基礎講座 (騒音・振動)

Size: px
Start display at page:

Download "基礎講座 (騒音・振動)"

Transcription

1 平成 4 年度公害防止管理者等国家試験受験講習会 基礎講座 ( 騒音 振動 ) 0 年 6 月 3 日 ( 水 ) 3:00~7:00 講師 : 藤井圭次 ( 藤井環境コンサルタント )

2 . 音とは 騒音とは 音波空気中を伝搬する弾性波 ( 空気の振動 ) 圧縮された密の部分と膨張した疎の部分が次々と伝わっていく縦波 粗密波 圧力の変化 空気の振動 とも呼ばれる 音音波によって引き起こされる聴感覚 騒音望ましくない音と定義され 音を聞いて望ましくないと思う ということ 3. 音とは 騒音とは 新 公害防止の技術と法規 0 騒音 振動編 P40 図 Ⅱ.6.- 正弦音波 4

3 . 音の性質 () 音速音速は空気中の音の伝搬速度で温度の影響を受ける T c 33.5 ( m / s) T 73 ( ) 73 計算例 5 ( 常温 ) 735 c m/s 音の性質 () 周波数 周波数は振動数ともいわれ 秒間における空気の圧力の変化の回数 記号 : f 単位 :Hz 騒音の問題では 通常 周波数バンド を使用 オクターブバンド /3オクターブバンドが用いられる 騒音 ( 可聴音 ) 0Hz~0000Hz 音圧レベル0~0dB 超音波 0000Hz 以上 超低周波音 0Hz 以下 低周波音 00Hz 以下 6 3

4 . 音の性質 3 (3) 波長音の場合 圧力変化の大きいところと その次の大きいところとの長さ λ c f f c c f 音速 : c (m/s) 周波数 : f (Hz) 波長 : λ (m) 7. 音の性質 4 実効値一般に大きさの変化する量を これと等しいエネルギーをもつ一定の大きさの量で表す 変動値のエネルギー等価値 正弦波の場合の実効値 最大振幅の デシベル表示実効値から求めたレベル = 最大振幅から求めたレベル 3dB 8 4

5 . 音の性質 5 新 公害防止の技術と法規 0 騒音 振動編 P 図 Ⅱ.4.5- 変動騒音レベルと等価騒音レベルの概念図 9 3. 音圧レベル 騒音レベル 音圧レベル 物理量 騒音レベル 物理量に人間の感覚補正したもの () 音圧レベル (db) 音の圧力 実効値の 乗と基準音圧の 乗との比の常用対数の 0 倍 ( 実効値と基準音圧との比の常用対数の 0 倍 ) L 0log p p 0 p 5 L 0log ( db) p0 0 Pa p 0 通常こちらを使う p 0 p : 基準値 : 実効値 0 5

6 3. 音圧レベル 騒音レベル 5 5 計算例 p 40 Pa : 実効値 p0 0 Pa log 0log() dB 5 0 log 音圧レベル 騒音レベル 3 計算例 p Pa : 実効値 5 0log 0log 0log0 00dB log0 5 5 指数の計算 最大値が Pa の場合 dB 6

7 3. 音圧レベル 騒音レベル 4 計算例 p Pa 0log 0 0log 0 5 : 実効値 dB 0log (0log 0log0 0log log(0.5 0 ) 0log(5 0 ) 4 0log(5) 0log(0 ) dB log log ) 3 3. 音圧レベル 騒音レベル 5 音圧レベルを求める式 新 公害防止の技術と法規 0 騒音 振動編 P43 4 7

8 3. 音圧レベル 騒音レベル 6 () 音圧レベル (db) 音の強さ 音の強さから音圧レベルを求める ( 音の強さは音圧の 乗に比例する ) I L 0log (db) I0 0 W/m I 0 : 基準値 計算例 I 0 6 W/m 0 L 0log 0 6 0log 0 6 0log0 6 60dB 5 3. 音圧レベル 騒音レベル 7 (3) 音の強さと音圧の関係 音の強さ I P P (W/m ) c 400 I (W/m ) c 400 P(Pa): 音圧 音圧の実効値 P 400I (Pa) P cv(pa) I pv(w/m ) 6 8

9 3. 音圧レベル 騒音レベル 8 (4) 騒音レベル 人の聴感覚は周波数によって感じ方が変わるため 耳で聞く音の大きさに補正したものが 騒音レベルである 騒音レベルは A 特性補正音圧レベルのことで A 特性補正は周波数補正 聴感補正とも呼ばれる 環境基準 騒音規制法等は騒音レベルで定められている 7 3. 音圧レベル 騒音レベル 9 音圧レベル音圧スペクトルレベル ( 周波数分析 ) の合成 ( デシベルの和 ) 騒音レベル音圧スペクトルレベル -A 特性補正値 = 騒音スペクトルレベル騒音スペクトルレベルの合成 ( デシベルの和 ) 8 9

10 3. 音圧レベル 騒音レベル 0 音圧レベル騒音レベル音圧スペクトルレベル騒音スペクトルレベル 周波数 50Hz 70dB 周波数 50Hz 6dB 周波数 50Hz 70dB 周波数 500Hz 70dB 音圧レベル 73dB 周波数 50Hz 70dB-9dB=6dB 周波数 500Hz 70dB-3dB=67dB 騒音レベル 6dB と 67dB の和 68dB A 特性補正概略値 (Hz/dB) 周波数 k k 4k 補正値 音圧レベル 騒音レベル 対数表の見方 log.=0.3 log.=

11 3. 音圧レベル 騒音レベル 新 公害防止の技術と法規 0 騒音 振動編 P4 3. 音圧レベル 騒音レベル 3 (6) 正弦波最大値と実効値の関係 実効値 = 正弦波最大値 実効値 = 正弦波最大値 -3dB 0log(/ ) 0log 0log log.4=0.5 基本式 0 x 0 x log( x y) log x log y log( x / y) log x log y log x n nlog x

12 4. 等価騒音レベル 時間率騒音レベル 時間率騒音レベル騒音規制法の変動騒音規制基準に用いられる パーセントレベルとも呼ばれる統計量である L A5 90 パーセントレンジの上端値 ( 評価値 ) L A50 L A95 90 パーセントレンジの中央値 90 パーセントレンジの下端値 3 4. 等価騒音レベル 時間率騒音レベル 等価騒音レベル環境基準の変動騒音の評価値に用いられる エネルギーの平均値である 計算はデシベルの和からサンプル数の対数の 0 倍 0log(n) を差し引く L L Aeq Li 0log n L 0log n / 0 Aeq 0 L Aeq 等価騒音レベル L n個のデシベルの和 4

13 4. 等価騒音レベル 時間率騒音レベル 3 新 公害防止の技術と法規 0 騒音 振動編 P デシベルの計算の基礎 () デシベルとは 騒音では音圧 単位は Pa( パスカル ) 公害振動では加速度 単位は m/s である 人の感覚 ( 心理量 ) は物理量 ( 刺激 ) の対数に比例するため 環境問題では人の感覚を加味した値 デシベルを使用している デシベル 二つのパワーの比の常用対数の 0 倍 と定義されている 6 3

14 5. デシベルの計算の基礎 () 指数 a b ( ab) 3 (3) : a b ( ab) 5 (5-) : x y ( xy) 3 3 ( 0 ) 0 : (0 ) x x デシベルの計算の基礎 3 (3) 対数 log( x y) log x log y log( 00) log( 00) log log0 log( x y) log x - log y log( 0.0) log log x n nlog x log0 00 log0 log 0 log0 log log

