Li Yorke 1) 2) 3) Lorenz 4) 1960 Li Yorke Ruelle Takens ) 1970 Lorenz ) Birkhoff ) Smale 8) 9) 1

Size: px
Start display at page:

Download "Li Yorke 1) 2) 3) Lorenz 4) 1960 Li Yorke Ruelle Takens ) 1970 Lorenz ) Birkhoff ) Smale 8) 9) 1"

Transcription

1 c /(37)

2 Li Yorke 1) 2) 3) Lorenz 4) 1960 Li Yorke Ruelle Takens ) 1970 Lorenz ) Birkhoff ) Smale 8) 9) chaotic attractor x x ω ω(x) A ω(x) A x A basin domain of attraction A c /(37)

3 10) Duffing Japanese attractor Lorenz Lorenz attractor E dx/dt = σ(y x), dy/dt = rx y xz, dz/dt = xy bz σ, r, b 21 (a) O. E dx/dt = y z, dy/dt = x + ay, dz/dt = bx (c x)z a, b, c 21 (b) c /(37)

4 z 50 z x y y x (a) (b) 21 (a), σ = 10, b = 8/3, r = 28. (x 0, y 0, z 0 ) = (0.5, 1, 22). (b), a = 0.2, b = 0.2, c = 5(x 0, y 0, z 0 ) = ( 1, 0.5, 0). 1) T.-Y. Li and J.A. Yorke, Period three implies chaos, Amer. Math. Monthly, vol.82, no.10, pp , ) B.R. Hunt, J.A. Kennedy, T.-Y. Li and H.E. Nusse (eds), The theory of chaotic attractors, Springer, ) Y. Ueda, Strange attractors and the origin of chaos, in The impact of chaos on science and society (C. Grebogi and J. A. Yorke (eds.)), United Nations University Press, ) E.N. Lorenz, Deterministic nonperiodic flow, Journal of the Atomospheric Sciences, vol.20, no.2, pp , ) D. Ruelle and F. Takens, On the nature of turbulence, Commun. Math. Phys., vol.20, pp , ),,, ) G.D. Birkhoff and P.A. Smith, Structure analysis of surface transformations, J. Math. (Liouville), S.9, vol.7, pp , ) S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc., vol.73, pp , ),,, ) J. Milnor, On the concept of attractor, Commun. Math. Phys., vol.99, pp , c /(37)

5 , 2) ) IC 3. 1? 22 N i = G(v D ) Linear sub-circuit N C i D + v C 2 N + v 2 g L i C 1 i + D v 1 22 N N g c /(37)

6 C 1 d dt v 1 = i G(v), C 2 d dt v 2 = i + gv 2, L d dt i = v 1 + v 2 (21) G(v) 4) 5) 2 23 (a) N v V T S v E N v r 0 v r 0 N v (b) S off v (c) S S v = E (d) C d dt v = i L d dt i = v + Ri (v(t + ), i(t + )) = (E, i(t)) if v(t) = V T (22) 6). 7) Linear sub-circuit N (a) + v r 0 0 C E v =V T S E v (c ) V T t N (b ) i R L + v r 0 0 C E v =V T S i [ma] 0.2 (d ) v [v] c /(37)

7 8, DC-DC 9) 24 V i S S S on i off S on S on off V i 24 S D L i C R + v o V i i L S DC-DC D C R + v o 10) ) ) 13) ) ) 16) c /(37)

8 Na Hz 6.3 Hz 25(A) φ 25(B) φ φ = 0 φ = 360 φ { P 1, P 2, P 3, } 25(B)(a) 25(B)(b) 25(C) 25(C) (a) (d) 25(C) (e) (i) 25 A 13) (a) (b) B3 16) (a) (b) C (a i) 13) (j) φ D 13) F : V n V n+1 25(D)V 0 = F(V 0 ) V 0 25(D)(a) V 1 25(D)(b) c /(37)

9 ) 1985 CA3 18) 19) 20) 21) ) 26(a) 2 x m 2 26(b) 26(c) 23) AFM MEMSmicro-electromechanical system c /(37)

10 NEMSnano-electromechanical system AFM 24) 22) y x Coil spring y x o m x (b) x y (a) 2 (c) Haken Maxwell-Bloch Lorenz 25) ) 27) 28) 3 khzmhz 29) GHz 28) c /(37)

11 27 30 cm 1 ns 1 GHz Lang-Kobayashi 28) GHz GHz 30) 120 km 2.4 Gb/sGigabit per second 31) 32) Mb/s 1 Gb/s 1.7 Gb/s 32) (a) Laser light Mirror (b) Intensity arb. units Ti m e n s 27 (a) (b) 1) T. Endo and T. Saito, Chaos in electrical and electronic circuits and systems, Trans. IEICE, vol.e73, no.6, pp , ) T. Kanamaru, Duffing oscillator, Scholarpedia, vol.3, no.3, p.6327, c /(37)

12 3),,, ), 1 -,, vol.j71-a, no.6, pp , ) L.O. Chua, Chua circuit, Scholarpedia, vol.2, no.10, p.1488, ) T. Saito, Chaotic spiking oscillators, Scholarpedia, vol.2, no.9, p.1831, ) E.M. Izhikevich, Bursting, Scholarpedia, vol.1, no.3, p.1300, ) C.K. Tse and M. di Bernardo, Complex behavior in switching power converters, Proc. IEEE, vol.90, pp , ) S. Banerjee and G.C. Verghese, eds., Nonlinear phenomena in power electronics: attractors, bifurcations, chaos, and nonlinear control, IEEE Press, ),,,, ) M. Guevara, L. Glass, and A. Shrier, Phase locking, period-doubling bifurcations, and irregular dynamics in periodically stimulated cardiac cells, Science, vol.214, no.4527, pp , ) H. Hayashi, M. Nakao, and K. Hirakawa, Chaos in the self-sustained oscillation of an excitable biological membrane under sinusoidal stimulation, Phys. Lett., vol.88a, no.5, pp , ) H. Hayashi, S. Ishizuka, M. Ohta, and K. Hirakawa, Chaotic behavior in the Onchidium giant neuron under sinusoidal stimulation, Phys. Lett., vol.88a, no.8, pp , ) G. Matsumoto, K. Aihara, M. Ichikawa, and A. Tasaki, Periodic and nonperiodic responses of membrane potentials in squid giant axons during sinusoidal current stimulation, J. Theor. Neurobiol., vol.3, pp.1-14, ) D.R. Chialvo, R.F. Gilmour Jr., and J. Jalife, Low dimensional chaos in cardiac tissue, Nature, vol.343, no.6259, pp , ),,, ) H. Hayashi and S. Ishizuka, Chaotic nature of bursting discharges in the Onchidium pacemaker neuron, J. Theor. Biol., vol.156, no.3, pp , ) H. Hayashi and S. Ishizuka, Chaotic responses of the hippocampal CA3 region to a mossy fiber stimulation in vitro, Brain Res., vol.686, no.2, pp , ) S. Ishizuka and H. Hayashi, Chaotic and phase-locked responses of the somatosensory cortex to a periodic medial lemniscus stimulation in the anesthetized rat, Brain Res., vol.723, no.1-2, pp.46-60, ) A. Skarda and W.J. Freeman, How brains make chaos in order to make sense of the world, Behav. Brain Sci., vol.10, no.2, pp , ) I. Tsuda, Dynamic link of memory - chaotic memory map in nonequilibrium neural networks, Neural Networks, vol.5, no.2, pp , ) S. Shaw and B. Balachandran, A review of nonlinear dynamics of mechanical systems in year 2008, J. System Design and Dynamics, Vol.2, No.3, pp , ) A. Nayfeh and P. Pai, Linear and nonlinear structural mechanics, Wiley-Interscience, ) F. Pfeiffer and C. Glocker, Multibody dynamics with unilateral contacts, Wiley-Interscience, ) H. Haken, Analogy between higher instabilities in fluids and lasers, Phys. Lett. A, vol.53, pp.77-78, ) K. Ikeda, Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system, Opt. Commun., vol.30, pp , ) F.T. Arecchi, G.L. Lippi, G.P. Puccioni, and J.R. Tredicce, Deterministic chaos in lasers with injected signal, Opt. Commun., vol.51, pp , ) J. Ohtsubo, Semiconductor Lasers, - Stability, Instability and Chaos -, Second Edition, Springer- Verlag, Berlin Heidelberg, c /(37)

