プリント

Size: px
Start display at page:

Download "プリント"

Transcription

1 MWE 5 WEB- Introduction to Theory, Analysis, and Design of Microwave Filters in New Era of Wireless Masataka OHIRA Graduate School of Science and Engineering, Saitama University () () (3) () (5) Q Attenuation (db) 3 Return loss Insertion loss Specifications f f Δf f L Rmin L Amax LAtt M S M S M SN M SL M S M M M N M L M S M M M N M L [M]= M SN M N M N M NN M NL M SL M L M L M NL 5 Dielectric substrate s 3 lx 6 s w 3 ly Input l s ly Via hole lx Abstract In this tutorial lecture, the basic theory, analysis, and design method of microwave bandpass filters are described for easy learning from the knowledge acquired through study of electric circuits For the future step to the design of advanced microwave filters, the lecture is based on the coupling matrix used for the designs of recent coupled resonator filters More specifically, it contains five parts: () typical transfer functions employed for approximation of filter responses, () examples of coupling topologies to realize the transfer functions, (3) circuit analysis using the coupling matrix, () circuit synthesis, and (5) physical dimension design of microwave filters based on coupling coefficients and external Q factors Design examples are provided to demonstrate microstrip filter designs with the effective use of EM simulators Keywords Microwave filters, bandpass filters, transfer functions, coupling topology, coupling matrix Background knowledge Electric circuits and distributed circuits

2 Source Input (port) (port) 5 [] [7] classical filter [5], [7] [7] [9] advanced filter S S insertion loss return loss L A(ω) = log S (ω) (db) () L R(ω) = log S (ω) (db) () passband db stopband db () () (3) Insertion loss (db) Insertion loss (db) Passband Stopband f c Stopband Passband Stopband f S Filter S Load f Insertion loss (db) Insertion loss (db) Stopband Passband f c Passband Stopband Passband f (d),,, (d) microwave filter () lowpass filter LPF f c f c () highpass filter HPF f c f c (3) bandpass filter BPF f f () bandstop filter BSF bandrejection filter BRF f f 3 () narrowband filter % f

3 Attenuation (db) 3 Return loss Insertion loss Specifications f f f Δf L Rmin L Amax LAtt 3 attenuation 3 db L Att () wideband filter or broadband filter % % 3 3 design specification 3 () center frequency f f f f = f f f f f = () frequency bandwidth Δf =f f f f fractional bandwidth FBW = Δf f f Δf % (3) 3 db L Amax () 3 db L Rmin group delay = Q = = 3 () N N N () Q Q u unloaded quality(q) factor Q Q Q 3 Q Q (3) transfer function db db () reflection zero RZ attenuation zero () transmission zero TZ attenuation pole

4 S, S S, S 8 6 Δf f S S Reflection zero S, S 8 6 Δf f S S Reflection zeros S S 8 6 S S Tranmission zeros Reflection zeros f S, S 8 6 S S Transmission zeros Reflection zeros f 5 S S (A) (B) (A-) (A-) Butterworth response maximally flat response Δf Chebyshev response equiripple response Δf N (B-) elliptic function response 5 (B-) general Chebyshev function response 5 3 N [] 6 Q Q u = N N Q Q u = N 6 Q 6 Q Q u N 6(d) N N =5 N =8 pseudo-elliptic function filter

5 Insertion loss (db) Insertion loss (db) N= 3 FBW= f f Q u = Q u = N=5 Insertion loss (db) Insertion loss (db) N= f (d) Q u = FBW=5 w/o TZs Q u = N=5 w/ TZs N=8 N=5 6 N Q Q u =, N Q u =, Q u =, (d) Q u = 5 coupling topology = = 7 direct coupled resonator filter source load,,, N Q 3 () coupling coefficient m i,i+ i (i +) i=,,,n () Q external Q factor Q es Q el 3 k [M] m m f m3 3 m3 m5 m m6 S Q Source es m Q es S Source 7 m3 m Q es m Q el m3 mn-,n S N L Source Load 3 m3 m5 5 m56 6 QeL m5 (d) m56 5 L Load m m58 m Q es S Source m78 Q el 8 L Load S Source m3 m3 m m3 m56 Folded CT (d) CQ, (e) Q msn ms ms N (e) m SL mln ml ml Q el L Load 7 (e) 7 CT cascaded trisection (d) CQ cascaded quadruplet (3) nonadjacent coupling m ij j = i + 7(e) transversal array filter [] m SL N n max = N n min [7] N n min n min = n max = N L Load

6 C L C L S C L C L L Q es m Q el S L i L L i R L e Source Load S 8, () direct source/load coupling R S input/output coupling m SL circuit analysis S i i =, L i C i i i i L R S R L e S R [ ] [ ] S+jωL + jωl jωc jωl R L+jωL + i es = (3) i jωc 9 L S L L L S L L L S = L L = [Z][i] =[e] () [i] [e] [i] =[i S,i,i,i L] T, [e] =[e S,,, ] T (5) Q es m Q el S L Source ms ml Load msl R S e S i S L S L S R S e S C i L L S i S L L SL L S C i L jb jb L L i L L S L L L SL 9,, T [Z] R S jωl S jωl S jωl SL [Z]= jωl S jωl + jωc jωl jωl L jωl S jωl jωl + jωc jωl L (6) jωl SL jωl L jωl L R L L ij = L ji 6 z z 33 L=L =L C =C =C jb i 5 [7] ω jωl i+ jωl+ jωc i jωc + =ω FBW L jb i i L L L Ω c i L L L R L i L L L (jω jx i)(7) FBW ω =/ LC ( ) Ω= Ωc ω ω FBW ω ω (8) ω Ω [] [7] Ω c = lowpass prototype filter LPF Q [Z] 5 Frequency Invariant Reactance (FIR) [7] R L