15 5. デシベルの計算の基礎 4 (4) 常用対数表 ( 試験問題に添付される ) 対数の計算問題は試験問題に添付されている常用対数表を用いて計算する ( 常用対数表の表中の値は少数を示す ) 例題 log 少数 位までの数値は常用対数表の左の値.5 少数 位の数値は常用対数表上の値 5.5 と 5 の交点の値 407 が計算結果 となる log000 log0 log x n nlog x 3 3 log0 3 3log0 3 対数表中 703の小数 位までは左の5.0 小数 位は上の5 計算結果は 計算問題の基礎数学等 ( 公式 ) 斜辺の長さ ( 直角三角形 ) 障壁の減音計算辺の長さ :L 底辺の長さ :A 高さ :H L A H 底辺の長さ :7m 高さ :3m 斜辺の長さ :7.6m L 7 3 A B d f N 70 R 0 log N フレネル数 (db) 減音量 30 5

16 7. 計算問題の基礎数学等 ( 公式 ) 新 公害防止の技術と法規 0 騒音 振動編 P5 R 0log N 計算問題の基礎数学等 ( 公式 )3 球の表面積 体積 消音器の伝達損失等 4 4r r 3 円の面積 円周 r 3 膨張型消音器 ( サイレンサー )( 周波数と消音器の長さ ) f c 4l r 実効値正弦振動 ( 騒音 振動 ) ピーク値の / : 0log(/ ) : 3dB 3 6

17 7. 計算問題の基礎数学等 ( 公式 )4 パワーの合成騒音レベル 振動加速度レベルパワー : 音圧 加速度の 乗に比例 P P P P n P P P P n P P Pn P 透過損失 TL 透過率 τ 0log 総合透過損失 TL TL 0 0 TL 計算問題の基礎数学等 ( 公式 )5 音圧レベル 音圧パワーレベル ( 騒音レベル 騒音パワーレベルも同じ ) L W L P 0log( S) S: 放射表面積 (m ) Q L p L W 0log r Q L p L W 0log r

18 8. 屋外の騒音伝搬 () 騒音の距離減衰 点音源 倍距離 6dBの減衰 r 50.0m 6dB/DD L L 0log( r / r ) 0log( 50 /) 0log(5 0) 0log 5 0log log0 log 線音源 倍距離 3dBの減衰 3dB/DD r.0m r 8.0m L L 0log( r / r) 0log(8/ ) 0log 4 6 log 屋内の騒音伝搬 屋内の平均音圧レベル L P L W 4 0log A A S : A: 吸音力 (m ) S: 室内全表面積 (m ) 平均吸音率 吸音処理による対策効果 L A L 0log 0log A 36 8

19 9. 屋内の騒音伝搬 音響透過損失 TL 8log( mf ) 44 TL: 音響透過損失 (db) m: 遮音材の面密度 (kg/m ) f : 周波数 (Hz) 質量 ( 板厚 ) を 倍にすると音響透過損失は 倍でなく 5dB 増加 8log()=5.4dB log=0.3 TL 8log( mf ) 44 音 TL0 0log( mf ) 4.5 音 板厚 30mm 音響透過損失 5dB の板二重にしたときの透過損失は 0dB となる 騒音測定の基礎 () 音圧レベルと騒音レベル 音圧レベルの測定 騒音計周波数補正回路 F( 平坦 ) にセット 騒音レベルの測定 騒音計周波数補正回路 A 特性にセット 環境基準 騒音規制法 測定結果 騒音計周波数補正回路 A 動特性 S( スロー ) 変動騒音の評価値等価騒音レベル L Aeq 騒音計周波数補正回路 A 動特性 F( ファースト ) 変動騒音の評価値時間率騒音レベル 90% レンジ上端値 L A5 音圧レベル 73dB 騒音レベル 73dB 差 0 db 周波数主成分 khz 音圧レベル 70dB 騒音レベル 54dB 差 6dB 周波数主成分 5Hz 38 9

20 0. 騒音測定の基礎 新 公害防止の技術と法規 0 騒音 振動編 P 騒音測定の基礎 3 () 周波数分析オクターブバンド /3オクターブバンド FFT(Hz 毎 ) 定比帯域幅定帯域幅 f m f f f f f m f 0. 7 f m f f m. 4 f m f m f f オクターブバンド中心周波数 (Hz) 下限帯域端周波数 (Hz) 上限帯域端周波数 (Hz) 40 0

21 0. 騒音測定の基礎 4 新 公害防止の技術と法規 0 騒音 振動編 P デシベルの計算 デシベルの和 差 平均は常用対数を使用して求められるが 試験時間を考えると 概略計算表を使用して求める方法が適切 () db の和 騒音レベル 振動レベルの合成等 概略計算用 レベル差 0, ~4 5~9 0~ 補正値 3 0 新 公害防止の技術と法規 0 騒音 振動編 P6 の表 Ⅱ.8.3- db 値の和の概算 を簡略化 4

22 6. デシベルの計算 計算例 65dB 70dB 73dB 和 ( 概略計算 ) の差 3 補正値 73+=75 0 db 以上の差は計算不要 (65dB 75dB) の差 5 補正値 70+= の差 補正値 73+=75 レベル差 0, ~4 5~9 0~ 補正値 3 0 計算例 ( 同じレベル )n 個の和 60dB 5 個の和 ( 概略計算 ) の差 0 補正値 = の差 0 補正値 = の差 6 補正値 66+=67 個の和 3 個の和 4 個の和 5 個の和 L 3dB L 5dB L 6dB L 7dB デシベルの計算 3 () db の差 暗騒音 暗振動の補正 概略計算用 レベル差 3 * 4,5 6~9 0~ 補正値 * 暗騒音補正には使用できない ( 再測定等 ) 新 公害防止の技術と法規 0 騒音 振動編 P433 44

23 6. デシベルの計算 4 計算例 65dB 60dB 差 ( 概略計算 ) の差 5 補正値 - 65-=63 レベル差 3 * 4,5 6~9 0~ 補正値 dB 55dB 差 ( 概略計算 ) の差 0 補正値 =65 0dB 以上の差は計算不要 デシベルの計算 5 (3) db の平均 等価騒音レベル 振動レベルのエネルギー平均 L L 0log( n) 750log(3) log L dbの和 65dB 70dB 73dB 平均 db の和 =75 算術平均すると ( ) /3 69 差が小さい場合は db 平均に近い値となる db 平均は算術平均より同じか大きくなる n 個数 46 3

24 . 公害振動とは 振動とは 固体や流体 ( 気体 液体 ) が揺れ動くという物理現象である 公害振動となる地表面の振動は 地盤を伝わる振動波 ( 縦波 横波 表面波 ) によって生じるものである 縦波 P 波圧縮波粗密波体積変化 エネルギー 7% 横波 S 波せん断波形の変形 エネルギー 6% 表面波 R 波縦波 + 横波 エネルギー 67% 公害振動は 好ましくない振動と定義されている 振動は物理現象であるが 公害振動は人が振動を感じて好ましくないという感覚であり その結果を判断するのは 生理的 心理的要素が大きく影響する 振動は 物理 公害振動は 物理 感覚 心理 の 3 つが含まれる 48 4