13 29) K. Otsuka, Nonlinear Dynamics in Optical Complex Systems, KTK Scientific Publishers, Tokyo, ) A. Uchida, F. Rogister, J. Garcia-Ojalvo, and R. Roy, Synchronization and communication with chaotic laser systems, Progress in Optics, edited by E. Wolf, vol.48, chap.5, pp , Elsevier, The Netherlands, ) A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C.R. Mirasso, L. Pesquera, and K.A. Shore, Chaos-based communications at high bit rates using commercial fibre-optic links, Nature, vol.438, pp , ) A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, Fast physical random bit generation with chaotic semiconductor lasers, Nature Photonics, vol.2, no.12, pp , c /(37)

14 ver.1 / m x M f : M M x(t + 1) = f (x(t)) x(t) ϕ : M R s(t) = ϕ(x(t)) {s(t)} x(t) ϕ {s(t)} x(t) Takens 1) ) Φ d (x) = (ϕ(x), ϕ( f (x)),, ϕ( f (d 1) (x))) (23) x C r M N Ψ : M N Ψ 1 1 Ψ 1 1 M C r D r (M) C r ϕ C r (M, R) : m M d 2m+1 Φ d (x) r 1 D r (M) C r (M, R) ϕ c /(37)

15 ver.1 / ) Sauer 3) 2 2) 4) 5) 6) sensitive dependence on initial conditions 2 Lyapunov exponents ɛ 0 t ɛ 0 e λt λ λ < 0 2 x(t + 1) = f (x(t)) λ 1 λ = lim N N N log f (x(t)) t=1 x(t) t (24) x(t + 1) = ax(t)(1 x(t)) 29(a) 29(a) a 29(a) λ > 0 3 (24) k k λ i (i = 1, 2,..., k) 1 λ i = lim N N log σ i(n) 1/2N N N σ i (N) J t J t t=0 t=0 (25) J t k F c /(37)

16 ver.1 / t, (25) QR 7) λ 1 29(b) c 29(a) λ 1 > 0 x(t) LargestLyapunovExponent ParameterofLogisticmap(a) (a) LargestLyapunovExponent X n ParameterofRosslerSystem (c) (b) 29 (a) (b) correlation dimension correlation integral 8) 2 v(i) R m C m 1 (r) = lim N N 2 N I(r v(i) v( j) ) i, j=1 i j (26) I(t) 3 (26) C m (r) r ν ν correlation dimension m ν 210(a) 210(b) γ 3 c /(37)

17 ver.1 / (a) N = 128 N = 32, 768 N = 21, m = 2 m = m log C m (r) N= 128 N= N= 512 N= N= N= 4096 N= N=16384 N= log r log C m (r) m= 2 m= 3 m= 4 m= 5 m= 6 m= 7 m= 8 m= 9 m= log r slope 4 3 slope log r (a) log r (b) (a) (b) γ ) local model global model c /(37)

18 ver.1 / x(t) x(t) y(t) = (x(t), x(t τ),, x(t (d 1)τ)) t N(t) = {s = 1, 2,, t 1 y(t) y(s) ɛ}. (27) ɛ t + 1 ˆx(t + 1) N(t) ˆx(t + 1) = 1 x(s + 1). N(t) s N(t) (28) N(t) ˆx(t + 1) = a i x(t i) i 2 radial basis functions ˆx(t + 1) = a i Φ( y(t) c i ) i (29) (210) Φ 0 c i a i ˆx(t + 1) = 1 + exp(b i y(t) c i ) i (211) 10) cross validation c /(37)

19 ver.1 / , 12) 3 2 x(t+1) = φ(y(t)) x(t+ p) = φ p (y(t)) φ p ξφ 13) q 1 q Q q φ q (y(t)) z( t) = (φ 1 (y(t)), φ 2 (y(t)),, φ Q (y(t))) z(t) x(t + p) x(t + p) = ξ(z(t)) ξ ξ recurrence plots 14, 15) 2 14) k ɛ d x(t) R d (t = 1, 2,, T) Θ(y) y > 0 Θ(y) = 1y 0 Θ(y) = 0 R i, j (ɛ) R i, j (ɛ) = Θ(ɛ x(i) x( j) ) R i, j (ɛ) = 1 (i, j) R i, j (ɛ) = 0 (i, j) i z 2 i ) L 1 ( z 1 = i z i )L 2 ( z 2 = L ( z = max i z i ) 16) Line of IdentityLOI LOI c /(37)

20 ver.1 / LOI LOI LOI 2 laminar 211 (a)(b)(c) (d)(e)(f) (a)(d) (b)(e) (c)(f) 10% DET 15) DET LOI LOI DET LOI 15) 17) 18, 19) c /(37)

21 ver.1 / , 21, 22) 23) 4 24, 22, 25) 5 2 cross recurrence plots 26, 27) x(t), y(t) R d C i, j (ɛ) = Θ(ɛ x(i) y( j) ) x(i) y( j) joint recurrence plots 28) J i, j (ɛ 1, ɛ 2 ) R 1 i, j (ɛ 1) R 2 i, j (ɛ 2) J i, j (ɛ 1, ɛ 2 ) = R 1 i, j (ɛ 1)R 2 i, j (ɛ 2) 29, 30, 31) ) ) 2 34) {s t } N t=1 τ d x t = (s t, s t τ,, s t (d 1)τ )(t = (d 1)τ + 1,, N) (d 1)τ + 1 N 1 l T t T x t k i n i (t) x ni(t) m x ni(t)+m v i (t) = x ni(t)+m x ni(t) v i (t) translation vector m i v c /(37)

22 ver.1 / v(t) = 1 k + 1 k v i (t) i=0 (212) e(t) e(t) = 1 k + 1 k v i (t) v(t) 2 i=0 v(t) 2 (213) e(t) x(t) m e(t) v i (t) 0 e(t) T ) 3 DET 15) R 36) R x(i) x(i + 1) x(i) R / R R surrogate data surrogates c /(37)

23 ver.1 / ) (i) α (ii) (1/α 1) (2/α 1) (iii) (iv) 2 a random shuffle surrogates 38) b 39, 40) 41) 42) 43, 41) c 44, 45) (i) y(t) (ii) s(1) (iii) s(i) exp( y(t ) s(i) /ρ) 1 y(t) y(t + 1) s(i + 1) 46) d twin surrogates 47) c /(37)

24 ver.1 / i(1) i( j) i( j) + 1 i( j + 1) k k + 1 i( j + 1) 47) (i) x y x (ii) t i (i = 1, 2,, 2/α 1) (2/α 1) (iii) x y S (x, y) (iv) t i y S (t i, y) (v) S (x, y) S (t i, y) e 48) 49, 50) 51) f 52) 53) 54) 3 pivotal 55) 55) c /(37)