7 [ Z] Δ = Ωc FBW RS Δ ω L Δ ω L RL RS Δ ω L Δ ω L RL R S jωl S jωl S jωl SL jωl S jωl + jωc jωl jωl L jωl S jωl jωl + jωc jωl L jωl SL jωl L jωl L R L =[ Z] (9) 6 3 LPF [ Z] ω ω ω ω [5] [ Z] [ Z] =[R]+jΩ[U] +j[m] () L C R G [ Z] [Ȳ ] C M () M ii (i=,,,n) i self coupling Ω+M ii = LPF Ω i = M ii M ii = () M ij (i, j =,,,N, i = j) [R]=diag[,,, ] [U]=diag[,,, ] mutual coupling (3) M S,i (i =,,,N) i M S M S M SL M S M M M L [M] = () () M i,l (i =,,,N) i M S M M M L M SL M L M L (5) M SL [M] coupling matrix LPF [M] N S S [R] [U] (N +) (N +) S (Ω) = [ ] Z(Ω) (9) [R]=diag[,,,,, ], [U]=diag[,,,,, ] () S (Ω) = [ ] Z(Ω) () N+, [M] (N +) (N +) [5], [7] [ Z] ij M S M S M SN M SL [ Z] (i, j) M S M M M N M L 6 Q M S M M M N M L [M]= (3) 6 LPF M SN M N M N M NN M NL M SL M L M L M NL Q 9 m ij = L ij/ L il j M ii = X i (i =,,,N) () m ij (5) LPF M M ij = Ωc L ij ij (i, j =,,,N, i = j) (5) FBW LiL j m ij = FBW M ij () Ω Ωc ω c L S,i M S,i = (i =,,,N) (6) FBW ωl ir S Ωc ω L L,i M i,l = (i =,,,N) (7) FBW ωl ir L L ij M SL = ωlsl T (8) RSR L T F ABCD

8 C i L ij C j C i L i L ij L ij L j C j L S,i C i L i C i L i C i L i L j C i L i K ij i j L j L ij, T, K [ ] A B ±jωl ij [F ]= = () C D ±j ωl ij K ij = ω L ij K ij K [] [7] K m ij m ij = ω L ij K ij = (3) ωl iω L j ω LiL j 6 Q R S i m S,i m S,i = C j ωls,i K S,i = () ωl ir S ωl ir S R S K K S,i R in () F / R S / K S,i π/ R in R in = K S,i R S + jk S,i tan π K S,i + jr S tan π = K S,i R S (5) K R S () m S,i = ωlirs K S,i = ωli R in = Q es,i (6) Q Q es,i m S,i Q Q es,i Q el,i LPF R S e S L S (=) L i R S e S K S,i i, K, Rin R in e S M S,i M i,l (6) (7) Q es,i = Ω c = m S,i FBW MS,i Q el,i = Ω c = m i,l FBW Mi,L (7) (8) J K [] 6 3 ω [M BPF] m S m S m SN m SL m S m m m N m L m S m m m N m L (9) m SN m N m N m NN m NL m SL m L m L m NL [M BPF]= LPF Ω [M] m ij = FBW M ij Ω c (3) Q Q es,i = Ω c = m S,i FBW MS,i (3) Q Q el,i = Ω c m = i,l FBW Mi,L (3) m SL = M SL (33) Ω+M ii = ( ) m ii = M ii = Ω = Ωc ω ω (3) FBW ω ω ω i ω i LPF Ω [M] (3) (33) Q

9 7 circuit synthesis 7 L C v (t) v (t) V (s) V (s) s s=jω H(s)= V(s) V (s) [] P max = E S /(R S) P = V /R L T (s) T (s) T (s) =T (s)t (s)=t (s)t ( s)= P = RS P max V(s) (35) R L Γ(s) E S Γ(s) = T (s) (36) (R S)/R L T (s) T (s) = + Ψ N (s) (37) Ψ N N LPF N N Ψ N(s) = Γ(s) / T (s) T (s) Γ(s) S S L A L R L A(s)= log T (s) = log ( + ΨN (s) ) (db) (38) L R(s)=log (db) (39) Γ(s) 7 Γ(s) Z in(s) E S V LC circuit V Source R S Z in Γ(s) = Zin(s) RS Z in(s)+r S = zin(s) z in(s)+ R L Load () z in(s) z in(s) =Z in(s)/r S z in(s) positive real function [] Γ(s) Γ(s) =± F (s) E(s) () s F (s) E(s) z in(s) z in(s) = E(s) ± F (s) E(s) F (s) () [6] T (s) T (s) = P (s) E(s) (3) E(s) F (s) P (s) E(s)E( s) F (s)f ( s) =P (s)p ( s) () () E(s) 6 () F (s) F (s) (3) P (s) Ψ N(s) Ψ N (s) LPF () Ψ N (s) 6 () s () (3) E(s) s

10 g = g g g N T N(Ω)= { cos(n cos Ω) for < = Ω < = cosh(n cosh Ω) for Ω > (9) g = Z in g g g g N- g N+ g N g N+ g g N- N: odd N: even g N LPF g g [] [7] (A-) 3 Z in g g 3 g N N: odd g N+ g N- g N+ N: even LC LPF g, g () E(s)E( s)=+ Ψ N (s) = P (s)= (3) E(s) () z in(s) (5) z in(s) () z () in (s)=gs + g s + g 3s + g s + z () in (s)= z () in (s) = g s+ g s+ g 3s+ (5) (6) g i i =,,,N + g (6) 3 LC 3 g g N+ (5) (6) g i (A-) Ψ N(s) =Ω N (7) (A-) Ψ N(s) =ɛt N (Ω) (8) ɛ ɛ= L Ar L Ar db T N N g = (5) ( ) (i )π g i =sin for i=,,,n N (5) g N+ = (5) (A-) g = (53) g = ( π ) γ sin (5) N ( ) ( ) (i )π (i 3)π g i = sin sin N N ( ) g i (i )π γ +sin N for i =, 3,,N (55) forn odd ( ) g N+ = β (56) coth for N even ( ) β =ln coth LAr (57) 737 ( ) β γ =sinh (58) N L Ar db 7 3 K (5) (6) J K LPF z in K z in = Zin = K R S R S K jωl a + K3 jωl a + jωl a3 + (59) ω =ΩΩ c K ΩcR SL a K = (6) g g

11 R S R S Z in Z in C a C a C an J J J 3 J N,N+ L a L a L an K K K 3 K N,N+ J LPF, K LPF L a,il a,i+ K i,i+ =Ω c (i =,,,N ) (6) g ig i+ Ω cl an R L K N,N+ = (6) g N g N+ J [] [7] 7 LPF [M] M S M S M M M 3 [M] = M 3 M NL M NL R L R L (63) 7 LPF positive function [7] C N [6] [9] C N T (Ω)T (Ω) = [ j ɛ ɛ R C N(Ω) Ω TZi i=,,,n TZ < = N f x i(ω) = Ω /ΩTZi Ω/Ω TZi (7) (6) (6) M S = (6) gg M i,i+ = (i =,,,N ) (65) gig i+ F (s) P (s) M NL = (66) gng N+ E(s) E(s) F (s) P (s) ABCD g i LPF g Q LPF [M] Q es = Ωc gg (67) M S M S M S3 M SN M SL FBW m i,i+ = FBW M S M M L (i =,,,N ) (68) M Ω c gig i+ S M M L [M]= M S3 M 33 M 3L (73) Q el = Ωc gn gn+ (69) FBW M SN M NN M NL M SL M L M L M 3L M NL ][ +j ɛ ɛ R C N(Ω) ] (7) ɛ ɛ R C N [ N ] C N(Ω) = cosh cosh (x i(ω)) (7) i= x i(ω) N TZ

