.pptx Contents デジタルメディア処理 2 の概要 フーリエ級数展開と 離散とその性質 周波数フィルタリング 担当 : 井尻敬 とは ( ) FourierSound.py とは ( ) FourierSound.py 横軸が時間の関数を 横軸が周波数の関数に変換する 法 声周波数 周波数 ( 係数番号 ) 後の関数は元信号に含まれる正弦波の量を す 中央に近いほど低周波, 外ほどが 周波 中央 (

More information

Microsoft PowerPoint - 物情数学C(2012)(フーリエ前半)_up

Microsoft PowerPoint - 物情数学C(2012)(フーリエ前半)_up 年度物理情報工学科 年生秋学期 物理情報数学 C フーリエ解析 (Fourier lysis) 年 月 5 日 フーリエ ( フランス ) (768~83: ナポレオンの時代 ) 歳で Ecole Polyechique ( フランス国立理工科大学 ) の教授 ナポレオンのエジプト遠征に従軍 (798) 87: 任意の関数は三角関数によって級数展開できる という フーリエ級数 の概念を提唱 ( 論文を提出

More information

数学 t t t t t 加法定理 t t t 倍角公式加法定理で α=β と置く. 三角関数

数学 t t t t t 加法定理 t t t 倍角公式加法定理で α=β と置く. 三角関数 . 三角関数 基本関係 t cot c sc c cot sc t 還元公式 t t t t t t cot t cot t 数学 数学 t t t t t 加法定理 t t t 倍角公式加法定理で α=β と置く. 三角関数 数学. 三角関数 5 積和公式 6 和積公式 数学. 三角関数 7 合成 t V v t V v t V V V V VV V V V t V v v 8 べき乗 5 6 6

More information

解析力学B - 第11回: 正準変換

解析力学B - 第11回: 正準変換 解析力学 B 第 11 回 : 正準変換 神戸大 : 陰山聡 ホームページ ( 第 6 回から今回までの講義ノート ) http://tinyurl.com/kage2010 2011.01.27 正準変換 バネ問題 ( あえて下手に座標をとった ) ハミルトニアンを考える q 正準方程式は H = p2 2m + k 2 (q l 0) 2 q = H p = p m ṗ = H q = k(q

More information

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X ( 第 週ラプラス変換 教科書 p.34~ 目標ラプラス変換の定義と意味を理解する フーリエ変換や Z 変換と並ぶ 信号解析やシステム設計における重要なツール ラプラス変換は波動現象や電気回路など様々な分野で 微分方程式を解くために利用されてきた ラプラス変換を用いることで微分方程式は代数方程式に変換される また 工学上使われる主要な関数のラプラス変換は簡単な形の関数で表されるので これを ラプラス変換表

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

Microsoft PowerPoint - LectureB1_17woAN.pptx

Microsoft PowerPoint - LectureB1_17woAN.pptx 本講義の範囲 都市防災工学 後半第 回 : 導入 確率過程の基礎 千葉大学大学院工学研究院都市環境システムコース岡野創 http://oko-lb.tu.chib-u.c.jp/oshibousi/. ランダム振動論 地震動を不規則波形 ( 確率過程 ) と捉えて, 構造物の地震応答を評価する理論. 震源モデルによる地震動評価 断層の動きを仮定して, 断層から発せられる地震動を評価する方法 ( 運動学的モデル

More information

DVIOUT

DVIOUT 3 第 2 章フーリエ級数 23 フーリエ級数展開 これまで 関数 f(x) のフーリエ級数展開に関して 関数の定義区間やフーリエ級数の積分区間を断りなく [, ] に取ってきました これは フーリエ級数を構成する三角関数が基本周期 2 を持つためです すなわち フーリエ級数の各項 cos nx および sin nx (n =1, 2, 3, 4, ) の周期は それぞれ 2, 2 2, 2 3,

More information

Microsoft PowerPoint - CSA_B3_EX2.pptx

Microsoft PowerPoint - CSA_B3_EX2.pptx Computer Science A Hardware Design Excise 2 Handout V2.01 May 27 th.,2019 CSAHW Computer Science A, Meiji University CSA_B3_EX2.pptx 32 Slides Renji Mikami 1 CSAHW2 ハード演習内容 2.1 二次元空間でのベクトルの直交 2.2 Reserved

More information

Microsoft PowerPoint - 卒業論文 pptx

Microsoft PowerPoint - 卒業論文 pptx 時間に依存するポテンシャルによる 量子状態の変化 龍谷大学理工学部数理情報学科 T966 二正寺章指導教員飯田晋司 目次 はじめに 次元のシュレーディンガー方程式 3 井戸型ポテンシャルの固有エネルギーと固有関数 4 4 中央に障壁のある井戸型ポテンシャルの固有エネルギーと固有関数 3 5 障壁が時間によって変化する場合 7 6 まとめ 5 一次元のシュレディンガー方程式量子力学の基本方程式 ψ (