25 . 振動の性質 () 周波数 周波数は振動数ともいわれ 秒間における変化の回数 記号 : f 単位 :Hz 振動問題では通常 周波数 /3 オクターブバンドを使用する 公害振動の周波数範囲 Hz~80Hz () 波長 振動の場合 振幅変化の大きいところと その次の大きいところとの長さ v f 伝搬速度 v (m/s) f v 周波数 f (Hz) v f 波長 λ (m) 49. 振動の性質 (3) 伝搬速度 地盤振動の伝搬速度は振動波の種類 ( 縦波 横波 表面波 ) 地盤の種類によって異なる (4) 実効値 実効値は一般に 大きさの変化する量を これと等しいエネルギーをもつ一定の大きさの量で表す ( 変動値のエネルギー等価値 ) 正弦波の場合の実効値は 最大振幅の / デシベル表示実効値から求めたレベル = 最大振幅から求めたレベル -3dB 50 5

26 . 振動の性質 3 (5) 変位 速度 加速度 振動変位 振幅の大 ( 高い ) 小 ( 低い ) 振動速度 変位の変化する速さ 振動加速度 振動速度の変化する速さ 変位 速度 加速度関係式 a 0 v0 y0 a0 ( f ) v0 (f ) y0 f 新 公害防止の技術と法規 0 騒音 振動編 P0 式 Ⅲ 振動加速度レベル 振動レベル () 振動加速度レベル (db) L a 5 0log a 0 0 m/s a 0 計算例 a 50 5 m/s ( 実効値 ) 0log(5 0 log5 = 7 5 /0 5 ) 0log

27 3. 振動加速度レベル 振動レベル 計算例 a m/s ( 実効値 ) 5 0log 0log 0log log 0log 0log( ) 0log(0 ) log = 0.3 基本式 x 0 log x n 0 x nlog x 0 x 0 x 振動加速度レベル 振動レベル 3 () 振動レベル (db) 振動加速度レベルは振動の物理的な大きさを表すものであるのに対して 人が体で感じる振動の大きさは通常 振動レベルで表される 人の振動感覚は周波数 振動の方向によって感じ方が変わるため 人の振動感覚で補正したものが 振動レベルである 音と比較すると 音圧レベル 振動加速度レベル ( 物理量 ) 騒音レベル 振動レベル ( 評価値 ) 振動レベルは振動感覚補正振動加速度レベルのことで 周波数補正とも呼ばれる 振動規正法等は振動レベルで定められている 54 7

28 3. 振動加速度レベル 振動レベル 4 振動感覚補正値 中心周波数 (Hz) 補正値 ( 鉛直 ) 補正値 ( 水平 ) 補正値 ( 鉛直 ) -6dB/oct 振動規制法 -db//3oct 振動加速度レベル 振動レベル 5 計算例 振動加速度レベル 振動レベル 振動加速度レベル 振動レベル 振動加速度スペクトルレベル ( 周波数分析 ) の合成 ( デシベルの和 ) 振動加速度スペクトルレベル - 振動感覚補正値 = 振動スペクトルレベル振動スペクトルレベルの合成 ( デシベルの和 ) 周波数 6Hz 70dB 周波数 6Hz 64dB(-6dB) 振動加速度スペクトルレベル 振動スペクトルレベル 周波数 6Hz 70dB 周波数 63Hz 70dB 振動加速度レベル 73dB 周波数 6Hz 70dB-6dB=64dB 周波数 63Hz 70dB-6dB=54dB 振動レベル 64dB と 54dB の和 64dB 56 8

29 3. 振動加速度レベル 振動レベル 6 新 公害防止の技術と法規 0 騒音 振動編 P 等価振動レベル ( 振動のエネルギー平均 ) 時間率振動レベル L L veq 0 時間率振動レベルは 振動規制法の変動振動規制基準に用いられる パーセントレベルとも呼ばれる統計量である L veq L 0 80 パーセントレンジ上端値 ( 評価値 ) L 50 L パーセントレンジ中央値 80 パーセントレンジ下端値 ( 注 ) 騒音は 90 パーセントレンジ 等価振動レベル ( 振動エネルギーの平均値 ) Li/0 L veq 0log 0 L n veq L 0log( n) 等価振動レベルはエネルギーの平均値である L= n 個のデシベルの和 計算はデシベルの和からサンプル数の対数の 0 倍 0log(n) を差し引く 58 9

30 5. 計算問題の基礎数学等 ( 公式 ) 三角関数 回転体のバランス sin 60 cos30 / 0.5 sin 45 cos 45 sin 30 cos60 / 3 / 速度 周波数 波長 v v f f 振動レベルの計算 v f 実効値 騒音レベル 振動レベルの計算 実効値正弦振動 ( 騒音 振動 ) ピーク値の / : 0log(/ ) : 3dB 計算問題の基礎数学等 ( 公式 ) パワーの合成騒音レベル 振動加速度レベルパワー : 音圧 加速度の 乗に比例 P P P P n P P P P n P P Pn P 変位 速度 加速度 振動加速度レベル 計器校正 y0 v0 a0 ( f ) y0 (f ) v0 a0 f 60 30

31 5. 計算問題の基礎数学等 ( 公式 )3 新 公害防止の技術と法規 0 騒音 振動編 P 計算問題の基礎数学等 ( 公式 )4 弾性支持 振動伝達力の低減計算 固有振動数 0 f f 0 f 0 f f ばね定数 k f 0 k ( f ) m m 回転機器の周波数 f rpm/ 60 分間の回転数 rpm 6 3

32 5. 計算問題の基礎数学等 ( 公式 )5 動吸振器 k m K M 質量による対策 m ( ) m ( ) 振動の伝搬 () 振動の距離減衰 表面波 n r 3.0 m r 90.0m L L 0nlog( r / r ) 8.7( r 0 log(3 0) 5 0log 3 0 log log log r ) 0log(90 / 3) (90 3) L L 0nlog( r / r ) 8.7( r r ) 0log(9 / 3) (9 3) 0log(3) log 3 実体波 n r 3.0 m r 9.0m 64 3

33 7. 振動測定の基礎 周波数分析オクターブバンド /3オクターブバンド FFT(Hz 毎 ) 3 f m f f f f f 6 f m 定比帯域幅定帯域幅 f 6 fm f m f f /3 オクターブバンド中心周波数 (Hz) 下限帯域端周波数 (Hz) 上限帯域端周波数 (Hz) 65 < 参考 > 振動公害の現状 振動の閾値 50dB 騒音の閾値は0dB < 振動の例震度と振動レベル> 震度 名称 振動レベル (db) 0 無感 55 以下 Ⅰ 微震 55~65 Ⅱ 軽震 65~75 Ⅲ 弱震 75~85 Ⅳ 中震 85~95 Ⅴ 強震 95~05 Ⅵ 烈震 05~0 Ⅶ 激震 0 以下 66 33

34 弾性支持の計算 新 公害防止の技術と法規 0 騒音 振動編 P36 67 弾性支持の計算 新 公害防止の技術と法規 0 騒音 振動編 P

35 弾性支持の計算 3 ばね定数 k ( f ) m 69 弾性支持の計算 動吸振器の計算例 k m K M 上記の式より 質量 (m) を求める場合 70 35

問 3 次に示す材料及び厚さの板のうち 音響透過損失が最も大きいものはどれか ただし 各材料の密度は下表のとおりとし 屈曲振動の影響は無視できるものとする 材料 厚さ (mm) 材料 密度 (kg/m 3 ) (1) 合板 10 合板 (2) 鉄板 2 鉄 (3)