12 Input Q es m Q el m3 S 3 L f f f l s s s 3 Dielectric substrate l w l3 s 5 3, 7(d) (N +) [7] 7 5 [3] K K = [M] Q [5], [] / l i i =,, 3 s i i =,, 3 Q s i i =, 8 Current Voltage 6 Input Resonant frequency mm l Length l (mm) 7, () f = (GHz) () Δf = (MHz) FBW= 5 (3) N =3 L Ar = (db) g (53) (58) g = g =3 g =7 g 3 =3 g = LPF [M] (63) (66) [M]= (7) Q (3) (33) Q es = =6 (75) Q el = Q es =6 (76) m =5 99 = 6 (77) m 3 = m =6 (78) Q Sonnet em ε r =6 mm 8 3 f = (GHz) ε r t

13 ε eff [5] ε eff =5 l Input 5 mm s 5 mm l = λ ε eff =5 (mm) (79) λ f l l 7 S (db) -7 Weaker coupling -8 5 w = (mm) Gap s (mm) l 7 f = (GHz) l =5 (mm) 8 m (= m 3 ),, 8 3 s Input 8 f s S - 5 mm 5 synchronize -5 3dB 8 Δf 3 f p f p -3 6 f p f p f 7 m S (db) m = f p fp fp + f (8) p 9 Q Q es (= Q el ), Q, f p >f p 8 Q Q 9 asynchronize 9 m = ( ) f Δf Q loaded Q ( f + f f p fp ) ( ) f f f fp +f f factor Q L Q p f +f (8) Q Q es Q Q u Q Q el [5] f f (8) = Δf = + + Q L f Q es Q u Q el f =f (8) (8) Q u Q Q el Q es s (8) m Q el s m Q s 8 Q es = f Δf (83) m (= m 3) =6 s (= s 3)=5 (mm) Stronger coupling f p f p Coupling coefficient m External Q factor Q es Gap s (mm)

14 Input 7 Attenuation (db) EM simulated Return loss Insertion loss Synthesized Return loss Insertion loss unit: mm , 9 s Q Q es s s (= s )=7 (mm) Q Q es(=q el)= () f = (GHz) () Δf =5 (MHz) FBW= 5 (3) L R > = (db) () N = (5) (6) f TZ=95 (GHz) f TZ =5 (GHz) 7 [M] [7] [9] [M]= (8) Folded [7] S MS MS3 MS 3 ML M3L ML MS ML L S M3 3 M M M3 M S M M L L S Q es m m3 3 m m3 Q el, M Folded M Folded [M]= (85) M = M [3] [M]= (86) M Folded Q (3) (33) Q es = =885 (87) 5 3 Q el = Q es =885 (88) m =5 875 = 38 (89) m 3 =5 767 = 38 (9) m 3 = m =38 (9) m =5 ( 73) = 86 3 (9) GHz m 8 / [5] / / 3 L

15 Dielectric substrate s 3 lx Dielectric substrate 5 w 3 ly 85 s 5 Input l s ly Input Via hole lx Via hole 5 unit: mm Coupling coefficients m and m 8 6 / Voltage Current 3 / 38 5 m m 86x Gap s / s (mm) Coupling coefficient m Gap s 3 (mm) m m,m 3 External Q factor Q es Tap position l(mm) 5 Q Q es / [] S S m s m 3 m m Q / f Q Attenuation (db) 6 Attenuation (db) 3 5 Synthesized Return loss Insertion loss EM simulated Return loss Insertion loss Synthesized Return loss Insertion loss EM simulated Return loss Insertion loss , ε r = 635 mm ANSYS HFSS m m 3 m s =5 (mm) s 3 = (mm) s = (mm) Q Q es l 5 Q Q l = (mm) 8 l

16 Q Q Q N ω ΔL A [], [], [5] ΔL A(ω )=33 ω Δω N i= g i Q u,i (db) (93) g i Δω/ω Q Q u,i Q N ΔL A [5] 3 9 [5] J-S Hong and M Lancaster, Microstrip Filters for RF/Microwave Applications (Second Ed), Wiley, [6] P Jarry and J Benneat, Advanced Design Techniques and Realizations of Microwave and RF Filters, New York: Wiley, [7] RJ Cameron, CM Kudsia, and RR Mansour, Microwave Filters for Communication Systems: Fundamentals, Design, and Applications, New York: Wiley, 7 [8] RJ Cameron, General coupling matrix synthesis methods for Chebyshev filtering functions, IEEE Trans Microwave Theory Tech,vol7,no,pp33,Apr 999 [9] RJ Cameron, Advanced coupling matrix synthesis techniques for microwave filters, IEEE Trans Microwave Theory Tech, vol5, no, pp, Jan 3 [] H Kayano and M Ohira, Fundamentals of microwave filters: synthesis theory and design techniques, Tutorial Material in 3 Thailand-Japan Microwave (TJMW 3), Dec 3 [],,,, (C), volj96-c, no, pp7 79, Dec 3 [],,, 997 [3] S Amari, U Rosenberg, and J Bornemann, Adaptive synthesis and design of resonator filters with source/loadmultiresonator coupling, IEEE Trans Microwave Theory Tech, vol5, no8, pp , Aug [],, Open-loop,, C--79, p, Mar [5] M Ohira and Z Ma, A parameter-extraction method for microwave transversal resonator array bandpass filters withdirectsource/loadcoupling, IEEE TransMicrowave Theory and Tech, vol6, no5, pp8 8, May 3 mohira@mailsaitama-uacjp [] GL Matthaei, L Young, and EMT Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures New York: McGraw-Hill, 96 [],,,,, 7 [3],,, 9 [],, Microwave Workshops & Exhibition (MWE ), Dec

main.dvi

main.dvi FDTD S A Study on FDTD Analysis based on S-Parameter 18 2 7 04GD168 FDTD FDTD S S FDTD S S S S FDTD FDTD i 1 1 1.1 FDTD.................................... 1 1.2 FDTD..................... 3 2 S 5 2.1 FDTD

More information

sikepuri.dvi

sikepuri.dvi 2009 2 2 2. 2.. F(s) G(s) H(s) G(s) F(s) H(s) F(s),G(s) H(s) : V (s) Z(s)I(s) I(s) Y (s)v (s) Z(s): Y (s): 2: ( ( V V 2 I I 2 ) ( ) ( Z Z 2 Z 2 Z 22 ) ( ) ( Y Y 2 Y 2 Y 22 ( ) ( ) Z Z 2 Y Y 2 : : Z 2 Z

More information

( ) : 1997

( ) : 1997 ( ) 2008 2 17 : 1997 CMOS FET AD-DA All Rights Reserved (c) Yoichi OKABE 2000-present. [ HTML ] [ PDF ] [ ] [ Web ] [ ] [ HTML ] [ PDF ] 1 1 4 1.1..................................... 4 1.2..................................