More information

様々なミクロ計量モデル†

様々なミクロ計量モデル† 担当 : 長倉大輔 ( ながくらだいすけ ) この資料は私の講義において使用するために作成した資料です WEB ページ上で公開しており 自由に参照して頂いて構いません ただし 内容について 一応検証してありますが もし間違いがあった場合でもそれによって生じるいかなる損害 不利益について責任を負いかねますのでご了承ください 間違いは発見次第 継続的に直していますが まだ存在する可能性があります 1 カウントデータモデル

More information

固体物理2018-1NKN.key

固体物理2018-1NKN.key , `, m`, m s ` ` apple m` apple ` m` m s m s ± E H m x () () () A si x A si x () () () () H m x () aaac6ichve9bxqxejciriboeglooqufipmfcakpagacop8cemkbhy+yhv7vxvafhbldsrfeqefge+bk/agk/asumkgfmzuruq+bmxqpw+e58m7sivwlhcjjz/uwxkfhrumjq/fmkpowzsv8zmsjtprgraxqvgmfvbyjvrzgkesre9z/++obrixg5tvhxtrhiwahfqlv9ea8k5tjopqtyfsqygtfyyztithg6gq9bp5qo89ctuamhkjq7roxw+ykzxbsfocupwtuwztmfygqv6zatapsggiyaoqrkwqqhxbcgxjgicyociwicvqmphtqgaeuuswcgeylimgftmytjbkwhsxo8svrjuhzthfq9rwym58o8iifkk/lmvpff6lihr5epuj9bu9urp/+ritfbepvh9c+zxtgutgrwtgslpwub6wevk9xhkpuvlajh+9+sifmetqmeprdmv/yhfdg/hvfbgsjyaguwf+ut8igyqzmyr7v+yeswygibpfamvtvejc/9/6evz9k9bscwvomp/x5bvrq

More information

<4D F736F F D2091E631348FCD B838A83478B C982E682E982D082B882DD946782CC89F090CD2E646F63>

<4D F736F F D2091E631348FCD B838A83478B C982E682E982D082B882DD946782CC89F090CD2E646F63> NAOSI: Ngski Uivrsiy's Ac il 電気回路講義ノート Auhor(s 辻, 峰男 Ciio 電気回路講義ノート ; 4 Issu D 4-4 U hp://hdl.hdl./69/3466 igh his docum is dowlodd hp://osi.lb.gski-u.c.jp 第 4 章フーリエ級数によるひずみ波の解析 フーリエ級数 (Fourir sris 周期関数

More information

Microsoft PowerPoint - 計測工学第7回.pptx

Microsoft PowerPoint - 計測工学第7回.pptx 計測工学講義 第 7 回目 担当 : 西野信博 A3-525 号室 nishino@hiroshima-u.ac.jp home.hiroshima-u.ac.jp/nishino/ 1 プラズマ実験装置 NSTX(Princeton) 目 次 第 2 章スペクトル解析 フーリエ展開とフーリエ変換 相関関数とパワースペクトル 2 3 演習 スペクトル解析とはどのようなものかを わかりやすく簡潔に説明せよ

More information

画像処理工学

画像処理工学 画像処理工学 画像の空間周波数解析とテクスチャ特徴 フーリエ変換の基本概念 信号波形のフーリエ変換 信号波形を周波数の異なる三角関数 ( 正弦波など ) に分解する 逆に, 周波数の異なる三角関数を重ねあわせることにより, 任意の信号波形を合成できる 正弦波の重ね合わせによる矩形波の表現 フーリエ変換の基本概念 フーリエ変換 次元信号 f (t) のフーリエ変換 変換 ( ω) ( ) ωt F f

More information

Microsoft Word - NumericalComputation.docx

Microsoft Word - NumericalComputation.docx 数値計算入門 武尾英哉. 離散数学と数値計算 数学的解法の中には理論計算では求められないものもある. 例えば, 定積分は, まずは積分 ( 被積分関数の原始関数をみつけること できなければ値を得ることはできない. また, ある関数の所定の値における微分値を得るには, まずその関数の微分ができなければならない. さらに代数方程式の解を得るためには, 解析的に代数方程式を解く必要がある. ところが, これらは必ずしも解析的に導けるとは限らない.

More information

まとめ Fourr 級数展開 周期 の関数の場合 co, co Fourr 級数展開 周期 の関数の場合 co, co Fourr 変換と逆変換 フーリエ逆変換 フーリエ変換

まとめ Fourr 級数展開 周期 の関数の場合 co, co Fourr 級数展開 周期 の関数の場合 co, co Fourr 変換と逆変換 フーリエ逆変換 フーリエ変換 フーリエ変換 ラプラス変換 まとめ Fourr 級数展開 周期 の関数の場合 co, co Fourr 級数展開 周期 の関数の場合 co, co Fourr 変換と逆変換 フーリエ逆変換 フーリエ変換 Prvl の等式 ovoluo 定理 フーリエ変換が G で, の逆フーリエ変換が, である時 F plc 変換と逆変換 F F ラプラス変換 ラプラス逆変換 plc 変換表 ラプラス空間 実空間,