問 3 次に示す材料及び厚さの板のうち 音響透過損失が最も大きいものはどれか ただし 各材料の密度は下表のとおりとし 屈曲振動の影響は無視できるものとする 材料 厚さ (mm) 材料 密度 (kg/m 3 ) (1) 合板 10 合板 (2) 鉄板 2 鉄 (3) 公害防止管理者受験対策 kougai.net (http://www.kougai.net) 平成 18 年度公害防止管理者過去問題 ミス等を発見された方は報告していただけると幸いです ご迷惑をおかけしております kougainet@gmail.com 騒音 振動特論 問 1 図に示す寸法の膨張室形消音器の透過損失が最大となる周波数は何 Hz か ただし 音速は 340m/s とする (1) 25

More information

Microsoft PowerPoint - 騒音セミナー第1日_配布用_ pptx

Microsoft PowerPoint - 騒音セミナー第1日_配布用_ pptx 環境アセスメントにおける定量的予測手法に関するセミナー ( 騒音予測編 ) 第 1 日 p f y} 第 1 日の内容 µ }µ µ }µ lµ fµ f µ µ µ lµ µµµµµµ µµµµµµµµµ ^:E D dddeµ{ µµµµ µ ddde d e ed d 説明の流れ d d µ µ µ µµ µ ~ d µ d d µ} µ µ Ž z ddde d e ed d 先に まとめ

More information

資料 2-1 環境騒音現地調査結果 資料 2-1 環境騒音現地調査結果 騒音現地調査結果のうち 環境騒音の平日の調査結果は表 に 土曜の調査結 果は表 に 休日の調査結果は表 に示すとおりである 表 2-1-1(1) 環境騒音調査結果 ( 平日 )( 1) 調査地

資料 2-1 環境騒音現地調査結果 資料 2-1 環境騒音現地調査結果 騒音現地調査結果のうち 環境騒音の平日の調査結果は表 に 土曜の調査結 果は表 に 休日の調査結果は表 に示すとおりである 表 2-1-1(1) 環境騒音調査結果 ( 平日 )( 1) 調査地 資料 2 騒音及び超低周波音に係る資料 資料 2-1 環境騒音現地調査結果 資料 2-1 環境騒音現地調査結果 騒音現地調査結果のうち 環境騒音の平日の調査結果は表 2-1-1 に 土曜の調査結 果は表 2-1-2 に 休日の調査結果は表 2-1-3 に示すとおりである 表 2-1-1(1) 環境騒音調査結果 ( 平日 )( 1) 調査地点 : 1( 用途地域 : 工業専用地域 地域の類型 :- 区域の区分

More information

1/5 ページ ユニケミー技報記事抜粋 No.45 p1 (2006) 音と騒音のおはなし 吉田佳宏 * 1. はじめにウォークマンを聴いている人にとっては音楽という音を楽しむ行為も 他人にとっては騒音でしかない時もある 古くはピアノ音に腹を立てた殺人事件が有名であるが 最近でも奈良騒音傷害事件や島根県浜田市の殺人事件などがあり 騒音に関する事件はなくならないようである 今回は 物理的な音のエネルギーや測定技術などの解説は専門書に譲り

More information

<955D89BF8F DC58F498CB48D65816A2E786264>

<955D89BF8F DC58F498CB48D65816A2E786264> 低周波音 現況調査 (1) 調査内容 事業計画地周辺における低周波音の状況を把握するため 既存資料調査及び現地調査を実施し た 調査内容は表 5.5.1 に示すとおりである 表 5.5.1 調査内容 調査項目 調査地点 範囲 調査時期 調査方法 低周波音 1/3 オクターフ ハ ン ト 周波数分析 大阪府域 適宜 既存資料調査大阪府環境白書平成 19 年版 事業計画地周 平日 休日 辺 :3 地点

More information

Microsoft Word - 中村工大連携教材(最終 ).doc

Microsoft Word - 中村工大連携教材(最終 ).doc 音速について考えてみよう! 金沢工業大学 中村晃 ねらい 私たちの身の回りにはいろいろな種類の波が存在する. 体感できる波もあれば, できない波もある. その中で音は体感できる最も身近な波である. 遠くで雷が光ってから雷鳴が届くまで数秒間時間がかかることにより, 音の方が光より伝わるのに時間がかかることも経験していると思う. 高校の物理の授業で音の伝わる速さ ( 音速 ) は約 m/s で, 詳しく述べると

More information

Microsoft Word - 騒音予測計算の紹介.doc

Microsoft Word - 騒音予測計算の紹介.doc 騒音予測計算の紹介 筧博行要旨騒音は 騒音規制法等の法令で 規制値の範囲内に収めるよう義務付けられている 製油所 工場などにおいては装置の新設や増設によって騒音は増加する一方であり そのため 計画 設計段階からその影響を予測し 対策を検討しておくことが不可欠となってきている 本稿では騒音予測計算の基礎とその対策について例題を用いて紹介する 1 はじめに製油所 工場などの保有する事業者は その周辺の環境保全に責があり

More information

( 全体 ) 年 1 月 8 日,2017/1/8 戸田昭彦 ( 参考 1G) 温度計の種類 1 次温度計 : 熱力学温度そのものの測定が可能な温度計 どれも熱エネルギー k B T を

( 全体 ) 年 1 月 8 日,2017/1/8 戸田昭彦 ( 参考 1G) 温度計の種類 1 次温度計 : 熱力学温度そのものの測定が可能な温度計 どれも熱エネルギー k B T を ( 全体 htt://home.hiroshima-u.ac.j/atoda/thermodnamics/ 9 年 月 8 日,7//8 戸田昭彦 ( 参考 G 温度計の種類 次温度計 : 熱力学温度そのものの測定が可能な温度計 どれも熱エネルギー k T を単位として決められている 9 年 月 日 ( 世界計量記念日 から, 熱力学温度 T/K の定義も熱エネルギー k T/J に基づく. 定積気体温度計

More information

RLC 共振回路 概要 RLC 回路は, ラジオや通信工学, 発信器などに広く使われる. この回路の目的は, 特定の周波数のときに大きな電流を得ることである. 使い方には, 周波数を設定し外へ発する, 外部からの周波数に合わせて同調する, がある. このように, 周波数を扱うことから, 交流を考える

RLC 共振回路 概要 RLC 回路は, ラジオや通信工学, 発信器などに広く使われる. この回路の目的は, 特定の周波数のときに大きな電流を得ることである. 使い方には, 周波数を設定し外へ発する, 外部からの周波数に合わせて同調する, がある. このように, 周波数を扱うことから, 交流を考える 共振回路 概要 回路は ラジオや通信工学 などに広く使われる この回路の目的は 特定の周波数のときに大きな電流を得ることである 使い方には 周波数を設定し外へ発する 外部からの周波数に合わせて同調する がある このように 周波数を扱うことから 交流を考える 特に ( キャパシタ ) と ( インダクタ ) のそれぞれが 周波数によってインピーダンス *) が変わることが回路解釈の鍵になることに注目する

More information

第 4 週コンボリューションその 2, 正弦波による分解 教科書 p. 16~ 目標コンボリューションの演習. 正弦波による信号の分解の考え方の理解. 正弦波の複素表現を学ぶ. 演習問題 問 1. 以下の図にならって,1 と 2 の δ 関数を図示せよ δ (t) 2