25 ver.1 / ) F. Takens, Detecting strange attractors in turbulence, in Dynamical Systems and Turbulence, Warwick, 1980, vol.898 of Lecture Notes in Mathematics, edited by D.A. Rand and L.S. Young, Springer, Berlin, pp , ) J. Stark, Delay embeddings for forced systems I. Deterministic forcing, J. Nonlinear Sci. vol.9, No.3, pp , ) T. Sauer, J.A. Yorke, and M. Casdagli, Embedology, J. Stat. Phys., vol.65, no.3-4, pp , ) M.R. Muldoon, D.S. Broomhead, J.P. Huke, and R. Hegger, Delay embedding in the presence of dynamical noise, Dynamics and Stablity of Systems, vol.13, no.2, pp , ) J. Stark, D.S. Broomhead, M.E. Davies, and J. Huke, Delay embeddings for forced systems II. Stochastic forcing, J. Nonlinear Sci., vol.13, no.6, pp , ) E.D. Sontag, For differential equations with r parameters, 2r+1 experiments are enough for identification, J. Nonlinear Sci., vol.12, no.6, pp , ) I. Shimada and T. Nagashima, A numerical approach to ergodic problem of dissipative dynamical systems, Prog. Theor. Phys., vol.61, no.6, pp , ) P. Grassberger and I. Procaccia, Measuring the strangeness of strange attractors, Physica, vol.9d, pp , ) H. Kantz and T. Schreiber, Nonlinear time series analysis, Cambridge, ) T. Nakamura, K. Judd, A.I. Mees, and M. Small, A comparative study of information criteria for model selection, Int. J. Bifurcat. Chaos, vol.16, no.8, pp , ) R. Tokunaga, S. Kajiwara, and T. Matsumoto, Reconstrucitng bifurcation diagrams only from timewaveforms, Physica D, vol.79, no.2-4, pp , ) E. Bagarinao Jr., K. Pakdaman, T. Nomura, and S. Sato, Reconstructing bifurcation diagrams from noisy time series using nonlinear autoregressive models, Phys. Rev. E, vol.60, no.1, pp , ) K. Judd and M. Small, Towards long-term prediction, Physica D, vol.136, No.1-2, pp.31-44, ) J.P. Eckmann, S.O. Kamphorst, and D. Ruelle, Recurrence plots of dynamical systems, Europhys. Lett., vol.4, no.9, pp , ) N. Marwan, M.C. Romano, M. Thiel, and J. Kurths, Recurrence plots for the analysis of complex systems, Phys. Rep., vol.438, no.5-6, pp , ) S. Suzuki, Y. Hirata, and K. Aihara, Definition of distance for marked point process data and its application to recurrence plot-based analysis of exchange tick data of foreign currencies, Int. J. Bifurcat. Chaos, in press. 17) N. Marwan, N. Wessel, U. Meyerfeldt, A. Schirdewan, and J. Kurths, Recurrence-plot-based measures of complexity and their application to hear-rate-variability data, Phys. Rev. E, vol.66, no.2, Article Number , ) P. Faure and H. Korn, A new method to estimate the Kolmogorov entropy from recurrence plots: its application to neuronal signals, Physica D, vol.122, no.1-4, pp , ) M. Thiel, M.C. Romano, P.L. Read, and J. Kurths, Estimation of dynamical invariants without embedding by recurrence plots, Chaos, vol.14, no.2, pp , ) M. Thiel, M.C. Romano, and J. Kurths, How much information is contained in a recurrence plot? Phys. Lett. A, vol.330, no.5, pp , ) M. Thiel, M.C. Romano, J. Kurths, M. Rolfs, and R. Kliegl, Generating surrogates from recurrences, Phil. Trans. R. Soc. A, vol,366, no.1865, pp , ) Y. Hirata, S. Horai, and K. Aihara, Reproduction of distance matrices and original time series from recurrence plots and their applications, Euro. Phys. J. Spec. Top., vol.164, pp.13-22, c /(37)

26 ver.1 / ) G. Robinson and M. Thiel, Recurrence determine the dynamics, Chaos vol.19, Article Number , ) M.C. Casdagli, Recurrence plots revisited, Physica D, vol.108, No.1-2, pp.12-44, ) M. Tanio, Y. Hirata, and H. Suzuki, Reconstruction of driving forces through recurrence plots, Phys. Lett. A, vol.373, pp , ) J.P. Zbilut, A. Giuliani, C.L. Webber Jr., Detecting deterministic signals in exceptionally noisy environments using cross-recurrence quantification, Phys. Lett. A, vol.246, no.1-2, pp , ) N. Marwan and J. Kurths, Nonlinear analysis of bivariate data with cross recurrence plots, Phys. Lett. A, vol.302, no.5-6, pp , ) M.C. Romano, M. Thiel, J. Kurths, and W. von Bloh, Multivariate recurrence plots, Phys. Lett. A, vol. 330, no.3-4, pp , ) M.C. Romano, M. Thiel, J. Kurths, and C. Grebogi, Estimation of the direction of the coupling by conditional probabilities of recurrence, Phys. Rev. E, vol.76, Article Number , ) Y. Hirata and K. Aihara, Identifying hidden common causes from bivariate time series: A method using recurrence plots, Phys. Rev. E, vol.81, Article Number , ) J. Nawrath, M.C. Romano, M. Thiel, I.Z. Kiss, M. Wickramasinghe, J. Timmer, J. Kurths, and B. Schelter, Distinguishing direct from indirect interactions in oscillatory network with multiple time scales, Phys. Rev. Let., vol.104, Article Number , ) C. Chatfield, The analysis of time series: An introduction, Chapman & Hall/CRC, ) G. Sugihara and R.M. May, Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series, Nature, vol.344, no.6268, pp , ) R. Wayland, D. Bromley, D. Pickett, and A. Passamante, Recognizing determinism in a timeseries, Phys. Rev. Lett., vol.70, no.5, pp , ) Y. Hirata, S. Horai, H. Suzuki, and K. Aihara, Testing serial dependence by random-shuffle surrogates and the Wayland method, Phys. Lett. A, vol.370, no.3-4, pp , ), C, vol.122-c, no.1, pp , ) Y. Ikegaya, G. Aaron, R. Cossart, D. Aronov, I. Lampl, D. Ferster, and R. Yuste, Synfire chains and cortical songs: Temporal modules of cortical activity, Science, vol.304, no.5670, pp , ) J.A. Scheinkmann and B. LeBaron, Nonlinear dynamics and stock returns, J. Business, vol.62, no.3, pp , ) J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. D. Farmer, Testing for nonlinearity in timeseries: the method of surrogate data, Physica D, vol.58, No.1-4, pp.77-94, ) T. Schreiber and A. Schmitz, Improved surrogate data for nonlinear test, Phys. Rev. Lett., vol.77, no.4, pp , ) T. Schreiber and A. Schmitz, Surrogate time series, Physica D, vol.142, no.3-4, pp , ),,, ) D. Prichard and J. Theiler, Generating surrogate data for time series with several simultaneously measured variables, Phys. Rev. Lett., vol.73, no.7, pp , ) M. Small, D.J. Yu, and R.G. Harrison, Surrogate test for pseudoperiodic time series, Phys. Rev. Lett., vol.87, no.18, Article Number , ) M. Small, Applied nonlinear time series analysis: applications in physics, physiology and finance, World Scientific ) X. Luo, T. Nakamura, and M. Small, Surrogate test to distinguish between chaotic and pseudoperiodic time series, Phys. Rev. E, vol.71, no.2, Article Number , ) M. Thiel, M. C. Romano, J. Kurths, M. Rolfs, and R. Kliegl, Twin surrogates to test for complex c /(37)

27 ver.1 / synchronisation, Europhys. Lett., vol.75, no.4, pp , ) M.B. Kennel, Statistical test for dynamical nonstationarity in observed time-series data, Phys. Rev. E, vol.56, no.1, pp , ) T. Nakamura and M. Small, Small-shuffle surrogate data: Testing for dynamics in fluctuating data with trends, Phys. Rev. E, vol.72, no.5, Article Number , ) T. Nakamura, Y. Hirata, and M. Small, Testing for correlation structures in short-term variabilities with long-term trends of multivariate time series, Phys. Rev. E, vol.74, no.4, Article Number , ) T. Nakamura, M. Small, and Y. Hirata, Testing for nonlinearity in irregular fluctuations with long-term trends, Phys. Rev. E, vol.74, no.2, Article Number , ) T. Schreiber, Constrained randomization of time series data, Phys. Rev. Lett., vol.80, no.10, pp , ) A. Schmitz and T. Schreiber, Testing for nonlinearity in unevenly sampled time series, Phys. Rev. E, vol.59, no.4, pp , ) Y. Hirata, Y. Katori, H. Shimokawa, H. Suzuki, T.A. Blenkinsop, E.J. Lang, and K. Aihara, Testing a neural coding hypothesis using surrogate data, J. Neurosci. Meth., vol.172, no.2, pp , ) J. Theiler and D. Prichard, Constrained-realization Monte-Carlo method for hypothesis testing, Physica D, vol.94, no.4, pp , c /(37)