More information

Microsoft PowerPoint - prog11.ppt

Microsoft PowerPoint - prog11.ppt プログラミング言語 第 回 (7 年 7 月 6 日 今日の配布物 片面の用紙 枚 今日の課題が書かれています 本日の出欠を兼ねています /33 今日やること http://www.tnlab.ice.uec.ac.jp/~s-okubo/class/language/ にアクセスすると 教材があります 7 年 7 月 6 日分と書いてある部分が 本日の教材です 本日の内容 前回の課題の解答 Romberg

More information

フーリエ変換 ラプラス変換 - まとめ Fourr 級数展開 周期 の関数の場合 co b, b co Fourr 級数展開 周期 の関数の場合 co b, b co Fourr 変換と逆変換 フーリエ逆変換 フーリエ変換

フーリエ変換 ラプラス変換 - まとめ Fourr 級数展開 周期 の関数の場合 co b, b co Fourr 級数展開 周期 の関数の場合 co b, b co Fourr 変換と逆変換 フーリエ逆変換 フーリエ変換 フーリエ変換 ラプラス変換 フーリエ変換 ラプラス変換 - まとめ Fourr 級数展開 周期 の関数の場合 co b, b co Fourr 級数展開 周期 の関数の場合 co b, b co Fourr 変換と逆変換 フーリエ逆変換 フーリエ変換 フーリエ変換 ラプラス変換 - Prvl の等式 ovoluo 定理 フーリエ変換が G で, の逆フーリエ変換が, である時 F plc 変換と逆変換

More information

振動学特論火曜 1 限 TA332J 藤井康介 6 章スペクトルの平滑化 スペクトルの平滑化とはギザギザした地震波のフーリエ スペクトルやパワ スペクトルでは正確にスペクトルの山がどこにあるかはよく分からない このようなスペクトルから不純なものを取り去って 本当の性質を浮き彫

振動学特論火曜 1 限 TA332J 藤井康介 6 章スペクトルの平滑化 スペクトルの平滑化とはギザギザした地震波のフーリエ スペクトルやパワ スペクトルでは正確にスペクトルの山がどこにあるかはよく分からない このようなスペクトルから不純なものを取り去って 本当の性質を浮き彫 6 章スペクトルの平滑化 スペクトルの平滑化とはギザギザした地震波のフーリエ スペクトルやパワ スペクトルでは正確にスペクトルの山がどこにあるかはよく分からない このようなスペクトルから不純なものを取り去って 本当の性質を浮き彫りにするために スペクトルを滑らかにする操作のことをいう 6.1 合積のフーリエ変換スペクトルの平滑化を行う際に必要な 合積とそのフーリエ変換について説明する 6.2 データ

More information

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 67 A Section A.1 0 1 0 1 Balmer 7 9 1 0.1 0.01 1 9 3 10:09 6 A.1: A.1 1 10 9 68 A 10 9 10 9 1 10 9 10 1 mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 A.1. 69 5 1 10 15 3 40 0 0 ¾ ¾ É f Á ½ j 30 A.3: A.4: 1/10

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 電磁波工学 第 5 回平面波の媒質への垂直および射入射と透過 柴田幸司 Bounda Plan Rgon ε μ Rgon Mdum ( ガラスなど ε μ z 平面波の反射と透過 垂直入射の場合 左図に示す様に 平面波が境界面に対して垂直に入射する場合を考える この時の入射波を とすると 入射波は境界において 透過波 と とに分解される この時の透過量を 反射量を Γ とおくと 領域 における媒質の誘電率に対して透過量

More information

genron-3

genron-3 " ( K p( pasals! ( kg / m 3 " ( K! v M V! M / V v V / M! 3 ( kg / m v ( v "! v p v # v v pd v ( J / kg p ( $ 3! % S $ ( pv" 3 ( ( 5 pv" pv R" p R!" R " ( K ( 6 ( 7 " pv pv % p % w ' p% S & $ p% v ( J /

More information

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,, 6,,3,4,, 3 4 8 6 6................................. 6.................................. , 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p,

More information

RLC 共振回路 概要 RLC 回路は, ラジオや通信工学, 発信器などに広く使われる. この回路の目的は, 特定の周波数のときに大きな電流を得ることである. 使い方には, 周波数を設定し外へ発する, 外部からの周波数に合わせて同調する, がある. このように, 周波数を扱うことから, 交流を考える

RLC 共振回路 概要 RLC 回路は, ラジオや通信工学, 発信器などに広く使われる. この回路の目的は, 特定の周波数のときに大きな電流を得ることである. 使い方には, 周波数を設定し外へ発する, 外部からの周波数に合わせて同調する, がある. このように, 周波数を扱うことから, 交流を考える 共振回路 概要 回路は ラジオや通信工学 などに広く使われる この回路の目的は 特定の周波数のときに大きな電流を得ることである 使い方には 周波数を設定し外へ発する 外部からの周波数に合わせて同調する がある このように 周波数を扱うことから 交流を考える 特に ( キャパシタ ) と ( インダクタ ) のそれぞれが 周波数によってインピーダンス *) が変わることが回路解釈の鍵になることに注目する