More information

untitled

untitled ( ) (mm) (GHz)=300( ) 30 300GHz=1 10mm ( 2GHz2Mbps) Gbps= Mbps ( m),? S G=P/Pi30dB=1000 Gm=4πS/λ 2, S= 80λ 2 Gm=30dB η=g/gm, S= 80λ 2,G=27dB η=50% (GHz) 80 70 60 50 40 30 20 10 16 19 22 25 28 31 34 37

More information

untitled

untitled + From Tradeoffs of Receive and Transmit Equalization Architectures, ICC006,Bryan Casper, Intel Labs Transmitter Receiver 0 magnitude (db) 0 0 30 40 50 60 0 4 frequency (GHz). Receiver Transmitter FFE

More information

main.dvi

main.dvi BPF 16 2 29 4414 LP F (Low P ass F ilter) HPF(High P ass F ilter) BPF(Band P ass F ilter) ( ) BPF BPF BPF 2 Q BPF 1 BPF BPF BPF 1 8 1 BPF BPF BPF -3[dB] 5[MHz] BPF -3[dB].8[MHz] BPF i 1 1 2 BPF 4 2.1...........................

More information

3 16 2 27 4497 LAN(Local Area Network) OFDM(Orthogonal Frequency Division Multiplexing) 12 3 3 12 3 12 33. F/B 22.7dB 3 F/B i 1 1 2 3 8 2.1................................. 8 2.2.............................

More information

P361

P361 ΣAD -RFDAC - High-Speed Continuous-Time Bandpass ΣAD Modulator Architecture Employing Sub-Sampling Technnique with 376-8515 1-5-1 Masafumi Uemori Tomonari Ichikawa Haruo Kobayashi Department of Electronic

More information

0 s T (s) /CR () v 2 /v v 2 v = T (jω) = + jωcr (2) = + (ωcr) 2 ω v R=Ω C=F (b) db db( ) v 2 20 log 0 [db] (3) v R v C v 2 (a) ω (b) : v o v o =

0 s T (s) /CR () v 2 /v v 2 v = T (jω) = + jωcr (2) = + (ωcr) 2 ω v R=Ω C=F (b) db db( ) v 2 20 log 0 [db] (3) v R v C v 2 (a) ω (b) : v o v o = RC LC RC 5 2 RC 2 2. /sc sl ( ) s = jω j j ω [rad/s] : C L R sc sl R 2.2 T (s) ( T (s) = = /CR ) + scr s + /CR () 0 s T (s) /CR () v 2 /v v 2 v = T (jω) = + jωcr (2) = + (ωcr) 2 ω v R=Ω C=F (b) db db(

More information

ゼロからはじめる電磁界シミュレーション 高周波回路の動作を理解する4つのステップ The Beginner s Electromagnetic Simulations Four Steps for Understanding the Behavior of High-Frequency Circui

ゼロからはじめる電磁界シミュレーション 高周波回路の動作を理解する4つのステップ The Beginner s Electromagnetic Simulations Four Steps for Understanding the Behavior of High-Frequency Circui ゼロからはじめる電磁界シミュレーション 高周波回路の動作を理解する4つのステップ The Beginner s Electromagnetic Simulations Four Steps for Understanding the Behavior of High-Frequency Circuits 石飛徳昌 Norimasa ISHITOBI 有限会社ソネット技研 Sonnet Giken Co.,Ltd.

More information

5b_08.dvi

5b_08.dvi , Circularly Polarized Patch Antennas Combining Different Shaped Linealy Polarized Elements Takanori NORO,, Yasuhiro KAZAMA, Masaharu TAKAHASHI, and Koichi ITO 1. GPS LAN 10% [1] Graduate School of Science

More information

1 7 ω ω ω 7.1 0, ( ) Q, 7.2 ( Q ) 7.1 ω Z = R +jx Z 1/ Z 7.2 ω 7.2 Abs. admittance (x10-3 S) RLC Series Circuit Y R = 20 Ω L = 100

1 7 ω ω ω 7.1 0, ( ) Q, 7.2 ( Q ) 7.1 ω Z = R +jx Z 1/ Z 7.2 ω 7.2 Abs. admittance (x10-3 S) RLC Series Circuit Y R = 20 Ω L = 100 7 7., ) Q, 7. Q ) 7. Z = R +jx Z / Z 7. 7. Abs. admittance x -3 S) 5 4 3 R Series ircuit Y R = Ω = mh = uf Q = 5 5 5 V) Z = R + jx 7. Z 7. ) R = Ω = mh = µf ) 7 V) R Z s = R + j ) 7.3 R =. 7.4) ) f = π.

More information

c 2009 i

c 2009 i I 2009 c 2009 i 0 1 0.0................................... 1 0.1.............................. 3 0.2.............................. 5 1 7 1.1................................. 7 1.2..............................

More information

1

1 5-3 Photonic Antennas and its Application to Radio-over-Fiber Wireless Communication Systems LI Keren, MATSUI Toshiaki, and IZUTSU Masayuki In this paper, we presented our recent works on development of

More information

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t 1 1 2 2 2r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t) V (x, t) I(x, t) V in x t 3 4 1 L R 2 C G L 0 R 0

More information

RIMS98R2.dvi

RIMS98R2.dvi RIMS Kokyuroku, vol.084, (999), 45 59. Euler Fourier Euler Fourier S = ( ) n f(n) = e in f(n) (.) I = 0 e ix f(x) dx (.2) Euler Fourier Fourier Euler Euler Fourier Euler Euler Fourier Fourier [5], [6]

More information

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1 1, 2 1 1 1 Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1 Nobutaka ONO 1 and Shigeki SAGAYAMA 1 This paper deals with instrument separation

More information

0.1 I I : 0.2 I

0.1 I I : 0.2 I 1, 14 12 4 1 : 1 436 (445-6585), E-mail : sxiida@sci.toyama-u.ac.jp 0.1 I I 1. 2. 3. + 10 11 4. 12 1: 0.2 I + 0.3 2 1 109 1 14 3,4 0.6 ( 10 10, 2 11 10, 12/6( ) 3 12 4, 4 14 4 ) 0.6.1 I 1. 2. 3. 0.4 (1)

More information

2005 1

2005 1 2005 1 1 1 2 2 2.1....................................... 2 2.2................................... 5 2.3 VSWR................................. 6 2.4 VSWR 2............................ 7 2.5.......................................