28 X 1 (t), X 2 (t) 1) 2, (1) 3) 4,, (2) 5), (3) 6), (4) 7) 20 (A) 20 (B) X (t) 2 0 X (t) X (t) X (t) C = 0.2. (2 14) ( x 1 (t) x 2 (t))(a) C = 0.05, (B) X 1 (t) = X 2 (t) dx 1,2 dt dy 1,2 dt dz 1,2 dt = ω 1,2 y 1,2 z 1,2 + C(x 2,1 x 1,2 ), = ω 1,2 x 1, y 1,2, (214) = z 1,2 (x 1,2 10). X 1 = (x 1, y 1, z 1 ) X 2 = (x 2, y 2, z 2 ) C ω 1,2 = 0.97± ω ω c /(37)

29 ω = 0 x 1 (t) x 2 212(A) C = 0.05 x 1 (t) = x 2 (t) 212(B) C = 0.2 x 1 (t) = x 2 (t), y 1 (t) = y 2 (t), z 1 (t) = z 2 (t) 6) d (x, y) (0, 0) 213(A) (x, y) φ(t) = arctan( y x ) 6) nφ 1 (t) mφ 2 (t) < const φ 1, φ 2 n, m const. (214) ω = 0.02 (0, 0) (x, y) φ(t) n m φ (n,m) (t) = nφ 1 (t) mφ 2 (t) 1 1 φ (1,1) 1 1 C = 0.03, 0.035, φ(t) 213(B). C = C = π C = c /(37)

30 Y(t) (A) X(t) Angle φ φ Phase Difference (B) Time C=0.03 C=0.035 C= (A) (x, y) φ (B) (2 14) φ(t) = φ 1 (t) φ 2 (t). C = 0.03, 0.035, H X 1 (t) = H(X 2 (t)) 4, 5) τ X 1 (t) = X 2 (t + τ) 7) 8) Ott, Grebogi, Yorke 9) OGY Pyragas DFC 10) 11, 12, 13, 14, 15, 16) ẋ(t) = f(x(t), u(t)) u(t) 0 x(t) = x(t + T) u(t) x(t) x(t) OGY x d (n + 1) = f d (x d (n), u d (n)) c /(37)

31 x d u d (n) = K(x d (n) x d ) 214(a) K lim n x d (n) = x d DFC u(t) = K(x(t) x(t T)) OGY T x(t T) 214(b) DFC OGY DFC 14, 15) 214 9, 10) 11, 13) 11, 12, 13, 14, 15) Cellular Neural Network: CNN c /(37)

32 Chua Yang ) 1 M N 215 i j C(i, j) dx i j dt = x i j + A(i, j; k, l) y kl + B(i, j; k, l) u kl + z i j C(k,l) N r(i, j) C(k,l) N r(i, j) x i j, y i j, u i j C(i, j) y i j = f (x i j ) = ( x i j + 1 x i j 1 )/2 A(i, j; k, l), B(i, j; k, l) C(k, l) C(i, j) z i j C(i, j) N r (i, j) C(i, j) N r (i, j) = { C(k, l) : k i r, l j r } N r (i, j) M N x ij y ij j u ij z ij f(x ij) i A(i, j; k, l)ykl B(i, j; k, l)ukl N 1(i, j) 215 CNN A(i, j; k, l), B(i, j; k, l), z i j (i, j) CNN A(i, j; k, l), B(i, j; k, l) (2r + 1) 2 A(i, j; k, l), B(i, j; k, l) z i j 2 (2r + 1) CNN A(i, j; k, l), B(i, j; k, l), z i j u i j x i j (0) u i j x(t) R M N 1 c /(37)

33 f 18) u i j x(t) CNN lim t y(t) A(i, j; k, l) positive cell-linking 18) CNN 3 CNN ) 216 CNN CNN 4 Chua Yang CNN CNNCNN CNN CNN CNN ) c /(37)

34 21, 22, 23) p i (1 i p) 21, 22, 23, 24) x i (t n+1 ) = f i ( p j=1 w i j d=0 n k d f h i j( x j (t n d ) ) m + v i j j=1 d=0 n n ke d a j (t n d ) α kr d ( g i xi (t n d ) ) ) + Θ i (215) x i (t n ) t n n w i j j i v i j i j a j (t n d ) t n d j m i Θ i k f, k e, k r f i ( ) g i ( ) h i j ( ) k r α f i ( ) f i ( ) k f = k e = k r = α = 0 k r 0, α 0 f i ( ) k f = k e = k r = α = 0 23) (215) f i ( ) 1 η i (t n+1 ) 2 ξ i (t n+1 ) , 22, 23, ζ i (t n+1 ) 24) η i (t n+1 ) = k f η i (t n ) + ξ i (t n+1 ) = k e ξ i (t n ) + p ( w i j h i j x j (t n ) ) j=1 m v i j a j (t n ) j=1 d=0 (216) (217) ζ i (t n+1 ) = k r ζ i (t n ) αg i ( xi (t n ) ) + θ i (218) θ i Θ i (1 k r ) x i (t n+1 ) = f i ( ηi (t n+1 ) + ξ i (t n+1 ) + ζ i (t n+1 ) ) = f i ( yi (t n+1 ) ) (219) y i (t n+1 ) c /(37)

35 25, 26, 27) (215) k f = k e = k r k 21, 22) y(t n+1 ) = ky(t n ) αg( f (y(t n ))) + A(t n ) (220) A(t n ) = a(t n ) ka(t n 1 ) + θ(1 k) w i j 23) 24) 28) 29) 23) TSP QAP DNA 23, 30, 31, 32, 33, 34) TSP QAP 35, 36, 37, 38) Hopfield QAP 39, 40) 25, 26, 40, 41) 1) K.M. Cuomo and A.V. Oppenheim, Circuit implementation of synchronized chaos with applications to communications, Phys. Rev. Lett., vol.71, no.1, pp.65-68, ) H. Fujisaka and T. Yamada, Stability theory of synchronized motion in coupled oscillator systems, Prog. Theor. Phys., vol.69, no.1, pp.32-47, c /(37)