第 4 週コンボリューションその 2, 正弦波による分解 教科書 p. 16~ 目標コンボリューションの演習. 正弦波による信号の分解の考え方の理解. 正弦波の複素表現を学ぶ. 演習問題 問 1. 以下の図にならって,1 と 2 の δ 関数を図示せよ δ (t) 2 第 4 週コンボリューションその, 正弦波による分解 教科書 p. 6~ 目標コンボリューションの演習. 正弦波による信号の分解の考え方の理解. 正弦波の複素表現を学ぶ. 演習問題 問. 以下の図にならって, と の δ 関数を図示せよ. - - - δ () δ ( ) - - - 図 δ 関数の図示の例 δ ( ) δ ( ) δ ( ) δ ( ) δ ( ) - - - - - - - -

More information

Microsoft Word - 泉南阪南火葬場生活環境影響調査報告書(pdf用)

Microsoft Word - 泉南阪南火葬場生活環境影響調査報告書(pdf用) 6.2 騒音 6.2.1 施設の稼働に伴う騒音 (1) 予測内容施設の稼働による騒音の予測内容は表 6.2.1のとおりである 施設の配置計画に基づき予測計算に必要な条件を設定して 騒音の伝播計算により事業計画地の敷地境界線およびその周辺地域における騒音レベルを算出した 表 6.2.1 施設の稼働に伴う騒音の予測内容 予測項目 施設騒音レベル (L 5 ) 予測対象時期 施設の稼働が最大となる時期 予測対象地域

More information

問 5 音の聞こえに関する記述中 ( ア ) 及び ( イ ) の中に挿入すべき数値の組合せとして 正しいものはどれか 聴力の正常な人の最大可聴値は約 120dB であり 音圧実効値で表すと 2 ( ア )Pa とな る このことから 可聴音は常温大気圧の約 2 ( イ ) 倍以下の微小圧力変化の音

問 5 音の聞こえに関する記述中 ( ア ) 及び ( イ ) の中に挿入すべき数値の組合せとして 正しいものはどれか 聴力の正常な人の最大可聴値は約 120dB であり 音圧実効値で表すと 2 ( ア )Pa とな る このことから 可聴音は常温大気圧の約 2 ( イ ) 倍以下の微小圧力変化の音 公害防止管理者受験対策 kougai.net (http://www.kougai.net) 平成 17 年度公害防止管理者騒音過去問題 ミス等を発見された方は報告していただけると幸いです ご迷惑をおかけしております kougainet@gmail.com 1 公害概論 問 1 騒音の種類とそれに関連する騒音の評価及び影響に関する用語の組合せとして 不適当なものはどれか (1) 建設騒音 PNL (2)

More information

PPTVIEW

PPTVIEW 第 3 回騒音勉強会 低周波音の測定方法測定方法と評価 ( 社 ) 静岡県計量協会環境計量証明部会技術グループ第 3 委員会 内容 1. 用語 2. 低周波音の発生源 3. 低周波音の苦情 4. 低周波音の測定目的 5. 低周波音問題の診断手順 6. 低周波音の測定方法 7. 低周波音問題対応のための 評価指針 1. 用語 1-1. 超低周波音 一般に人が聴くことができる音の周波数範囲は20Hz~20kHzとされており

More information

dB(デシベル)とは

dB(デシベル)とは db( デシベル ) とは 目次 1. はじめに.... 対数について... -1 指数とは... - 対数とは... 3-3 底の違いによるいろいろな対数... 3-4 具体的な対数の値... 4 3. デシベルとは... 5 3-1 デシベルの定義... 5 3- 具体的なデシベル値... 6 3-3 絶対値を表すデシベル... 7 3-4 デシベルを使うメリット... 8 3-5 デシベル (db)

More information

温水洗浄便座性能試験項目および試験方法

温水洗浄便座性能試験項目および試験方法 性能試験方法書 Methods of Testing Performance 換気ユニット ( 居室用ファン ) Ventilation Units(for living room Use) 2018 年 3 月 30 日公表 施行 一般財団法人 Ⅰ 性能試験項目 優良住宅部品評価基準において 試験により性能等を確認する項目並びに試験方法等は下表に よるものとする 性能試験項目名性能試験方法備考頁

More information

2) 環境騒音 事業実施区域周囲における環境騒音の測定結果は, 表 に示すとおりであり, 測定地点は図 に示すとおりである 表 環境騒音の測定結果 番号 地点名 環境基準時間測定結果 (db) 環境類型区分区分平日休日基準 A 榎田 1 丁目 C

2) 環境騒音 事業実施区域周囲における環境騒音の測定結果は, 表 に示すとおりであり, 測定地点は図 に示すとおりである 表 環境騒音の測定結果 番号 地点名 環境基準時間測定結果 (db) 環境類型区分区分平日休日基準 A 榎田 1 丁目 C (3) 騒音 1) 道路交通騒音 事業実施区域周囲における道路交通騒音の測定結果は, 表 4.1.1-21 に示すとおりであ り, 測定地点は図 4.1.1-10 に示すとおりである 道路交通騒音が環境基準値を上回っている地点は, 一般国道 3 号, 福岡空港線, 檜原比 恵線及び上牟田清水線 2 号線の交通量の多い幹線道路に出現している 表 4.1.1-21 道路交通騒音の測定結果 番号路線名測定地点の住所車線数

More information

ちょうせい第74号_シリーズ「振動に関わる苦情への対応」第2回

ちょうせい第74号_シリーズ「振動に関わる苦情への対応」第2回 シリーズ 振動に関わる苦情への対応 - 第 2 回振動の基礎 : 振動の発生と伝搬 - 独立行政法人産業技術総合研究所国松 直 1 はじめに今回は 振動の本質 すなわち振動の基本的な性質に主眼を置き 振動が発生して周囲へ伝搬していく過程で起こる様々な物理現象や 振動を物理量として表示する際の約束事などについて解説します 振動という言葉の定義は Wikipedia(http://ja.wikipedia.org/wiki/

More information

とした 工事は 週 6 日 8 時 ~18 時の時間帯に実施する計画である 1,600 稼動台数 ( 台 / 月 ) 1, 月目 2 月目 3 月目 4 月目 5 月目 6 月目 7 月目 8 月目 9 月目 10 月目 11 月目 12 月目 13 月目 14 月目

とした 工事は 週 6 日 8 時 ~18 時の時間帯に実施する計画である 1,600 稼動台数 ( 台 / 月 ) 1, 月目 2 月目 3 月目 4 月目 5 月目 6 月目 7 月目 8 月目 9 月目 10 月目 11 月目 12 月目 13 月目 14 月目 ⅲ. 騒音レベルの合成 騒音レベルの合成には 次式を用いた = 10 log 10 Σ10 i/10 ここで : 合成騒音レベル ( db) i: 予測地点における音源からの騒音レベル ( db) c. 予測地域 予測地点予測地域は 調査地域と同様とした 予測地点は 音の伝搬の特性及び土地利用の状況等をふまえて 予測地域における騒音に係る環境影響を的確に把握できる地点とした 具体的には 東西それぞれの敷地境界のうち