More information

Microsoft PowerPoint - 複素数.pptx

Microsoft PowerPoint - 複素数.pptx 00 年 月 9 日 ( 金 第 時限 平成 年度物質科学解析第 7 回 複素数 冨田知志 0. なぜ複素数か?. 虚数単位. 複素数の計算. オイラーの公式. 複素平面 5. 級数での複素数 ( オイラーの公式 の活用 6. 量子力学で出てくる複素数の例 0. なぜ複素数か? 量子論 ( 量子力学 で不可欠だから参照 : 光ナノサイエンスコアI 古典論や電気回路でも複素数は使うただしそれはあくまでも数学的道具

More information

画像類似度測定の初歩的な手法の検証

画像類似度測定の初歩的な手法の検証 画像類似度測定の初歩的な手法の検証 島根大学総合理工学部数理 情報システム学科 計算機科学講座田中研究室 S539 森瀧昌志 1 目次 第 1 章序論第 章画像間類似度測定の初歩的な手法について.1 A. 画素値の平均を用いる手法.. 画素値のヒストグラムを用いる手法.3 C. 相関係数を用いる手法.4 D. 解像度を合わせる手法.5 E. 振れ幅のヒストグラムを用いる手法.6 F. 周波数ごとの振れ幅を比較する手法第

More information

Microsoft Word - Chap17

Microsoft Word - Chap17 第 7 章化学反応に対する磁場効果における三重項機構 その 7.. 節の訂正 年 7 月 日. 節 章の9ページ の赤枠に記載した説明は間違いであった事に気付いた 以下に訂正する しかし.. 式は 結果的には正しいので安心して下さい 磁場 の存在下でのT 状態のハミルトニアン は ゼーマン項 と時間に依存するスピン-スピン相互作用の項 との和となる..=7.. g S = g S z = S z g

More information

Microsoft Word - note02.doc

Microsoft Word - note02.doc 年度 物理化学 Ⅱ 講義ノート. 二原子分子の振動. 調和振動子近似 モデル 分子 = 理想的なバネでつながった原子 r : 核間距離, r e : 平衡核間距離, : 変位 ( = r r e ), k f : 力の定数ポテンシャルエネルギー ( ) k V = f (.) 古典運動方程式 [ 振動数 ] 3.3 d kf (.) dt μ : 換算質量 (m, m : 原子, の質量 ) mm

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

Excel ではじめる数値解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

Excel ではじめる数値解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. Excel ではじめる数値解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009631 このサンプルページの内容は, 初版 1 刷発行時のものです. Excel URL http://www.morikita.co.jp/books/mid/009631 i Microsoft Windows

More information

3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x0 = f x= x0 t f c x f =0 [1] c f 0 x= x 0 x 0 f x= x0 x 2 x 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考

3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x0 = f x= x0 t f c x f =0 [1] c f 0 x= x 0 x 0 f x= x0 x 2 x 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考 3 数値解の特性 3.1 CFL 条件 を 前の章では 波動方程式 f x= x = f x= x t f c x f = [1] c f x= x f x= x 2 2 t [2] のように差分化して数値解を求めた ここでは このようにして得られた数値解の性質を 考える まず 初期時刻 t=t に f =R f exp [ik x ] [3] のような波動を与えたとき どのように時間変化するか調べる

More information

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π 4 4.1 4.1.1 A = f() = f() = a f (a) = f() (a, f(a)) = f() (a, f(a)) f(a) = f 0 (a)( a) 4.1 (4, ) = f() = f () = 1 = f (4) = 1 4 4 (4, ) = 1 ( 4) 4 = 1 4 + 1 17 18 4 4.1 A (1) = 4 A( 1, 4) 1 A 4 () = tan

More information

2011年度 大阪大・理系数学

2011年度 大阪大・理系数学 0 大阪大学 ( 理系 ) 前期日程問題 解答解説のページへ a a を自然数とする O を原点とする座標平面上で行列 A= a の表す 次変換 を f とする cosθ siθ () >0 および0θ

More information

<4D F736F F D FCD B90DB93AE96402E646F63>

<4D F736F F D FCD B90DB93AE96402E646F63> 7 章摂動法講義のメモ 式が複雑なので 黒板を何度も修正したし 間違ったことも書いたので メモを置きます 摂動論の式の導出無摂動系 先ず 厳密に解けている Schrödiger 方程式を考える,,,3,... 3,,,3,... は状態を区別する整数であり 状態 はエネルギー順に並んでいる 即ち は基底状態 は励起状態である { m } は相互に規格直交条件が成立する k m k mdx km k

More information

工業数学F2-04(ウェブ用).pptx

工業数学F2-04(ウェブ用).pptx 工業数学 F2 #4 フーリエ級数を極める 京都大学加納学 京都大学大学院情報学研究科システム科学専攻 Human Systems Lab., Dept. of Systems Science Graduate School of Informatics, Kyoto University 復習 1: 複素フーリエ級数 2 周期 2π の周期関数 f(x) の複素フーリエ級数展開 複素フーリエ係数