36 3) L.M. Pecora and T.L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett., vol.64, no.8, pp , ) N.F. Rulkov, M.M. Sushchik, L.S. Tsimring, and H.D.I. Abarbanel, Generalized synchronization of chaos in directionally coupled chaotic systems, Phys. Rev. E, vol.51, no.2, pp , ) L. Kocarev and U. Parlitz, Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems, Phys. Rev. Lett., vol.76, no.11, pp , ) M.G. Rosenblum, A.S. Pikovsky, and J. Kurths, Phase synchronization of chaotic oscillators, Phys. Rev. Lett., vol.76, no.11, pp , ) M.G. Rosenblum, A.S. Pikovsky, and J. Kurths, From phase to lag synchronization in coupled chaotic oscillators, Phys. Rev. Lett., vol.78, no.22, pp , ) A. Pikovsky, M. Rosenblum, J. Kurths,,,, ) E. Ott, C. Grebogi, and J.A. Yorke, Controlling chaos, Phys. Rev. Lett., vol. 64, no.11, pp , ) K. Pyragas, Continuous control of chaos by self-controlling feedback, Phys. Lett. A, vol.170, no.6, pp , ) G. Chen and X. Dong, From chaos to order, World Scientific Pub. Co. Inc., ) B.R. Andrievskii and A.L. Fradkov, Control of chaos: methods and applications. I Methods, Automation and Remote Control, vol.64, no.5, pp , ) B.R. Andrievskii and A.L. Fradkov, Control of chaos: methods and applications. I Applications, Automation and Remote Control, vol.65, no.4, pp , ) K. Pyragas, Delayed feedback control of chaos, Phil. Trans. R. Soc. A, vol.364, no.1846, pp , ) E. Schöll and H.G. Schuster, Handbook of chaos control, Wiley-Vch, ),,, ) L.O. Chua and L. Yang, Cellular neural networks: theory and applications, IEEE Trans. Circuits Syst., vol.35, no.10, pp , ) L.O. Chua, CNN: a paradigm for complexity, World Scientific, Singapore, ) L. Kék, K. Karacs and T. Roska, Cellular wave computing library: templates, algorithms, and programs version 2.1 edition, MTASZTAKI, Budapest, ) K. Aihara and G. Matsumoto, Chaotic oscillations and bifurcations in squid giant axons, Chaos (A. V. Holden ed.), Manchester University Press and Princeton University Press, pp , ) K. Aihara, Chaotic neural networks, Bifurcation Phenomena in Nonlinear System and Theory of Dynamical Systems (H. Kawakami ed.), World Scientific, pp , ) K. Aihara, T. Takabe, and M. Toyoda, Chaotic neural networks, Phys. Lett. A, vol.144, pp , ) K. Aihara, Chaos engineering and its application to parallel distributed processing with chaotic neural networks, Proc. IEEE, vol.90, no.5, pp , ) M. Adachi and K. Aihara, Associative dynamics in a chaotic neural network, Neural Networks, vol.10, no.1, pp.83-98, ) Y. Horio and K. Aihara, Chaotic neuro-computer, Chaos in Circuits and Systems (G. Chen and T. Ueta eds.), World Scientific Publishers, pp , ) Y. Horio and K. Aihara, Neuron-synapse IC chip-set for large-scale chaotic neural networks, IEEE Trans. Neural Networks, vol.14, no.5, pp , ) R. Herrera, K. Suyama, Y. Horio and K. Aihara, IC implementation of a switched-current chaotic neuron, IEICE Trans. Fundamentals, vol.e82-a, no.9, pp , ) J. Kuroiwa, N. Masutani, S. Nara, and K. Aihara, Sensitive response of a chaotic wandering state to c /(37)

37 memory fragment inputs in a chaotic neural network model, Int. J. of Bifurcation and Chaos, vol.14, no.4, pp , ) K. Kaneko and I. Tsuda, Chaotic Itinerancy, Chaos, vol.13, no.3, pp , ) L. Chen and K. Aihara, Chaotic simulated annealing by a neural network model with transient chaos, Neural Networks, vol.8, no.6, pp , ) I. Tokuda, K. Aihara, and T. Nagashima, Adaptive annealing for chaotic optimization, Phys. Rev. E, vol.58, no.4, pp , ) R. Nanba, M. Hasegawa, T. Nisita, and K. Aihara, Optimization using chaotic neural networks and its application to lighting design, Control and Cybernetics, vol.31, no.2, pp , ) T. Kimura, and T. Ikeguchi, A new algorithm for packet routing problems using chaotic neurodynamics and its surrogate analysis, Neural Computing and Applications, vol.16. pp , ) T. Matsuura and T. Ikeguchi, Refractory effects of chaotic neurodynamics for finding motifs from DNA sequences, Proc. of Int. Conf. Intelligent Data Engineering and Automated Learning, pp , ) M. Hasegawa, T. Ikeguchi, and K. Aihara, Combination of chaotic neurodynamics with the 2-opt algorithm to solve traveling salesman problems, Phys. Rev. Lett., vol.79, no.12, pp , ) M. Hasegawa, T. Ikeguchi, and K. Aihara, Exponential and chaotic neurodynamical tabu searches for quadratic assignment problems, Control and Cybernetics, vol.29, no.3, pp , ) M. Hasegawa, T. Ikeguchi, and K. Aihara:, Solving large scale traveling salesman problems by chaotic neurodynamics, Neural Networks, vol.15, no.2, pp , ) M. Hasegawa, T. Ikeguchi, K. Aihara, and K. Itoh, A novel chaotic search for quadratic assignment problems, European J. of Operational Research, vol.139, pp , ) T. Ikeguchi, K. Sato, M. Hasegawa, and K. Aihara, Chaotic optimization for quadratic assignment problems, Proc. IEEE Int. Symp. on Circuits and Syst., vol.3, pp , ) Y. Horio, T. Ikeguchi, and K. Aihara, A mixed analog/digital chaotic neuro-computer system for quadratic assignment problems, Neural Networks, vol.18, no.5-6, pp , ) Y. Horio, and K. Aihara, Analog computation through high-dimensional physical chaotic neurodynamics, Physica-D, vol.237, no.9, pp , c /(37)

リカレンスプロット : 時系列の視覚化を越えて (マクロ経済動学の非線形数理)

リカレンスプロット : 時系列の視覚化を越えて (マクロ経済動学の非線形数理) 1768 2011 150-162 150 : Recurrence plots: Beyond visualization of time series Yoshito Hirata Institute of Industrial Science, The University of Tokyo voshito@sat. t.u\cdot tokvo.ac.ip 1 1. 1987 (Eckmann

More information

(time series) ( 225 ) / / p.2/66

(time series) ( 225 ) / / p.2/66 338 857 255 Tel : 48 858 3577, Fax : 48 858 3716 Email : tohru@ics.saitama-u.ac.jp URL : http://www.nls.ics.saitama-u.ac.jp/ tohru / / p.1/66 (time series) ( 225 ) / / p.2/66 / / p.3/66 ?? / / p.3/66 1.9.8.7.6???.5.4.3.2.1

More information

$/\mathrm{t}\mathrm{a}\mathrm{k}\mathrm{a}\mathrm{y}\mathrm{a}$ MIYANO E mail: hirosaki-u.ac.jp 1 ( ) ( ) 1980

$/\mathrm{t}\mathrm{a}\mathrm{k}\mathrm{a}\mathrm{y}\mathrm{a}$ MIYANO E mail: hirosaki-u.ac.jp 1 ( ) ( ) 1980 Title 非線形時系列解析によるカオス性検定 ( 非線形解析学と凸解析学の研究 ) Author(s) 宮野, 尚哉 Citation 数理解析研究所講究録 (2000), 1136: 28-36 Issue Date 2000-04 URL http://hdl.handle.net/2433/63786 Right Type Departmental Bulletin Paper Textversion

More information

ver.1 / c /(13)

ver.1 / c /(13) 1 -- 11 1 c 2010 1/(13) 1 -- 11 -- 1 1--1 1--1--1 2009 3 t R x R n 1 ẋ = f(t, x) f = ( f 1,, f n ) f x(t) = ϕ(x 0, t) x(0) = x 0 n f f t 1--1--2 2009 3 q = (q 1,..., q m ), p = (p 1,..., p m ) x = (q,

More information

02[ ]小林(責).indd

02[ ]小林(責).indd 43 Delayed Feedbac Control Delayed Feedbac Control Prediction-based Feedbac Control 1, 2 GDP 44 66 3 3 2 Ott, Grebogi Yore OGY 4 OGY OGY OGY OGY OGY 3, 5, 6 OGY Pyragas Delayed Feedbac Control DFC 7 DFC

More information

(a) (b) (c) 4. (a) (b) (c) p.2/27

(a) (b) (c) 4. (a) (b) (c) p.2/27 338 8570 255 Tel : 048 858 3577 Fax : 048 858 3716 Email : tohru@ics.saitama-u.ac.jp URL : http://www.nls.ics.saitama-u.ac.jp/ tohru Copyright (C) 2002, Tohru Ikeguchi, Saitama University. All rights reserved.