More information

Microsoft Word - 微分入門.doc

Microsoft Word - 微分入門.doc 基本公式 例題 0 定義式 f( ) 数 Ⅲ 微分入門 = の導関数を定義式にもとづいて計算しなさい 基本事項 ( f( ), g( ) が微分可能ならば ) y= f( ) g( ) のとき, y = y= f( ) g( ) h( ) のとき, y = ( f( ), g( ) が微分可能で, g( ) 0 ならば ) f( ) y = のとき, y = g ( ) とくに, y = のとき,

More information

() 実験 Ⅱ. 太陽の寿命を計算する 秒あたりに太陽が放出している全エネルギー量を計測データをもとに求める 太陽の放出エネルギーの起源は, 水素の原子核 4 個が核融合しヘリウムになるときのエネルギーと仮定し, 質量とエネルギーの等価性から 回の核融合で放出される全放射エネルギーを求める 3.から

() 実験 Ⅱ. 太陽の寿命を計算する 秒あたりに太陽が放出している全エネルギー量を計測データをもとに求める 太陽の放出エネルギーの起源は, 水素の原子核 4 個が核融合しヘリウムになるときのエネルギーと仮定し, 質量とエネルギーの等価性から 回の核融合で放出される全放射エネルギーを求める 3.から 55 要旨 水温上昇から太陽の寿命を算出する 53 町野友哉 636 山口裕也 私たちは, 地球環境に大きな影響を与えている太陽がいつまで今のままであり続けるのかと疑問をもちました そこで私たちは太陽の寿命を求めました 太陽がどのように燃えているのかを調べたら水素原子がヘリウム原子に変化する核融合反応によってエネルギーが発生していることが分かった そこで, この反応が終わるのを寿命と考えて算出した

More information

西松建設技報

西松建設技報 西松建設技報 VOL3 A Study on The Prediction Method of The Solid Borne Sound Caused by Blasting Vibrations Hiroaki Takamura Masaki Yoshida Humiaki Iwama Yoshihiko Shiba 要 約,,,,,Hz~Hz,,, 3 はじめに, (),,,,,, ( ),,

More information

領域シンポ発表

領域シンポ発表 1 次元の減衰運動の中の強制振動 ) ( f d d d d d e f e ce ) ( si ) ( 1 ) ( cos ω =ω -γ とおくと 一般解は 外力 f()=f siω の場合 f d d d d si f ce f ce si ) cos( cos si ) cos( この一般解は 1 φ は外力と変位との間の位相差で a 時間が経つと 第 1 項は無視できる この場合の振幅を

More information

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように 3 章 Web に Link 解説 連続式 微分表示 の誘導.64 *4. 連続式連続式は ある領域の内部にある流体の質量の収支が その表面からの流入出の合計と等しくなることを定式化したものであり 流体における質量保存則を示したものである 2. 連続式 微分表示 の誘導図のような微小要素 コントロールボリューム の領域内の流体の増減と外部からの流体の流入出を考えることで定式化できる 微小要素 流入

More information

パソコンシミュレータの現状

パソコンシミュレータの現状 第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に

More information

Microsoft Word - H24江戸川区離陸機調査 doc

Microsoft Word - H24江戸川区離陸機調査 doc 22 10 21 D D D 2-1-1 D 3,000m AC 2,500m B3 22 16L 16R B (22/04) C (34R/16L) 04 A (34L/16R) 34R 34L 25000( ) 2-1-1 D 1 D D 2-1-2 D ABC2,500mD 4 22 16L 16R B (22/04) C (34R/16L) 04 A (34L/16R) 34R 23 34L

More information

学習指導要領

学習指導要領 (1) 数と式 学習指導要領 数と式 (1) 式の計算二次の乗法公式及び因数分解の公式の理解を深め 式を多面的にみたり目的に応じて式を適切に変形したりすること 東京都立町田高等学校学力スタンダード 整式の加法 減法 乗法展開の公式を利用できる 式を1 つの文字におき換えることによって, 式の計算を簡略化することができる 式の形の特徴に着目して変形し, 展開の公式が適用できるようにすることができる 因数分解因数分解の公式を利用できる

More information

木村の物理小ネタ 単振動と単振動の力学的エネルギー 1. 弾性力と単振動 弾性力も単振動も力は F = -Kx の形で表されるが, x = 0 の位置は, 弾性力の場合, 弾性体の自然状態の位置 単振動の場合, 振動する物体に働く力のつり合

木村の物理小ネタ   単振動と単振動の力学的エネルギー 1. 弾性力と単振動 弾性力も単振動も力は F = -Kx の形で表されるが, x = 0 の位置は, 弾性力の場合, 弾性体の自然状態の位置 単振動の場合, 振動する物体に働く力のつり合 単振動と単振動の力学的エネルギー. 弾性力と単振動 弾性力も単振動も力は F = -x の形で表されるが, x = の位置は, 弾性力の場合, 弾性体の自然状態の位置 単振動の場合, 振動する物体に働く力のつり合いの位置 である たとえば, おもりをつるしたばねについて, ばねの弾性力を考えるときは, ばねの自然長を x = とし, おもりの単振動で考える場合は, おもりに働く力がつり合った位置を

More information

表 1 音 等の用語の定義 Infra-Sound(~0Hz) Sound(0 ~0000Hz) Ultra-Sound(0000Hz~) 超低周波音音 ( 音波による聴感覚 ) 超音波音 0~100Hz 低周波音超高周波音? 1000Hz~ 高周波音周波数範囲 ~0Hz は Infra-Sound

表 1 音 等の用語の定義 Infra-Sound(~0Hz) Sound(0 ~0000Hz) Ultra-Sound(0000Hz~) 超低周波音音 ( 音波による聴感覚 ) 超音波音 0~100Hz 低周波音超高周波音? 1000Hz~ 高周波音周波数範囲 ~0Hz は Infra-Sound 低周波音問題に関する最近の課題 中野有朋 ( 中野環境クリニック所長 工博 技術士 ) 低周波音とは 例えば ブーンとかボーと耳に聞こえる低音のことである 超低周波音とは耳には 音 として聞こえない音波である ただこれだけのことである それが最近 様々に誤解され 無意味な多くのトラブルを引き起こしている トラブルの多くは両者を混同したものである ここでは 筆者が今までに相談を受け 解決した多くの事例等をもとに

More information

物理演習問題

物理演習問題 < 物理 > =0 問 ビルの高さを, ある速さ ( 初速 をとおく,において等加速度運動の公式より (- : -= t - t : -=- t - t (-, 式よりを消去すると t - t =- t - t ( + - ( + ( - =0 0 t t t t t t ( t + t - ( t - =0 t=t t=t t - 地面 ( t - t t +t 0 より, = 3 図 問 が最高点では速度が

More information

フィードバック ~ 様々な電子回路の性質 ~ 実験 (1) 目的実験 (1) では 非反転増幅器の増幅率や位相差が 回路を構成する抵抗値や入力信号の周波数によってどのように変わるのかを調べる 実験方法 図 1 のような自由振動回路を組み オペアンプの + 入力端子を接地したときの出力電圧 が 0 と

フィードバック ~ 様々な電子回路の性質 ~ 実験 (1) 目的実験 (1) では 非反転増幅器の増幅率や位相差が 回路を構成する抵抗値や入力信号の周波数によってどのように変わるのかを調べる 実験方法 図 1 のような自由振動回路を組み オペアンプの + 入力端子を接地したときの出力電圧 が 0 と フィードバック ~ 様々な電子回路の性質 ~ 実験 (1) 目的実験 (1) では 非反転増幅器の増幅率や位相差が 回路を構成する抵抗値や入力信号の周波数によってどのように変わるのかを調べる 実験方法 図 1 のような自由振動回路を組み オペアンプの + 入力端子を接地したときの出力電圧 が 0 となるように半固定抵抗器を調整する ( ゼロ点調整のため ) 図 1 非反転増幅器 2010 年度版物理工学実験法