More information

Microsoft PowerPoint _量子力学短大.pptx

Microsoft PowerPoint _量子力学短大.pptx . エネルギーギャップとrllouゾーン ブリルアン領域,t_8.. 周期ポテンシャル中の電子とエネルギーギャップ 簡単のため 次元に間隔 で原子が並んでいる結晶を考える 右方向に進行している電子の波は 間隔 で規則正しく並んでいる原子が作る格子によって散乱され 左向きに進行する波となる 波長 λ が の時 r の反射条件 式を満たし 両者の波が互いに強め合い 定在波を作る つまり 式 式を満たす波は

More information

(Microsoft Word - PLL\203f\203\202\216\221\227\277-2-\203T\203\223\203v\203\213.doc)

(Microsoft Word - PLL\203f\203\202\216\221\227\277-2-\203T\203\223\203v\203\213.doc) ディジタル PLL 理論と実践 有限会社 SP システム 目次 - 目次 1. はじめに...3 2. アナログ PLL...4 2.1 PLL の系...4 2.1.1 位相比較器...4 2.1.2 ループフィルタ...4 2.1.3 電圧制御発振器 (VCO)...4 2.1.4 分周器...5 2.2 ループフィルタ抜きの PLL 伝達関数...5 2.3 ループフィルタ...6 2.3.1

More information

Microsoft Word - thesis.doc

Microsoft Word - thesis.doc 剛体の基礎理論 -. 剛体の基礎理論初めに本論文で大域的に使用する記号を定義する. 使用する記号トルク撃力力角運動量角速度姿勢対角化された慣性テンソル慣性テンソル運動量速度位置質量時間 J W f F P p .. 質点の並進運動 質点は位置 と速度 P を用いる. ニュートンの運動方程式 という状態を持つ. 但し ここでは速度ではなく運動量 F P F.... より質点の運動は既に明らかであり 質点の状態ベクトル

More information

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 1 16 10 5 1 2 2.1 a a a 1 1 1 2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 4 2 3 4 2 5 2.4 x y (x,y) l a x = l cot h cos a, (3) y = l cot h sin a (4) h a

More information

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ 4 5 ( 5 3 9 4 0 5 ( 4 6 7 7 ( 0 8 3 9 ( 8 t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ S θ > 0 θ < 0 ( P S(, 0 θ > 0 ( 60 θ

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

4-4 while 文 for 文と同様 ある処理を繰り返し実行するためのものだが for 文と違うのは while 文で指定するのは 継続条件のみであるということ for 文で書かれた左のプログラムを while 文で書き換えると右のようになる /* 読込んだ正の整数値までカウントアップ (for

4-4 while 文 for 文と同様 ある処理を繰り返し実行するためのものだが for 文と違うのは while 文で指定するのは 継続条件のみであるということ for 文で書かれた左のプログラムを while 文で書き換えると右のようになる /* 読込んだ正の整数値までカウントアップ (for 4-4 while 文 for 文と同様 ある処理を繰り返し実行するためのものだが for 文と違うのは while 文で指定するのは 継続条件のみであるということ for 文で書かれた左のプログラムを while 文で書き換えると右のようになる /* 読込んだ正の整数値までカウントアップ (for 文 ) */ int i, no; for (i = 0; i

More information

Microsoft Word - 第2章 ブロック線図.doc

Microsoft Word - 第2章 ブロック線図.doc NAOSIE: Nagaaki Univriy' Ac il ディジタル制御システム Auhor() 辻, 峰男 Ciaion ディジタル制御システム ; 06 Iu Da 06 URL hp://hdl.handl.n/0069/3686 Righ hi documn i downloadd hp://naoi.lb.nagaaki-u.ac.jp 第 章ブロック線図. インパルス列を用いた z

More information

f (x) x y f(x+dx) f(x) Df 関数 接線 x Dx x 1 x x y f f x (1) x x 0 f (x + x) f (x) f (2) f (x + x) f (x) + f = f (x) + f x (3) x f

f (x) x y f(x+dx) f(x) Df 関数 接線 x Dx x 1 x x y f f x (1) x x 0 f (x + x) f (x) f (2) f (x + x) f (x) + f = f (x) + f x (3) x f 208 3 28. f fd f Df 関数 接線 D f f 0 f f f 2 f f f f f 3 f lim f f df 0 d 4 f df d 3 f d f df d 5 d c 208 2 f f t t f df d 6 d t dt 7 f df df d d df dt lim f 0 t df d d dt d t 8 dt 9.2 f,, f 0 f 0 lim 0 lim

More information

Microsoft PowerPoint - H22制御工学I-10回.ppt

Microsoft PowerPoint - H22制御工学I-10回.ppt 制御工学 I 第 回 安定性 ラウス, フルビッツの安定判別 平成 年 6 月 日 /6/ 授業の予定 制御工学概論 ( 回 ) 制御技術は現在様々な工学分野において重要な基本技術となっている 工学における制御工学の位置づけと歴史について説明する さらに 制御システムの基本構成と種類を紹介する ラプラス変換 ( 回 ) 制御工学 特に古典制御ではラプラス変換が重要な役割を果たしている ラプラス変換と逆ラプラス変換の定義を紹介し

More information

喨微勃挹稉弑

喨微勃挹稉弑 == 全微分方程式 == 全微分とは 変数の関数 z=f(, ) について,, の増分を Δ, Δ とするとき, z の増分 Δz は Δz z Δ+ z Δ で表されます. この式において, Δ 0, Δ 0 となる極限を形式的に dz= z d+ z d (1) で表し, dz を z の全微分といいます. z は z の に関する偏導関数で, を定数と見なし て, で微分したものを表し, 方向の傾きに対応します.