More information

sakigake1.dvi

sakigake1.dvi (Zin ARAI) arai@cris.hokudai.ac.jp http://www.cris.hokudai.ac.jp/arai/ 1 dynamical systems ( mechanics ) dynamical systems 3 G X Ψ:G X X, (g, x) Ψ(g, x) =:Ψ g (x) Ψ id (x) =x, Ψ gh (x) =Ψ h (Ψ g (x)) (

More information

TCSE16

TCSE16 Time Series t { x(t } N1 t =t " x(t 0 { 0,x(t 0 + t,...x(t 0 + (N 1t } t { } N1 t =t 0 x(t x(t x(t Random Variable Stochastic Process t x(t N1 x(t { } t =t 0 t { } N1 t =t 0 Statistical Moment t { } N1

More information

R¤Çʬ¤«¤ëÎÏ³Ø·Ï - ¡Áʬ´ô¤ÎÍͻҤò²Ä»ë²½¤·¤Æ¤ß¤ë¡Á

R¤Çʬ¤«¤ëÎÏ³Ø·Ï - ¡Áʬ´ô¤ÎÍͻҤò²Ä»ë²½¤·¤Æ¤ß¤ë¡Á .... R 2009 3 1 ( ) R 2009 3 1 1 / 23 : ( )!, @tkf, id:tkf41, (id:artk ) : 4 1 : http://arataka.wordpress.com : Python, C/C++, PHP, Javascript R : / ( ) R 2009 3 1 2 / 23 R? R! ( ) R 2009 3 1 3 / 23 =

More information

xia2.dvi

xia2.dvi Journal of Differential Equations 96 (992), 70-84 Melnikov method and transversal homoclinic points in the restricted three-body problem Zhihong Xia Department of Mathematics, Harvard University Cambridge,

More information

ohp_06nov_tohoku.dvi

ohp_06nov_tohoku.dvi 2006 11 28 1. (1) ẋ = ax = x(t) =Ce at C C>0 a0 x(t) 0(t )!! 1 0.8 0.6 0.4 0.2 2 4 6 8 10-0.2 (1) a =2 C =1 1. (1) τ>0 (2) ẋ(t) = ax(t τ) 4 2 2 4 6 8 10-2 -4 (2) a =2 τ =1!! 1. (2) A. (2)

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

Shunsuke Kobayashi 1 [6] [11] [7] u t = D 2 u 1 x 2 + f(u, v) + s L u(t, x)dx, L x (0.L), t > 0, Neumann 0 v t = D 2 v 2 + g(u, v), x (0, L), t > 0. x

Shunsuke Kobayashi 1 [6] [11] [7] u t = D 2 u 1 x 2 + f(u, v) + s L u(t, x)dx, L x (0.L), t > 0, Neumann 0 v t = D 2 v 2 + g(u, v), x (0, L), t > 0. x Shunsuke Kobayashi [6] [] [7] u t = D 2 u x 2 + fu, v + s L ut, xdx, L x 0.L, t > 0, Neumann 0 v t = D 2 v 2 + gu, v, x 0, L, t > 0. x2 u u v t, 0 = t, L = 0, x x. v t, 0 = t, L = 0.2 x x ut, x R vt, x

More information

main.dvi

main.dvi CDMA 1 CDMA ( ) CDMA CDMA CDMA 1 ( ) Hopfield [1] Hopfield 1 E-mail: okada@brain.riken.go.jp 1 1: 1 [] Hopfield Sourlas Hopfield [3] Sourlas 1? CDMA.1 DS/BPSK CDMA (Direct Sequence; DS) (Binary Phase-Shift-Keying;

More information

通信容量制約を考慮したフィードバック制御 - 電子情報通信学会 情報理論研究会(IT) 若手研究者のための講演会

通信容量制約を考慮したフィードバック制御 -  電子情報通信学会 情報理論研究会(IT)  若手研究者のための講演会 IT 1 2 1 2 27 11 24 15:20 16:05 ( ) 27 11 24 1 / 49 1 1940 Witsenhausen 2 3 ( ) 27 11 24 2 / 49 1940 2 gun director Warren Weaver, NDRC (National Defence Research Committee) Final report D-2 project #2,

More information

{x 1 -x 4, x 2 -x 5, x 3 -x 6 }={X, Y, Z} {X, Y, Z} EEC EIC Freeman (4) ANN Artificial Neural Network ANN Freeman mesoscopicscale 2.2 {X, Y, Z} X a (t

{x 1 -x 4, x 2 -x 5, x 3 -x 6 }={X, Y, Z} {X, Y, Z} EEC EIC Freeman (4) ANN Artificial Neural Network ANN Freeman mesoscopicscale 2.2 {X, Y, Z} X a (t ( ) No. 4-69 71 5 (5-5) *1 A Coupled Nonlinear Oscillator Model for Emergent Systems (2nd Report, Spatiotemporal Coupled Lorenz Model-based Subsystem) Tetsuji EMURA *2 *2 College of Human Sciences, Kinjo

More information

1 : ( ) ( ) ( ) ( ) ( ) etc (SCA)

1 : ( ) ( ) ( ) ( ) ( ) etc (SCA) START: 17th Symp. Auto. Decentr. Sys., Jan. 28, 2005 Symplectic cellular automata as a test-bed for research on the emergence of natural systems 1 : ( ) ( ) ( ) ( ) ( ) etc (SCA) 2 SCA 2.0 CA ( ) E.g.

More information

三石貴志.indd

三石貴志.indd 流通科学大学論集 - 経済 情報 政策編 - 第 21 巻第 1 号,23-33(2012) SIRMs SIRMs Fuzzy fuzzyapproximate approximatereasoning reasoningusing using Lukasiewicz Łukasiewicz logical Logical operations Operations Takashi Mitsuishi

More information

研究シリーズ第40号

研究シリーズ第40号 165 PEN WPI CPI WAGE IIP Feige and Pearce 166 167 168 169 Vector Autoregression n (z) z z p p p zt = φ1zt 1 + φ2zt 2 + + φ pzt p + t Cov( 0 ε t, ε t j )= Σ for for j 0 j = 0 Cov( ε t, zt j ) = 0 j = >

More information

ばらつき抑制のための確率最適制御

ばらつき抑制のための確率最適制御 ( ) http://wwwhayanuemnagoya-uacjp/ fujimoto/ 2011 3 9 11 ( ) 2011/03/09-11 1 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 2 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 3 / 46 (1/2) r + Controller - u Plant y

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

untitled

untitled 18 1 2,000,000 2,000,000 2007 2 2 2008 3 31 (1) 6 JCOSSAR 2007pp.57-642007.6. LCC (1) (2) 2 10mm 1020 14 12 10 8 6 4 40,50,60 2 0 1998 27.5 1995 1960 40 1) 2) 3) LCC LCC LCC 1 1) Vol.42No.5pp.29-322004.5.

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

UWB a) Accuracy of Relative Distance Measurement with Ultra Wideband System Yuichiro SHIMIZU a) and Yukitoshi SANADA (Ultra Wideband; UWB) UWB GHz DLL

UWB a) Accuracy of Relative Distance Measurement with Ultra Wideband System Yuichiro SHIMIZU a) and Yukitoshi SANADA (Ultra Wideband; UWB) UWB GHz DLL UWB a) Accuracy of Relative Distance Measurement with Ultra Wideband System Yuichiro SHIMIZU a) and Yukitoshi SANADA (Ultra Wideband; UWB) UWB GHz DLL UWB (DLL) UWB DLL 1. UWB FCC (Federal Communications

More information

JFE.dvi

JFE.dvi ,, Department of Civil Engineering, Chuo University Kasuga 1-13-27, Bunkyo-ku, Tokyo 112 8551, JAPAN E-mail : atsu1005@kc.chuo-u.ac.jp E-mail : kawa@civil.chuo-u.ac.jp SATO KOGYO CO., LTD. 12-20, Nihonbashi-Honcho

More information

2.2 (a) = 1, M = 9, p i 1 = p i = p i+1 = 0 (b) = 1, M = 9, p i 1 = 0, p i = 1, p i+1 = 1 1: M 2 M 2 w i [j] w i [j] = 1 j= w i w i = (w i [ ],, w i [