More information

<4D F736F F D20837E836A837D E82CC88D98FED E12E646F63>

<4D F736F F D20837E836A837D E82CC88D98FED E12E646F63> 振動分析計 VA-12 を用いた精密診断事例 リオン株式会社 振動分析計 VA-12 を用いた精密診断事例を紹介します 振動分析計 VA-12 は 振動計と高機能 FFT アナライザが一体となったハンディタイプの測定器です 振動計として使用する場合は加速度 速度 変位の同時計測 FFT アナライザとして使用する場合は 3200 ライン分解能 20kHz の連続リアルタイム分析が可能です また カラー液晶に日本語表示がされます

More information

計測コラム emm182号用

計測コラム emm182号用 計測コラム emm182 号用 計測に関するよくある質問から - 第 9 回パワースペクトル密度の計算方法 当計測コラムでは 当社お客様相談室によくお問い合わせいただくご質問をとりあげ 回答内容をご紹介しています 今回は FFT 解析により得られたパワースペクトルからパワースペクトル密度 (PSD) を計算する方法をご紹介します ランダム信号などの周期的ではない信号 ( 連続スペクトルをもつ信号 )

More information

第1章 単 位

第1章  単  位 H. Hmno 問題解答 問題解答. 力の釣合い [ 問題.] V : sin. H :.cos. 7 V : sin sin H : cos cos cos 上第 式より これと第 式より.. cos V : sin sin H : coscos cos 上第 式より これと第 式より.98. cos [ 問題.] :. V :. : 9 9. V :. : sin V : sin 8.78 H

More information

ÿþŸb8bn0irt

ÿþŸb8bn0irt 折戸の物理 スペシャル補習 http://orito-buturi.com/ NO.3 今日の目的 : 1 微分方程式をもう一度 三角関数の近似について学ぶ 3 微分の意味を考える 5. 起電力 の電池, 抵抗値 の抵抗, 自己インダクタンス のコイルとスイッチを用いて右図のような回路をつくった 始めスイッチは 開かれている 時刻 t = でスイッチを閉じた 以下の問に答えよ ただし, 電流はコイルに

More information

第 2 章振動の測定と評価 20

第 2 章振動の測定と評価 20 第 2 章振動の測定と評価 20 1 振動の測定と評価振動の測定と評価に関しては 変位 速度 加速度が長年研究されており 建築 機械 環境等 それぞれの分野で採用されてきました 環境部門においては 種々の検討の結果 人体の振動についての反応は 振動加速度を基本にするのが適切と国際的にも認識されています そこで ISO では 振動加速度を基本とする測定評価手法が取り上げられ調査検討が進められ 昭和 49

More information

H22_11騒音・振動概論33-74.indd

H22_11騒音・振動概論33-74.indd 11 H22-34 騒音 振動関係平成22 年度11 Question 騒音規制法 ( 以下, 法 という ) 第 4 条 ( 規制基準の設定 ) に関しての出題である ( テキスト法律編 : 騒音規制法 ) 前段の (1) 及び (2) は正しい 法第 4 条 ( 規制基準の設定 ) 第 1 項参照 後段の (3),(4) 及び (5) は, 同条第 2 項参照 (3) 及び (4) は正しい 市町村が条例で定めることのできる規制基準の範囲は,

More information

学習指導要領

学習指導要領 (1) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 絶対値の意味を理解し適切な処理することができる 例題 1-3 の絶対値をはずせ 展開公式 ( a + b ) ( a - b ) = a 2 - b 2 を利用して根号を含む分数の分母を有理化することができる 例題 5 5 + 2 の分母を有理化せよ 実数の整数部分と小数部分の表し方を理解している

More information

STEP 数学 Ⅰ を解いてみた から直線 に下ろした垂線の足を H とすると, H in( 80 ) in より, S H in H 同様にして, S in, S in も成り立つ よって, S in 三角形の面積 ヘロンの公式 in in 辺の長

STEP 数学 Ⅰ を解いてみた   から直線 に下ろした垂線の足を H とすると, H in( 80 ) in より, S H in H 同様にして, S in, S in も成り立つ よって, S in 三角形の面積 ヘロンの公式 in in 辺の長 STEP 数学 Ⅰ を解いてみた http://toitemit.ku.ne.jp 図形と計量 三角形の面積 三角形の面積 の面積を S とすると, S in in in 解説 から直線 に下ろした垂線の足を H とすると, H in より, S H in H STEP 数学 Ⅰ を解いてみた http://toitemit.ku.ne.jp から直線 に下ろした垂線の足を H とすると, H in(

More information

<4D F736F F D20824F F6490CF95AA82C696CA90CF95AA2E646F63>

<4D F736F F D20824F F6490CF95AA82C696CA90CF95AA2E646F63> 1/15 平成 3 年 3 月 4 日午後 6 時 49 分 5 ベクトルの 重積分と面積分 5 重積分と面積分 Ⅰ. 重積分 と で 回積分することを 重積分 といいます この 重積分は何を意味しているのでしょう? 通常の積分 (1 重積分 ) では C d 図 1a 1 f d (5.1) 1 f d f ( ) は 図形的には図 1a のように面積を表しています つまり 1 f ( ) を高さとしてプロットすると図

More information

Microsoft Word - 町田・全 H30学力スタ 別紙1 1年 数学Ⅰ.doc

Microsoft Word - 町田・全 H30学力スタ 別紙1 1年 数学Ⅰ.doc (1) 数と式 学習指導要領 都立町田高校 学力スタンダード ア 数と集合 ( ア ) 実数 根号を含む式の計算 数を実数まで拡張する意義を理解し 簡単な 循環小数を表す記号を用いて, 分数を循環小数で表 無理数の四則計算をすること すことができる 今まで学習してきた数の体系について整理し, 考察 しようとする 絶対値の意味と記号表示を理解している 根号を含む式の加法, 減法, 乗法の計算ができる

More information

2009 年 11 月 16 日版 ( 久家 ) 遠地 P 波の変位波形の作成 遠地 P 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに P U () t = S()* t E()* t P() t で近似的に計算できる * は畳み込み積分 (convolution) を表す ( 付録

2009 年 11 月 16 日版 ( 久家 ) 遠地 P 波の変位波形の作成 遠地 P 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに P U () t = S()* t E()* t P() t で近似的に計算できる * は畳み込み積分 (convolution) を表す ( 付録 遠地 波の変位波形の作成 遠地 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに U () t S() t E() t () t で近似的に計算できる は畳み込み積分 (convolution) を表す ( 付録 参照 ) ここで St () は地震の断層運動によって決まる時間関数 1 E() t は地下構造によって生じる種々の波の到着を与える時間関数 ( ここでは 直達 波とともに 震源そばの地表での反射波や変換波を与える時間関数

More information

第 5 章 構造振動学 棒の振動を縦振動, 捩り振動, 曲げ振動に分けて考える. 5.1 棒の縦振動と捩り振動 まっすぐな棒の縦振動の固有振動数 f[ Hz] f = l 2pL である. ただし, L [ 単位 m] は棒の長さ, [ 2 N / m ] 3 r[ 単位 Kg / m ] E r