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

Microsoft PowerPoint - LectureB1handout.ppt [互換モード]

Microsoft PowerPoint - LectureB1handout.ppt [互換モード] 本講義のスコープ 都市防災工学 後半第 回 : イントロダクション 千葉大学大学院工学研究科建築 都市科学専攻都市環境システムコース岡野創 耐震工学の専門家として知っていた方が良いが 敷居が高く 入り口で挫折しがちな分野をいくつか取り上げて説明 ランダム振動論 地震波形に対する構造物応答の理論的把握 減衰と地震応答 エネルギーバランス 地震動の各種スペクトルの相互関係 震源モデル 近年では震源モデルによる地震動予測が良く行われている

More information

2 1 F M m r G F = GMm r 2 (1.1) (1.1) (r = r ) F = GMmr r 3 (1.2) a F m F = kma k 1 F = ma (1.3) (1.2) (1.3) ma = GMmr r 3 (1.4)

2 1 F M m r G F = GMm r 2 (1.1) (1.1) (r = r ) F = GMmr r 3 (1.2) a F m F = kma k 1 F = ma (1.3) (1.2) (1.3) ma = GMmr r 3 (1.4) 1 1 1.1 2 1 F M m r G F = GMm r 2 (1.1) (1.1) (r = r ) F = GMmr r 3 (1.2) a F m F = kma k 1 F = ma (1.3) (1.2) (1.3) ma = GMmr r 3 (1.4) 1.1 3 M m r a a = d2 r dt 2 (1.4) r d 2 r dt 2 = GM r 3 r (1.5)

More information

Microsoft PowerPoint - H22制御工学I-2回.ppt

Microsoft PowerPoint - H22制御工学I-2回.ppt 制御工学 I 第二回ラプラス変換 平成 年 4 月 9 日 /4/9 授業の予定 制御工学概論 ( 回 ) 制御技術は現在様々な工学分野において重要な基本技術となっている 工学における制御工学の位置づけと歴史について説明する さらに 制御システムの基本構成と種類を紹介する ラプラス変換 ( 回 ) 制御工学 特に古典制御ではラプラス変換が重要な役割を果たしている ラプラス変換と逆ラプラス変換の定義を紹介し

More information

(Microsoft Word - 10ta320a_\220U\223\256\212w\223\301\230__6\217\315\221O\224\274\203\214\203W\203\201.docx)

(Microsoft Word - 10ta320a_\220U\223\256\212w\223\301\230__6\217\315\221O\224\274\203\214\203W\203\201.docx) 6 章スペクトルの平滑化 スペクトルの平滑化とはフーリエスペクトルやパワ スペクトルのギザギザを取り除き 滑らかにする操作のことをいう ただし 波のもっている本質的なものをゆがめてはいけない 図 6-7 パワ スペクトルの平滑化 6. 合積のフーリエ変換スペクトルの平滑化を学ぶ前に 合積とそのフーリエ変換について説明する 6. データ ウィンドウデータ ウィンドウの定義と特徴について説明する 6.3

More information

本サンプル問題の著作権は日本商工会議所に帰属します また 本サンプル問題の無断転載 無断営利利用を厳禁します 本サンプル問題の内容や解答等に関するお問 い合わせは 受け付けておりませんので ご了承ください 日商プログラミング検定 STANDARD(VBA) サンプル問題 知識科目 第 1 問 ( 知

本サンプル問題の著作権は日本商工会議所に帰属します また 本サンプル問題の無断転載 無断営利利用を厳禁します 本サンプル問題の内容や解答等に関するお問 い合わせは 受け付けておりませんので ご了承ください 日商プログラミング検定 STANDARD(VBA) サンプル問題 知識科目 第 1 問 ( 知 本サンプル問題の著作権は日本商工会議所に帰属します また 本サンプル問題の無断転載 無断営利利用を厳禁します 本サンプル問題の内容や解答等に関するお問 い合わせは 受け付けておりませんので ご了承ください 日商プログラミング検定 STANDARD(VBA) サンプル問題 知識科目 第 1 問 ( 知識 4 択 :20 問 ) 1. ユーザが行った操作を記録して同じ操作を自動で行うことができる機能を何というか

More information

第1章 単 位

第1章  単  位 H. Hamano,. 長柱の座屈 - 長柱の座屈 長い柱は圧縮荷重によって折れてしまう場合がある. この現象を座屈といい, 座屈するときの荷重を座屈荷重という.. 換算長 長さ の柱に荷重が作用する場合, その支持方法によって, 柱の理論上の長さ L が異なる. 長柱の計算は, この L を用いて行うと都合がよい. この L を換算長 ( あるいは有効長さという ) という. 座屈荷重は一般に,