2.2 (a) = 1, M = 9, p i 1 = p i = p i+1 = 0 (b) = 1, M = 9, p i 1 = 0, p i = 1, p i+1 = 1 1: M 2 M 2 w i [j] w i [j] = 1 j= w i w i = (w i [ ],, w i [ RI-002 Encoding-oriented video generation algorithm based on control with high temporal resolution Yukihiro BANDOH, Seishi TAKAMURA, Atsushi SHIMIZU 1 1T / CMOS [1] 4K (4096 2160 /) 900 Hz 50Hz,60Hz 240Hz

More information

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) * * 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *1 2004 1 1 ( ) ( ) 1.1 140 MeV 1.2 ( ) ( ) 1.3 2.6 10 8 s 7.6 10 17 s? Λ 2.5 10 10 s 6 10 24 s 1.4 ( m

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

03.Œk’ì

03.Œk’ì HRS KG NG-HRS NG-KG AIC Fama 1965 Mandelbrot Blattberg Gonedes t t Kariya, et. al. Nagahara ARCH EngleGARCH Bollerslev EGARCH Nelson GARCH Heynen, et. al. r n r n =σ n w n logσ n =α +βlogσ n 1 + v n w

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206,

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206, H28. (TMU) 206 8 29 / 34 2 3 4 5 6 Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206, http://link.springer.com/article/0.007/s409-06-0008-x

More information

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α,

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α, [II] Optimization Computation for 3-D Understanding of Images [II]: Ellipse Fitting 1. (1) 2. (2) (edge detection) (edge) (zero-crossing) Canny (Canny operator) (3) 1(a) [I] [II] [III] [IV ] E-mail sugaya@iim.ics.tut.ac.jp

More information

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, PC ( 4 5 )., 5, Milnor Milnor., ( 6 )., (I) Z modulo

More information

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i 解説 4 matsuo.mamoru jaea.go.jp 4 eizi imr.tohoku.ac.jp 4 maekawa.sadamichi jaea.go.jp i ii iii i Gd Tb Dy g khz Pt ii iii Keywords vierbein 3 dreibein 4 vielbein torsion JST-ERATO 1 017 1. 1..1 a L = Ψ

More information

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member (University of Tsukuba), Yasuharu Ohsawa, Member (Kobe

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2 7 1995, 2017 7 21 1 2 2 3 3 4 4 6 (1).................................... 6 (2)..................................... 6 (3) t................. 9 5 11 (1)......................................... 11 (2)

More information

1. ( ) L L L Navier-Stokes η L/η η r L( ) r [1] r u r ( ) r Sq u (r) u q r r ζ(q) (1) ζ(q) u r (1) ( ) Kolmogorov, Obukov [2, 1] ɛ r r u r r 1 3

1. ( ) L L L Navier-Stokes η L/η η r L( ) r [1] r u r ( ) r Sq u (r) u q r r ζ(q) (1) ζ(q) u r (1) ( ) Kolmogorov, Obukov [2, 1] ɛ r r u r r 1 3 Kolmogorov Toward Large Deviation Statistical Mechanics of Strongly Correlated Fluctuations - Another Legacy of A. N. Kolmogorov - Hirokazu FUJISAKA Abstract Recently, spatially or temporally strongly

More information

kokyuroku.dvi

kokyuroku.dvi On Applications of Rigorous Computing to Dynamical Systems (Zin ARAI) Department of Mathematics, Kyoto University email: arai@math.kyoto-u.ac.jp 1 [12, 13] Lorenz 2 Lorenz 3 4 2 Lorenz 2.1 Lorenz E. Lorenz

More information

a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a

a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a), Tetsuo SAWARAGI, and Yukio HORIGUCHI 1. Johansson

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

カルマンフィルターによるベータ推定( )

カルマンフィルターによるベータ推定( ) β TOPIX 1 22 β β smoothness priors (the Capital Asset Pricing Model, CAPM) CAPM 1 β β β β smoothness priors :,,. E-mail: koiti@ism.ac.jp., 104 1 TOPIX β Z i = β i Z m + α i (1) Z i Z m α i α i β i (the

More information

p *2 DSGEDynamic Stochastic General Equilibrium New Keynesian *2 2

p *2 DSGEDynamic Stochastic General Equilibrium New Keynesian *2 2 2013 1 nabe@ier.hit-u.ac.jp 2013 4 11 Jorgenson Tobin q : Hayashi s Theorem : Jordan : 1 investment 1 2 3 4 5 6 7 8 *1 *1 93SNA 1 p.180 1936 100 1970 *2 DSGEDynamic Stochastic General Equilibrium New Keynesian

More information

2017

2017 2017 1 2 2 3 3 4 3.1?......................... 4 3.2 [5, 6]........... 5 3.2.1......... 5 3.2.2................... 6 3.2.3....... 9 3.2.4.......... 10 3.2.5....... 11 3.2.6 : phase slip [5, 8]..........

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

(1970) 17) V. Kucera: A Contribution to Matrix Ouadratic Equations, IEEE Trans. on Automatic Control, AC- 17-3, 344/347 (1972) 18) V. Kucera: On Nonnegative Definite Solutions to Matrix Ouadratic Equations,

More information

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15. 1. 2. 3. 16 17 18 ( ) ( 19 ( ) CG PC 20 ) I want some rice. I want some lice. 21 22 23 24 2001 9 18 3 2000 4 21 3,. 13,. Science/Technology, Design, Experiments,

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 単純適応制御 SAC サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/091961 このサンプルページの内容は, 初版 1 刷発行当時のものです. 1 2 3 4 5 9 10 12 14 15 A B F 6 8 11 13 E 7 C D URL http://www.morikita.co.jp/support

More information

18 2 20 W/C W/C W/C 4-4-1 0.05 1.0 1000 1. 1 1.1 1 1.2 3 2. 4 2.1 4 (1) 4 (2) 4 2.2 5 (1) 5 (2) 5 2.3 7 3. 8 3.1 8 3.2 ( ) 11 3.3 11 (1) 12 (2) 12 4. 14 4.1 14 4.2 14 (1) 15 (2) 16 (3) 17 4.3 17 5. 19

More information

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x University of Hyogo 8 8 1 d x(t) =f(t, x(t)), dt (1) x(t 0 ) =x 0 () t n = t 0 + n t x x n n x n x 0 x i i = 0,..., n 1 x n x(t) 1 1.1 1 1 1 0 θ 1 θ x n x n 1 t = θf(t n 1, x n 1 ) + (1 θ)f(t n, x n )

More information

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2 (2018 ) ( -1) TA Email : ohki@i.kyoto-u.ac.jp, ske.ta@bode.amp.i.kyoto-u.ac.jp : 411 : 10 308 1 1 2 2 2.1............................................ 2 2.2..................................................

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

1 2 2 (Dielecrics) Maxwell ( ) D H

1 2 2 (Dielecrics) Maxwell ( ) D H 2003.02.13 1 2 2 (Dielecrics) 4 2.1... 4 2.2... 5 2.3... 6 2.4... 6 3 Maxwell ( ) 9 3.1... 9 3.2 D H... 11 3.3... 13 4 14 4.1... 14 4.2... 14 4.3... 17 4.4... 19 5 22 6 THz 24 6.1... 24 6.2... 25 7 26

More information

橡表紙参照.PDF

橡表紙参照.PDF CIRJE-J-58 X-12-ARIMA 2000 : 2001 6 How to use X-12-ARIMA2000 when you must: A Case Study of Hojinkigyo-Tokei Naoto Kunitomo Faculty of Economics, The University of Tokyo Abstract: We illustrate how to

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull Feynman Encounter with Mathematics 52, 200 9 [] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull. Sci. Math. vol. 28 (2004) 97 25. [2] D. Fujiwara and

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable),

& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable), .... Deeping and Expansion of Large-Scale Random Fields and Probabilistic Image Processing Kazuyuki Tanaka The mathematical frameworks of probabilistic image processing are formulated by means of Markov

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

1 Tokyo Daily Rainfall (mm) Days (mm)

1 Tokyo Daily Rainfall (mm) Days (mm) ( ) r-taka@maritime.kobe-u.ac.jp 1 Tokyo Daily Rainfall (mm) 0 100 200 300 0 10000 20000 30000 40000 50000 Days (mm) 1876 1 1 2013 12 31 Tokyo, 1876 Daily Rainfall (mm) 0 50 100 150 0 100 200 300 Tokyo,