More information

Onsager SOLUTION OF THE EIGENWERT PROBLEM (O-29) V = e H A e H B λ max Z 2 Onsager (O-77) (O-82) (O-83) Kramers-Wannier 1 1 Ons

Onsager SOLUTION OF THE EIGENWERT PROBLEM (O-29) V = e H A e H B λ max Z 2 Onsager (O-77) (O-82) (O-83) Kramers-Wannier 1 1 Ons Onsager 2 9 207.2.7 3 SOLUTION OF THE EIGENWERT PROBLEM O-29 V = e H A e H B λ max Z 2 OnsagerO-77O-82 O-83 2 Kramers-Wannier Onsager * * * * * V self-adjoint V = V /2 V V /2 = V /2 V 2 V /2 = 2 sinh 2H

More information

2010 4 7 1 3 11 Electric source 3 111 Voltage source 3 112 Current source 3 113 3 12 Kirchhoff s law 4 121 Kirchhoff s voltage law 4 122 Kirchhoff s current law 4 2 5 21 Resistor 5 211 Ohm s law 5 212

More information

LMC6022 Low Power CMOS Dual Operational Amplifier (jp)

LMC6022 Low Power CMOS Dual Operational Amplifier (jp) Low Power CMOS Dual Operational Amplifier Literature Number: JAJS754 CMOS CMOS (100k 5k ) 0.5mW CMOS CMOS LMC6024 100k 5k 120dB 2.5 V/ 40fA Low Power CMOS Dual Operational Amplifier 19910530 33020 23900

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

main.dvi

main.dvi 5 IIR IIR z 5.1 5.1.1 1. 2. IIR(Infinite Impulse Response) FIR(Finite Impulse Response) 3. 4. 5. 5.1.2 IIR FIR 5.1 5.1 5.2 104 5. IIR 5.1 IIR FIR IIR FIR H(z) = a 0 +a 1 z 1 +a 2 z 2 1+b 1 z 1 +b 2 z 2

More information

デジタルICの電源ノイズ対策・デカップリング

デジタルICの電源ノイズ対策・デカップリング RoHS RoHS 2011/65/EU RoHS Web RoHS http://www.murata.co.jp/info/rohs.html IC 1-1 IC Power Distribution Network PDN 1-2 Power Integrity PI 1) 2) 1-3 3) 4) 5) 1-4 1 2 IC IC IC 1-3 1-3 (1) (2) (3) 3 IC

More information

OHO.dvi

OHO.dvi 1 Coil D-shaped electrodes ( [1] ) Vacuum chamber Ion source Oscillator 1.1 m e v B F = evb (1) r m v2 = evb r v = erb (2) m r T = 2πr v = 2πm (3) eb v

More information

L L L L C C C C (a) (b) (c) 4.4 (a) (b) (a) RG59/U 6.2mm ( ) 73Ω web page (c) 4 4 dx 4 J V dx dj Ydx Zdx dv Z,Y dv = JZdx, dj = VYdx (4.8) d 2 J dx 2

L L L L C C C C (a) (b) (c) 4.4 (a) (b) (a) RG59/U 6.2mm ( ) 73Ω web page (c) 4 4 dx 4 J V dx dj Ydx Zdx dv Z,Y dv = JZdx, dj = VYdx (4.8) d 2 J dx 2 8 ( ) 2014 11 23 OP h g m r d 4 ( ) 4.2 + (lumped constant circuit) 4.2.1 3 (Poynting ) (strip line) (waveguide) (coaxial cable) GHz 4.4(a) dj dx dv Zdx Ydx ( ) (distributed constatn circuit) *1 4.4(c)

More information

uPC2745TB,uPC2746TB DS

uPC2745TB,uPC2746TB DS Bipolar Analog Integrated Circuits 3 V IC µpc275tb, µpc27tb IC3 V V NESAT ft = 2 GHz IC VCC = 2.73.3 V VCC = 3.3 V µpc275tbfu = 2.7 GHz TYP. @3 db µpc27tbfu = 1.5 GHz TYP. @3 db µpc275tbisl = 38 db TYP.

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

4/15 No.

4/15 No. 4/15 No. 1 4/15 No. 4/15 No. 3 Particle of mass m moving in a potential V(r) V(r) m i ψ t = m ψ(r,t)+v(r)ψ(r,t) ψ(r,t) = ϕ(r)e iωt ψ(r,t) Wave function steady state m ϕ(r)+v(r)ϕ(r) = εϕ(r) Eigenvalue problem

More information

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L 1,a) 1,b) 1/f β Generation Method of Animation from Pictures with Natural Flicker Abstract: Some methods to create animation automatically from one picture have been proposed. There is a method that gives

More information

, [g/cm 3 ] [m/s] 1 6 [kg m 2 s 1 ] ,58 1, ,56 1, , ,58 1,

, [g/cm 3 ] [m/s] 1 6 [kg m 2 s 1 ] ,58 1, ,56 1, , ,58 1, 264 72 5 216 pp. 264 272 * 43.3. k, Yj; 43.38.Hz 1. 2. 2.1 1 4.8 1 2 [kg m 2 s 1 ] 1.2 1 3 [g/cm 3 ] 34 [m/s] 1.48 1 6 [kg m 2 s 1 ] 1 [g/cm 3 ] 1,48 [m/s] 1, 1 4 1 2,5 1 Tutorial on the underwater or

More information

JFE.dvi

JFE.dvi ,, Department of Civil Engineering, Chuo University Kasuga 1-13-27, Bunkyo-ku, Tokyo 112 8551, JAPAN E-mail : atsu1005@kc.chuo-u.ac.jp E-mail : kawa@civil.chuo-u.ac.jp SATO KOGYO CO., LTD. 12-20, Nihonbashi-Honcho