More information

Microsoft Word - 03-数値計算の基礎.docx

Microsoft Word - 03-数値計算の基礎.docx δx f x 0 + δ x n=0 a n = f ( n) ( x 0 ) n δx n f x x=0 sin x = x x3 3 + x5 5 x7 7 +... x ( ) = a n δ x n ( ) = sin x ak = (-mod(k,2))**(k/2) / fact_k 10 11 I = f x dx a ΔS = f ( x)h I = f a h I = h b (

More information

Microsoft Word docx

Microsoft Word docx 有限図形の代数的表現について 三角形や星型を式で表現したいという思いから以下のことを 考察をしまし た 有限個の点と辺で 構成される図形を 関数で表現する そのため 基礎 体として 素数の有限体を考える 但し 扱うのは 点の数と辺の数が等しい 特別場合である 先ず P5 のときから 始めることにします. グラフと写像と関数について ( 特別な場合 ) 集合 F {,,,, } について 写像 f :

More information

第9章

第9章 第 9 章光の量子化これまでは光を古典的電磁波として扱い 原子を量子力学システムとして与え 電磁波と原子に束縛された電子との相互作用ポテンシャルを演算子で表現した この表現の中で電磁波の電場はあくまでも古典的パラメータとして振舞う ここでは この電磁波も量子力学的システム ; 電場と磁場をエルミート演算子で与える として表現する その結果 電磁波のエネルギー密度や運動量密度なども演算子として表せれる

More information

領域シンポ発表

領域シンポ発表 1 次元の減衰運動の中の強制振動 ) ( f d d d d d e f e ce ) ( si ) ( 1 ) ( cos ω =ω -γ とおくと 一般解は 外力 f()=f siω の場合 f d d d d si f ce f ce si ) cos( cos si ) cos( この一般解は 1 φ は外力と変位との間の位相差で a 時間が経つと 第 1 項は無視できる この場合の振幅を

More information

Microsoft Word - 資料 (テイラー級数と数値積分).docx

Microsoft Word - 資料 (テイラー級数と数値積分).docx δx δx n x=0 sin x = x x3 3 + x5 5 x7 7 +... x ak = (-mod(k,2))**(k/2) / fact_k ( ) = a n δ x n f x 0 + δ x a n = f ( n) ( x 0 ) n f ( x) = sin x n=0 58 I = b a ( ) f x dx ΔS = f ( x)h I = f a h h I = h

More information

<4D F736F F F696E74202D2095A890AB95A8979D91E682528FCD B8CDD8AB B83685D>

<4D F736F F F696E74202D2095A890AB95A8979D91E682528FCD B8CDD8AB B83685D> 3. 回折現象と逆格子 3.1 逆格子とは 簡単な例で 逆格子が何かを示そう 逆格子は物性工学を理解する上で 非常に重要である 逆格子は ブラべー格子をフーリエ空間に移したものであり 次のよう に定義される まず 平面波が e ik r で与えられることを思い出して欲 しい この平面波がブラべー格子の周期性を持つとすると R をブラべ ー格子ベクトルとして ik r+r e = e ik r (3-1)

More information

Microsoft PowerPoint - dm1_6.pptx

Microsoft PowerPoint - dm1_6.pptx スケジュール 09/5 イントロダクション1 : デジタル画像とは, 量 化と標本化,Dynamic Range 10/0 イントロダクション : デジタルカメラ, 間の視覚, 表 系 10/09 画像処理演習 0 : python (PC 教室 : 課題締め切り 11/13 3:59) 10/16 フィルタ処理 1 : トーンカーブ, 線形フィルタ デジタルメディア処理 1 担当 : 井尻敬 10/3

More information

LLG-R8.Nisus.pdf

LLG-R8.Nisus.pdf d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =

More information

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

SFGÇÃÉXÉyÉNÉgÉãå`.pdf SFG 1 SFG SFG I SFG (ω) χ SFG (ω). SFG χ χ SFG (ω) = χ NR e iϕ +. ω ω + iγ SFG φ = ±π/, χ φ = ±π 3 χ SFG χ SFG = χ NR + χ (ω ω ) + Γ + χ NR χ (ω ω ) (ω ω ) + Γ cosϕ χ NR χ Γ (ω ω ) + Γ sinϕ. 3 (θ) 180

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) デルタ関数. ローレンツ関数. ガウス関数 3. Sinc 関数 4. Sinc 関数 5. 指数関数 6. 量子力学 : デルタ関数 7. プレメリの公式 8. 電磁気学 : デルタ関数 9. デルタ関数 : スケール 微分 デルタ関数 (delta function) ( ) δ ( ) ( ), δ ( ), δ ( ), δ ( ) f x x dx

More information

PowerPoint Presentation

PowerPoint Presentation 付録 2 2 次元アフィン変換 直交変換 たたみ込み 1.2 次元のアフィン変換 座標 (x,y ) を (x,y) に移すことを 2 次元での変換. 特に, 変換が と書けるとき, アフィン変換, アフィン変換は, その 1 次の項による変換 と 0 次の項による変換 アフィン変換 0 次の項は平行移動 1 次の項は座標 (x, y ) をベクトルと考えて とすれば このようなもの 2 次元ベクトルの線形写像

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

Q

Q 埼玉工業大学機械工学学習支援セミナー ( 小西克享 ) 自由振動と強制振動 -1/6 テーマ H3: 自由振動と強制振動 振動の形態には, 自由振動と強制振動の 種類があります. 一般に, 外力が作用しなくても固有振動数で振動を継続する場合は自由振動であり, 外力が作用することによって強制的に振動が引き起こされる場合は強制振動になります. 摩擦抵抗の有無によって減衰系と非減衰系に区分されるため, 振動の分類は次のようになる.