More information

Abstract This paper concerns with a method of dynamic image cognition. Our image cognition method has two distinguished features. One is that the imag

Abstract This paper concerns with a method of dynamic image cognition. Our image cognition method has two distinguished features. One is that the imag 2004 RGB A STUDY OF RGB COLOR INFORMATION AND ITS APPLICATION 03R3237 Abstract This paper concerns with a method of dynamic image cognition. Our image cognition method has two distinguished features. One

More information

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W 003 7 14 Black-Scholes [1] Nelson [] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-Wu Nelson e-mail: takatoshi-tasaki@nifty.com kabutaro@mocha.freemail.ne.jp

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1) φ 4 Minimal subtraction scheme 2-loop ε 28 University of Tokyo Atsuo Kuniba version 2/Apr/28 Formulas Γ n + ɛ = n n! ɛ + ψn + + Oɛ n =,, 2, ψn + = + 2 + + γ, 2 n ψ = γ =.5772... Euler const, log + ax x

More information

(a) (b) (c) (d) 1: (a) (b) (c) (d) (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4

(a) (b) (c) (d) 1: (a) (b) (c) (d) (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4 1 vertex edge 1(a) 1(b) 1(c) 1(d) 2 (a) (b) (c) (d) 1: (a) (b) (c) (d) 1 2 6 1 2 6 1 2 6 3 5 3 5 3 5 4 4 (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4 1: Zachary [11] [12] [13] World-Wide

More information

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising ,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising Model 1 Ising 1 Ising Model N Ising (σ i = ±1) (Free

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

L. S. Abstract. Date: last revised on 9 Feb translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, L. Onsager and S.

L. S. Abstract. Date: last revised on 9 Feb translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, L. Onsager and S. L. S. Abstract. Date: last revised on 9 Feb 01. translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, 1953. L. Onsager and S. Machlup, Fluctuations and Irreversibel Processes, Physical

More information

x T = (x 1,, x M ) x T x M K C 1,, C K 22 x w y 1: 2 2

x T = (x 1,, x M ) x T x M K C 1,, C K 22 x w y 1: 2 2 Takio Kurita Neurosceince Research Institute, National Institute of Advanced Indastrial Science and Technology takio-kurita@aistgojp (Support Vector Machine, SVM) 1 (Support Vector Machine, SVM) ( ) 2

More information

seminar0220a.dvi

seminar0220a.dvi 1 Hi-Stat 2 16 2 20 16:30-18:00 2 2 217 1 COE 4 COE RA E-MAIL: ged0104@srv.cc.hit-u.ac.jp 2004 2 25 S-PLUS S-PLUS S-PLUS S-code 2 [8] [8] [8] 1 2 ARFIMA(p, d, q) FI(d) φ(l)(1 L) d x t = θ(l)ε t ({ε t }

More information

16) 12) 14) n x i, (1 i < n) x 1 = x 2 = = x n. (6) L = D A (1) D = diag(d 1,d 2,,d n ) n n A d i = j i a i j 9) 0 a 12 a 13 a 14 A = a 21 0 a

16) 12) 14) n x i, (1 i < n) x 1 = x 2 = = x n. (6) L = D A (1) D = diag(d 1,d 2,,d n ) n n A d i = j i a i j 9) 0 a 12 a 13 a 14 A = a 21 0 a 1 1, 2 Evolutionary Optimized Synchronization Networks TOSHIHIKO YAMAMOTO 1 and AKIRA NAMATAME 1 Collective behavior in nature, the interaction between agents and factors, there is consensus problem as

More information

it-ken_open.key

it-ken_open.key 深層学習技術の進展 ImageNet Classification 画像認識 音声認識 自然言語処理 機械翻訳 深層学習技術は これらの分野において 特に圧倒的な強みを見せている Figure (Left) Eight ILSVRC-2010 test Deep images and the cited4: from: ``ImageNet Classification with Networks et

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

P361

P361 ΣAD -RFDAC - High-Speed Continuous-Time Bandpass ΣAD Modulator Architecture Employing Sub-Sampling Technnique with 376-8515 1-5-1 Masafumi Uemori Tomonari Ichikawa Haruo Kobayashi Department of Electronic

More information

untitled

untitled - 37 - - 3 - (a) (b) 1) 15-1 1) LIQCAOka 199Oka 1999 ),3) ) -1-39 - 1) a) b) i) 1) 1 FEM Zhang ) 1 1) - 35 - FEM 9 1 3 ii) () 1 Dr=9% Dr=35% Tatsuoka 19Fukushima and Tatsuoka19 5),) Dr=35% Dr=35% Dr=3%1kPa

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

IHI Robust Path Planning against Position Error for UGVs in Rough Terrain Yuki DOI, Yonghoon JI, Yusuke TAMURA(University of Tokyo), Yuki IKEDA, Atsus

IHI Robust Path Planning against Position Error for UGVs in Rough Terrain Yuki DOI, Yonghoon JI, Yusuke TAMURA(University of Tokyo), Yuki IKEDA, Atsus IHI Robust Path Planning against Position Error for UGVs in Rough Terrain Yuki DOI, Yonghoon JI, Yusuke TAMURA(University of Tokyo), Yuki IKEDA, Atsushi UMEMURA, Yoshiharu KANESHIMA, Hiroki MURAKAMI(IHI

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

Proceedings of the 61st Annual Conference of the Institute of Systems, Control and Information Engineers (ISCIE), Kyoto, May 23-25, 2017 The Visual Se

Proceedings of the 61st Annual Conference of the Institute of Systems, Control and Information Engineers (ISCIE), Kyoto, May 23-25, 2017 The Visual Se The Visual Servo Control of Drone in Consideration of Dead Time,, Junpei Shirai and Takashi Yamaguchi and Kiyotsugu Takaba Ritsumeikan University Abstract Recently, the use of drones has been expected

More information

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha 63 KdV KP Lax pair L, B L L L / W LW / x W t, t, t 3, ψ t n / B nψ KdV B n L n/ KP B n L n KdV KP Lax W Lax τ KP L ψ τ τ Chapter 7 An Introduction to the Sato Theory Masayui OIKAWA, Faculty of Engneering,

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

時間遅れをもつ常微分方程式の基礎理論入門 (マクロ経済動学の非線形数理)

時間遅れをもつ常微分方程式の基礎理論入門 (マクロ経済動学の非線形数理) 1713 2010 72-87 72 Introduction to the theory of delay differential equations (Rinko Miyazaki) Shizuoka University 1 $\frac{dx(t)}{dt}=ax(t)$ (11), $(a$ : $a\neq 0)$ 11 ( ) $t$ (11) $x$ 12 $t$ $x$ $x$

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

Jorgenson F, L : L: Inada lim F =, lim F L = k L lim F =, lim F L = 2 L F >, F L > 3 F <, F LL < 4 λ >, λf, L = F λ, λl 5 Y = Const a L a < α < CES? C

Jorgenson F, L : L: Inada lim F =, lim F L = k L lim F =, lim F L = 2 L F >, F L > 3 F <, F LL < 4 λ >, λf, L = F λ, λl 5 Y = Const a L a < α < CES? C 27 nabe@ier.hit-u.ac.jp 27 4 3 Jorgenson Tobin q : Hayashi s Theorem Jordan Saddle Path. GDP % GDP 2. 3. 4.. Tobin q 2 2. Jorgenson F, L : L: Inada lim F =, lim F L = k L lim F =, lim F L = 2 L F >, F

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> MATLAB/Simulink による現代制御入門 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/9241 このサンプルページの内容は, 初版 1 刷発行当時のものです. i MATLAB/Simulink MATLAB/Simulink 1. 1 2. 3. MATLAB/Simulink

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. R-space ( ) Version 1.1 (2012/02/29) i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. ii 1 Lie 1 1.1 Killing................................

More information