More information

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, PC ( 4 5 )., 5, Milnor Milnor., ( 6 )., (I) Z modulo

More information

1., 1 COOKPAD 2, Web.,,,,,,.,, [1]., 5.,, [2].,,.,.,, 5, [3].,,,.,, [4], 33,.,,.,,.. 2.,, 3.., 4., 5., ,. 1.,,., 2.,. 1,,

1., 1 COOKPAD 2, Web.,,,,,,.,, [1]., 5.,, [2].,,.,.,, 5, [3].,,,.,, [4], 33,.,,.,,.. 2.,, 3.., 4., 5., ,. 1.,,., 2.,. 1,, THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.,, 464 8601 470 0393 101 464 8601 E-mail: matsunagah@murase.m.is.nagoya-u.ac.jp, {ide,murase,hirayama}@is.nagoya-u.ac.jp,

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63>

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63> 信号処理の基礎 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/081051 このサンプルページの内容は, 初版 1 刷発行時のものです. i AI ii z / 2 3 4 5 6 7 7 z 8 8 iii 2013 3 iv 1 1 1.1... 1 1.2... 2 2 4 2.1...

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

Real AdaBoost HOG 2009 3 A Graduation Thesis of College of Engineering, Chubu University Efficient Reducing Method of HOG Features for Human Detection based on Real AdaBoost Chika Matsushima ITS Graphics

More information

AC Modeling and Control of AC Motors Seiji Kondo, Member 1. q q (1) PM (a) N d q Dept. of E&E, Nagaoka Unive

AC Modeling and Control of AC Motors Seiji Kondo, Member 1. q q (1) PM (a) N d q Dept. of E&E, Nagaoka Unive AC Moeling an Control of AC Motors Seiji Kono, Member 1. (1) PM 33 54 64. 1 11 1(a) N 94 188 163 1 Dept. of E&E, Nagaoka University of Technology 163 1, Kamitomioka-cho, Nagaoka, Niigata 94 188 (a) 巻数

More information

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K 2 2 T c µ T c 1 1.1 1911 Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 1 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K τ 4.2K σ 58 213 email:takada@issp.u-tokyo.ac.jp 1933 Meissner Ochsenfeld λ = 1 5 cm B = χ B =

More information

JIS Z803: (substitution method) 3 LCR LCR GPIB

JIS Z803: (substitution method) 3 LCR LCR GPIB LCR NMIJ 003 Agilent 8A 500 ppm JIS Z803:000 50 (substitution method) 3 LCR LCR GPIB Taylor 5 LCR LCR meter (Agilent 8A: Basic accuracy 500 ppm) V D z o I V DUT Z 3 V 3 I A Z V = I V = 0 3 6 V, A LCR meter

More information

i 1 40 ii Grid Dip Meter 3 10kc 1000Mc Grid Dip Meter (RF) Q Grid Dip Meter Grid Dip Meter GDM Grid Dip Meter i ii 1. Grid Dip Meter 1 1.1................... 1 1.2............... 2 1.3............... 5

More information

総研大恒星進化概要.dvi

総研大恒星進化概要.dvi The Structure and Evolution of Stars I. Basic Equations. M r r =4πr2 ρ () P r = GM rρ. r 2 (2) r: M r : P and ρ: G: M r Lagrange r = M r 4πr 2 rho ( ) P = GM r M r 4πr. 4 (2 ) s(ρ, P ) s(ρ, P ) r L r T

More information

02-量子力学の復習

02-量子力学の復習 4/17 No. 1 4/17 No. 2 4/17 No. 3 Particle of mass m moving in a potential V(r) V(r) m i ψ t = 2 2m 2 ψ(r,t)+v(r)ψ(r,t) ψ(r,t) Wave function ψ(r,t) = ϕ(r)e iωt steady state 2 2m 2 ϕ(r)+v(r)ϕ(r) = εϕ(r)

More information

1 2 2 (Dielecrics) Maxwell ( ) D H

1 2 2 (Dielecrics) Maxwell ( ) D H 2003.02.13 1 2 2 (Dielecrics) 4 2.1... 4 2.2... 5 2.3... 6 2.4... 6 3 Maxwell ( ) 9 3.1... 9 3.2 D H... 11 3.3... 13 4 14 4.1... 14 4.2... 14 4.3... 17 4.4... 19 5 22 6 THz 24 6.1... 24 6.2... 25 7 26

More information

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional 19 σ = P/A o σ B Maximum tensile strength σ 0. 0.% 0.% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional limit ε p = 0.% ε e = σ 0. /E plastic strain ε = ε e

More information

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE {s-kasihr, wakamiya,

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE {s-kasihr, wakamiya, THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. 565-0871 1 5 E-mail: {s-kasihr, wakamiya, murata}@ist.osaka-u.ac.jp PC 70% Design, implementation, and evaluation

More information

1 s 1 H(s 1 ) N s 1, s,, s N H({s 1,, s N }) = N H(s k ) k=1 Z N =Tr {s1,,s N }e βh({s 1,,s N }) =Tr s1 Tr s Tr sn e β P k H(s k) N = Tr sk e βh(s k)

1 s 1 H(s 1 ) N s 1, s,, s N H({s 1,, s N }) = N H(s k ) k=1 Z N =Tr {s1,,s N }e βh({s 1,,s N }) =Tr s1 Tr s Tr sn e β P k H(s k) N = Tr sk e βh(s k) 19 1 14 007 3 1 1 Ising 4.1................................. 4................................... 5 3 9 3.1........................ 9 3................... 9 3.3........................ 11 4 14 4.1 Legendre..............................

More information

a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a

a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a), Tetsuo SAWARAGI, and Yukio HORIGUCHI 1. Johansson

More information

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ SO(3) 71 5.7 5.7.1 1 ħ L k l k l k = iϵ kij x i j (5.117) l k SO(3) l z l ± = l 1 ± il = i(y z z y ) ± (z x x z ) = ( x iy) z ± z( x ± i y ) = X ± z ± z (5.118) l z = i(x y y x ) = 1 [(x + iy)( x i y )

More information

Microsoft PowerPoint - 山形大高野send ppt [互換モード]

Microsoft PowerPoint - 山形大高野send ppt [互換モード] , 2012 10 SCOPE, 2012 10 2 CDMA OFDMA OFDM SCOPE, 2012 10 OFDM 0-20 Relative Optical Power [db] -40-60 10 Gbps NRZ BPSK-SSB 36dB -80-20 -10 0 10 20 Relative Frequency [GHz] SSB SSB OFDM SSB SSB OFDM OFDM

More information

LD

LD 989935 1 1 3 3 4 4 LD 6 7 10 1 3 13 13 16 0 4 5 30 31 33 33 35 35 37 38 5 40 FFT 40 40 4 4 4 44 47 48 49 51 51 5 53 54 55 56 Abstract [1] HDD (LaserDopplerVibrometer; LDV) [] HDD IC 1 4 LDV LDV He-Ne Acousto-optic

More information

2012 September 21, 2012, Rev.2.2

2012 September 21, 2012, Rev.2.2 212 September 21, 212, Rev.2.2 4................. 4 1 6 1.1.................. 6 1.2.................... 7 1.3 s................... 8 1.4....................... 9 1.5..................... 11 2 12 2.1.........................