More information

日本物理学会2013年秋季大会 於 高知大学朝倉campus 講演21aSB-6 (2013年9月21日) 高スピン間の回転行列の数値評価における著しい桁落の回避方法 田嶋直樹 福井大工 1.回転演算子の角運動量固有状態基底での表現行列 D関数 をWignerの公 式で数値的に求めると 角運動量jが

日本物理学会2013年秋季大会 於 高知大学朝倉campus 講演21aSB-6 (2013年9月21日) 高スピン間の回転行列の数値評価における著しい桁落の回避方法 田嶋直樹 福井大工 1.回転演算子の角運動量固有状態基底での表現行列 D関数 をWignerの公 式で数値的に求めると 角運動量jが 日本物理学会013年秋季大会 於 高知大学朝倉campus 講演1aSB-6 (013年9月1日 高スピン間の回転行列の数値評価における著しい桁落の回避方法 田嶋直樹 福井大工 1.回転演算子の角運動量固有状態基底での表現行列 D関数 をWignerの公 式で数値的に求めると 角運動量jが大きいとき著しい桁落ちが起きる j=1/ないし1との角運動量合成に関連する漸化式 で求める場合も同程 度の桁落ちが起きる.

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

Microsoft Word - VBA基礎(6).docx

Microsoft Word - VBA基礎(6).docx あるクラスの算数の平均点と理科の平均点を読み込み 総点を計算するプログラムを考えてみましょう 一クラスだけ読み込む場合は test50 のようなプログラムになります プログラムの流れとしては非常に簡単です Sub test50() a = InputBox(" バナナ組の算数の平均点を入力してください ") b = InputBox(" バナナ組の理科の平均点を入力してください ") MsgBox

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

Microsoft PowerPoint - qcomp.ppt [互換モード]

Microsoft PowerPoint - qcomp.ppt [互換モード] 量子計算基礎 東京工業大学 河内亮周 概要 計算って何? 数理科学的に 計算 を扱うには 量子力学を計算に使おう! 量子情報とは? 量子情報に対する演算 = 量子計算 一般的な量子回路の構成方法 計算って何? 計算とは? 計算 = 入力情報から出力情報への変換 入力 計算機構 ( デジタルコンピュータ,etc ) 出力 計算とは? 計算 = 入力情報から出力情報への変換 この関数はどれくらい計算が大変か??

More information

Probit , Mixed logit

Probit , Mixed logit Probit, Mixed logit 2016/5/16 スタートアップゼミ #5 B4 後藤祥孝 1 0. 目次 Probit モデルについて 1. モデル概要 2. 定式化と理解 3. 推定 Mixed logit モデルについて 4. モデル概要 5. 定式化と理解 6. 推定 2 1.Probit 概要 プロビットモデルとは. 効用関数の誤差項に多変量正規分布を仮定したもの. 誤差項には様々な要因が存在するため,

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

2011年度 筑波大・理系数学

2011年度 筑波大・理系数学 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ O を原点とするy 平面において, 直線 y= の を満たす部分をC とする () C 上に点 A( t, ) をとるとき, 線分 OA の垂直二等分線の方程式を求めよ () 点 A が C 全体を動くとき, 線分 OA の垂直二等分線が通過する範囲を求め, それ を図示せよ -- 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

cp-7. 配列

cp-7. 配列 cp-7. 配列 (C プログラムの書き方を, パソコン演習で学ぶシリーズ ) https://www.kkaneko.jp/cc/adp/index.html 金子邦彦 1 本日の内容 例題 1. 月の日数配列とは. 配列の宣言. 配列の添え字. 例題 2. ベクトルの内積例題 3. 合計点と平均点例題 4. 棒グラフを描く配列と繰り返し計算の関係例題 5. 行列の和 2 次元配列 2 今日の到達目標

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

Euler Appendix cos, sin 2π t = 0 kx = 0, 2π x = 0 (wavelength)λ kλ = 2π, k = 2π/λ k (wavenumber) x = 0 ωt = 0, 2π t = 0 (period)t T = 2π/ω ω = 2πν (fr

Euler Appendix cos, sin 2π t = 0 kx = 0, 2π x = 0 (wavelength)λ kλ = 2π, k = 2π/λ k (wavenumber) x = 0 ωt = 0, 2π t = 0 (period)t T = 2π/ω ω = 2πν (fr This manuscript is modified on March 26, 2012 3 : 53 pm [1] 1 ( ) Figure 1: (longitudinal wave) (transverse wave). P 7km S 4km P S P S x t x u(x, t) t = t 0 = 0 f(x) f(x) = u(x, 0) v +x (Fig.2) ( ) δt

More information