More information

IPSJ SIG Technical Report Vol.2013-GN-87 No /3/ Research of a surround-sound field adjustmen system based on loudspeakers arrangement Ak

IPSJ SIG Technical Report Vol.2013-GN-87 No /3/ Research of a surround-sound field adjustmen system based on loudspeakers arrangement Ak 1 1 3 Research of a surround-sound field adjustmen system based on loudspeakers arrangement Akiyama Daichi 1 Kanai Hideaki 1 Abstract: In this paper, we propose a presentation method that does not depend

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

35

35 D: 0.BUN 7 8 4 B5 6 36 6....................................... 36 6.................................... 37 6.3................................... 38 6.3....................................... 38 6.4..........................................

More information

Sonnet - -[1] Sonnet Sonnet Sonnet Sonnet Sonnet SONNET [2]

Sonnet - -[1] Sonnet Sonnet Sonnet Sonnet Sonnet SONNET [2] Sonnet 30 7 28 Sonnet - -[1] Sonnet Sonnet Sonnet Sonnet Sonnet SONNET [2] 1 3 1.1............................................... 3 1.1.1........................................... 3 1.1.2..................................

More information

Doctor Thesis Template

Doctor Thesis Template A Study of Variable Beam-tilted Microstrip Array Antenna LAN(Local Area Network) LAN PC LAN LAN LAN 5.2GHz 20 25Mbps OFDM(Orthogonal Frequency Division Multiplexing) 2 2 90 2 60 30 45 60 1....2 1.1....

More information

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a ... A a a a 3 a n {a n } a a n n 3 n n n 0 a n = n n n O 3 4 5 6 n {a n } n a n α {a n } α {a n } α α {a n } a n n a n α a n = α n n 0 n = 0 3 4. ()..0.00 + (0.) n () 0. 0.0 0.00 ( 0.) n 0 0 c c c c c

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

UWB a) Accuracy of Relative Distance Measurement with Ultra Wideband System Yuichiro SHIMIZU a) and Yukitoshi SANADA (Ultra Wideband; UWB) UWB GHz DLL

UWB a) Accuracy of Relative Distance Measurement with Ultra Wideband System Yuichiro SHIMIZU a) and Yukitoshi SANADA (Ultra Wideband; UWB) UWB GHz DLL UWB a) Accuracy of Relative Distance Measurement with Ultra Wideband System Yuichiro SHIMIZU a) and Yukitoshi SANADA (Ultra Wideband; UWB) UWB GHz DLL UWB (DLL) UWB DLL 1. UWB FCC (Federal Communications

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

Hz

Hz ( ) 2006 1 3 3 3 4 10 Hz 1 1 1.1.................................... 1 1.2.................................... 1 2 2 2.1.................................... 2 2.2.................................... 3

More information

28 Horizontal angle correction using straight line detection in an equirectangular image

28 Horizontal angle correction using straight line detection in an equirectangular image 28 Horizontal angle correction using straight line detection in an equirectangular image 1170283 2017 3 1 2 i Abstract Horizontal angle correction using straight line detection in an equirectangular image

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 : Transactions of the Operations Research Society of Japan Vol. 58, 215, pp. 148 165 c ( 215 1 2 ; 215 9 3 ) 1) 2) :,,,,, 1. [9] 3 12 Darroch,Newell, and Morris [1] Mcneil [3] Miller [4] Newell [5, 6], [1]

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

SO(2)

SO(2) TOP URL http://amonphys.web.fc2.com/ 1 12 3 12.1.................................. 3 12.2.......................... 4 12.3............................. 5 12.4 SO(2).................................. 6

More information

Gmech08.dvi

Gmech08.dvi 51 5 5.1 5.1.1 P r P z θ P P P z e r e, z ) r, θ, ) 5.1 z r e θ,, z r, θ, = r sin θ cos = r sin θ sin 5.1) e θ e z = r cos θ r, θ, 5.1: 0 r

More information

δf = δn I [ ( FI (N I ) N I ) T,V δn I [ ( FI N I ( ) F N T,V ( ) FII (N N I ) + N I ) ( ) FII T,V N II T,V T,V ] ] = 0 = 0 (8.2) = µ (8.3) G

δf = δn I [ ( FI (N I ) N I ) T,V δn I [ ( FI N I ( ) F N T,V ( ) FII (N N I ) + N I ) ( ) FII T,V N II T,V T,V ] ] = 0 = 0 (8.2) = µ (8.3) G 8 ( ) 8. 1 ( ) F F = F I (N I, T, V I ) + F II (N II, T, V II ) (8.1) F δf = δn I [ ( FI (N I ) N I 8. 1 111 ) T,V δn I [ ( FI N I ( ) F N T,V ( ) FII (N N I ) + N I ) ( ) FII T,V N II T,V T,V ] ] = 0

More information

18 2 20 W/C W/C W/C 4-4-1 0.05 1.0 1000 1. 1 1.1 1 1.2 3 2. 4 2.1 4 (1) 4 (2) 4 2.2 5 (1) 5 (2) 5 2.3 7 3. 8 3.1 8 3.2 ( ) 11 3.3 11 (1) 12 (2) 12 4. 14 4.1 14 4.2 14 (1) 15 (2) 16 (3) 17 4.3 17 5. 19

More information

01_TERA_AP.pdf

01_TERA_AP.pdf Category 7 A /Class F A SECTION CONTENTS.0 www.siemon.com TERA 8 7 7 8 TEMPEST www.siemon.com. Broadband Video (-pair) Voice (-pair) 0/00 Ethernet (-pair). www.siemon.com TERA-MAX 9 www.siemon.com. TERA

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1) φ 4 Minimal subtraction scheme 2-loop ε 28 University of Tokyo Atsuo Kuniba version 2/Apr/28 Formulas Γ n + ɛ = n n! ɛ + ψn + + Oɛ n =,, 2, ψn + = + 2 + + γ, 2 n ψ = γ =.5772... Euler const, log + ax x

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

G (n) (x 1, x 2,..., x n ) = 1 Dφe is φ(x 1 )φ(x 2 ) φ(x n ) (5) N N = Dφe is (6) G (n) (generating functional) 1 Z[J] d 4 x 1 d 4 x n G (n) (x 1, x 2

G (n) (x 1, x 2,..., x n ) = 1 Dφe is φ(x 1 )φ(x 2 ) φ(x n ) (5) N N = Dφe is (6) G (n) (generating functional) 1 Z[J] d 4 x 1 d 4 x n G (n) (x 1, x 2 6 Feynman (Green ) Feynman 6.1 Green generating functional Z[J] φ 4 L = 1 2 µφ µ φ m 2 φ2 λ 4! φ4 (1) ( 1 S[φ] = d 4 x 2 φkφ λ ) 4! φ4 (2) K = ( 2 + m 2 ) (3) n G (n) (x 1, x 2,..., x n ) = φ(x 1 )φ(x

More information

(MIRU2008) HOG Histograms of Oriented Gradients (HOG)

(MIRU2008) HOG Histograms of Oriented Gradients (HOG) (MIRU2008) 2008 7 HOG - - E-mail: katsu0920@me.cs.scitec.kobe-u.ac.jp, {takigu,ariki}@kobe-u.ac.jp Histograms of Oriented Gradients (HOG) HOG Shape Contexts HOG 5.5 Histograms of Oriented Gradients D Human

More information

IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple

IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple 1 2 3 4 5 e β /α α β β / α A judgment method of difficulty of task for a learner using simple electroencephalograph Katsuyuki Umezawa 1 Takashi Ishida 2 Tomohiko Saito 3 Makoto Nakazawa 4 Shigeichi Hirasawa

More information

8 OR (a) A A 3 1 B 7 B (game theory) (a) (b) 8.1: 8.1(a) (b) strategic form game extensive form game 1

8 OR (a) A A 3 1 B 7 B (game theory) (a) (b) 8.1: 8.1(a) (b) strategic form game extensive form game 1 8 OR 8.1 8.1.1 8.1(a) A A 3 1 B 7 B (game theory) (a) (b) 8.1: 8.1(a) (b) strategic form game extensive form game 1 2 [5] player 2 1 noncooperative game 2 cooperative game8.4 8.1.2 2 8.1.1 ( ). A B A B

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

untitled

untitled 1 SS 2 2 (DS) 3 2.1 DS................................ 3 2.2 DS................................ 4 2.3.................................. 4 2.4 (channel papacity)............................ 6 2.5........................................

More information

Chap9.dvi

Chap9.dvi .,. f(),, f(),,.,. () lim 2 +3 2 9 (2) lim 3 3 2 9 (4) lim ( ) 2 3 +3 (5) lim 2 9 (6) lim + (7) lim (8) lim (9) lim (0) lim 2 3 + 3 9 2 2 +3 () lim sin 2 sin 2 (2) lim +3 () lim 2 2 9 = 5 5 = 3 (2) lim

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

スケーリング理論とはなにか? - --尺度を変えて見えること--

スケーリング理論とはなにか?  - --尺度を変えて見えること-- ? URL: http://maildbs.c.u-tokyo.ac.jp/ fukushima mailto:hukusima@phys.c.u-tokyo.ac.jp DEX-SMI @ 2006 12 17 ( ) What is scaling theory? DEX-SMI 1 / 40 Outline Outline 1 2 3 4 ( ) What is scaling theory?

More information

高周波同軸コネクタ

高周波同軸コネクタ RF circuit ANT Probe Signal in Signal out Probe Signal out Signal in RF circuit ANT Probe Probe Signal in Signal out Signal out Signal in RF ANT. RF ANT. Probe Probe Signal out Signal out Signal in Signal

More information

. Fig. AC bus k k V I S Fig. 4. Fig. 3. The position of two lines The equivalent circuit model of line impedance Z(k) = V I S () Fig f [Hz], c[m

. Fig. AC bus k k V I S Fig. 4. Fig. 3. The position of two lines The equivalent circuit model of line impedance Z(k) = V I S () Fig f [Hz], c[m Evaluation and Suppression of Effect on Power Transfer Characteristics by Cable Impedance for Dynamic Wireless Power Transfer System Kodai Takeda, Student Member, Takafumi Koseki, Member Electric vehicle

More information

LMV851/LMV852/LMV854 8 MHz Low Power CMOS, EMI Hardened Operational Amplifi(jp)

LMV851/LMV852/LMV854 8 MHz Low Power CMOS, EMI Hardened Operational Amplifi(jp) LMV851,LMV852,LMV854 LMV851/LMV852/LMV854 8 MHz Low Power CMOS, EMI Hardened Operational Amplifiers Literature Number: JAJSAM3 LMV851/LMV852/LMV854 8MHz CMOS EMI LMV851/LMV852/LMV854 CMOS IC 40 125 LMV851/

More information

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論 email: takahash@sci.u-hyogo.ac.jp May 14, 2009 Outline 1. 2. 3. 4. 5. 6. 2 / 262 Today s Lecture: Mode-mode Coupling Theory 100 / 262 Part I Effects of Non-linear Mode-Mode Coupling Effects of Non-linear

More information

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Jun Motohashi, Member, Takashi Ichinose, Member (Tokyo

More information

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 1 16 10 5 1 2 2.1 a a a 1 1 1 2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 4 2 3 4 2 5 2.4 x y (x,y) l a x = l cot h cos a, (3) y = l cot h sin a (4) h a

More information

untitled

untitled MRR Physical Basis( 1.8.4) METEK MRR 1 MRR 1.1 MRR 24GHz FM-CW(frequency module continuous wave) 30 r+ r f+ f 1.2 1 4 MRR 24GHz 1.3 50mW 1 rf- (waveguide) (horn) 60cm ( monostatic radar) (continuous wave)

More information

[Ver. 0.2] 1 2 3 4 5 6 7 1 1.1 1.2 1.3 1.4 1.5 1 1.1 1 1.2 1. (elasticity) 2. (plasticity) 3. (strength) 4. 5. (toughness) 6. 1 1.2 1. (elasticity) } 1 1.2 2. (plasticity), 1 1.2 3. (strength) a < b F

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information