第 5 章 構造振動学 棒の振動を縦振動, 捩り振動, 曲げ振動に分けて考える. 5.1 棒の縦振動と捩り振動 まっすぐな棒の縦振動の固有振動数 f[ Hz] f = l 2pL である. ただし, L [ 単位 m] は棒の長さ, [ 2 N / m ] 3 r[ 単位 Kg / m ] E r 第 5 章 構造振動学 棒の振動を縦振動, 捩り振動, 曲げ振動に分けて考える 5 棒の縦振動と捩り振動 まっすぐな棒の縦振動の固有振動数 f[ Hz] f l pl である ただし, L [ 単位 m] は棒の長さ, [ N / m ] [ 単位 Kg / m ] E は (5) E 単位は棒の材料の縦弾性係数 ( ヤング率 ) は棒の材料の単位体積当りの質量である l は境界条件と振動モードによって決まる無

More information

数学 ⅡB < 公理 > 公理を論拠に定義を用いて定理を証明する 1 大小関係の公理 順序 (a > b, a = b, a > b 1 つ成立 a > b, b > c a > c 成立 ) 順序と演算 (a > b a + c > b + c (a > b, c > 0 ac > bc) 2 図

数学 ⅡB < 公理 > 公理を論拠に定義を用いて定理を証明する 1 大小関係の公理 順序 (a > b, a = b, a > b 1 つ成立 a > b, b > c a > c 成立 ) 順序と演算 (a > b a + c > b + c (a > b, c > 0 ac > bc) 2 図 数学 Ⅱ < 公理 > 公理を論拠に定義を用いて定理を証明する 大小関係の公理 順序 >, =, > つ成立 >, > > 成立 順序と演算 > + > + >, > > 図形の公理 平行線の性質 錯角 同位角 三角形の合同条件 三角形の合同相似 量の公理 角の大きさ 線分の長さ < 空間における座漂とベクトル > ベクトルの演算 和 差 実数倍については 文字の計算と同様 ベクトルの成分表示 平面ベクトル

More information

内容 1. 調査概要 2. 内航船の騒音実態調査 3. Janssen 法による騒音予測プログラム 4. 騒音対策の検討 5. まとめ 2

内容 1. 調査概要 2. 内航船の騒音実態調査 3. Janssen 法による騒音予測プログラム 4. 騒音対策の検討 5. まとめ 2 内航船における船内騒音の低減対策に 関する調査 国立研究開発法人海上技術安全研究所平方勝有馬俊朗 1 内容 1. 調査概要 2. 内航船の騒音実態調査 3. Janssen 法による騒音予測プログラム 4. 騒音対策の検討 5. まとめ 2 調査概要 H26 年度 (1) 過去の船内騒音計測データの収集及び分析 過去 3 年分以上の内航船の船内騒音計測データを収集し 騒音コードの基準値からの乖離が大きくかけ離れ

More information

1

1 問題を解こう. 熱力学の基礎 問題. 容積 [m ] の密閉容器内に 温度 0[ ] 質量 0[kg] の酸素が含まれている この容器内の圧力を求めよ ただし 酸素の気体定数を R= 59.8[J/kg K] とする 解答 酸素の体積 V=m 質量 m=0kg なので 酸素の比容積 v=/0 m /kg である 式 (.) において ガス定数 R=59.8 温度 T=(0+7)K であるので 圧力

More information

RMS(Root Mean Square value 実効値 ) 実効値は AC の電圧と電流両方の値を規定する 最も一般的で便利な値です AC 波形の実効値はその波形から得られる パワーのレベルを示すものであり AC 信号の最も重要な属性となります 実効値の計算は AC の電流波形と それによって

RMS(Root Mean Square value 実効値 ) 実効値は AC の電圧と電流両方の値を規定する 最も一般的で便利な値です AC 波形の実効値はその波形から得られる パワーのレベルを示すものであり AC 信号の最も重要な属性となります 実効値の計算は AC の電流波形と それによって 入門書 最近の数多くの AC 電源アプリケーションに伴う複雑な電流 / 電圧波形のため さまざまな測定上の課題が発生しています このような問題に対処する場合 基本的な測定 使用される用語 それらの関係について理解することが重要になります このアプリケーションノートではパワー測定の基本的な考え方やパワー測定において重要な 以下の用語の明確に定義します RMS(Root Mean Square value

More information

Microsoft PowerPoint - 1章 [互換モード]

Microsoft PowerPoint - 1章 [互換モード] 1. 直線運動 キーワード 速さ ( 等速直線運動, 変位 ) 加速度 ( 等加速度直線運動 ) 重力加速度 ( 自由落下 ) 力学 I 内容 1. 直線運動 2. ベクトル 3. 平面運動 4. 運動の法則 5. 摩擦力と抵抗 6. 振動 7. 仕事とエネルギー 8. 運動量と力積, 衝突 9. 角運動量 3 章以降は, 運動の向きを考えなければならない 1. 直線運動 キーワード 速さ ( 等速直線運動,

More information

Microsoft PowerPoint - aep_1.ppt [互換モード]

Microsoft PowerPoint - aep_1.ppt [互換モード] 物理計測法特論 No.1 第 1 章 : 信号と雑音 本講義の主題 雑音の性質を理解することで 信号と雑音の大きさが非常に近い状態での信号の測定技術 : 微小信号計測 について学ぶ 講義の Web http://www.g-munu.t.u-tokyo.ac.jp/mio/note/sig_mes/tokuron.html 物理学の基本は実験事実の積み重ねである そして それは何かを測定することから始まる

More information

THE BULLETIN OF TAKUMA NATIONAL COLLEGE OF TECHNOLOGY No.35 (007) そこで, 壁の面密度を m[kg/m ] とすると, 入射波が垂直入射波の場合の基本形では透過損失は () 式で求められる. TL 0 ωm = 10log 1 + ρ

THE BULLETIN OF TAKUMA NATIONAL COLLEGE OF TECHNOLOGY No.35 (007) そこで, 壁の面密度を m[kg/m ] とすると, 入射波が垂直入射波の場合の基本形では透過損失は () 式で求められる. TL 0 ωm = 10log 1 + ρ 詫間電波工業高等専門学校研究紀要第 35 号 (007) AAB 建築工法による建築構造物の遮音効果 * 増田隆 Sound Insulation Effect of Building Structures by the AAB Architecture Method Takashi MASUDA Synopsis The AAB architecture method is the method

More information

Math-Aquarium 例題 図形と計量 図形と計量 1 直角三角形と三角比 P 木の先端を P, 根元を Q とする A 地点の目の位置 A' から 木の先端への仰角が 30,A から 7m 離れた AQB=90 と なる B 地点の目の位置 B' から木の先端への仰角が 45 であ るとき,

Math-Aquarium 例題 図形と計量 図形と計量 1 直角三角形と三角比 P 木の先端を P, 根元を Q とする A 地点の目の位置 A' から 木の先端への仰角が 30,A から 7m 離れた AQB=90 と なる B 地点の目の位置 B' から木の先端への仰角が 45 であ るとき, 図形と計量 直角三角形と三角比 P 木の先端を P, 根元を Q とする 地点の目の位置 ' から 木の先端への仰角が 0, から 7m 離れた Q=90 と なる 地点の目の位置 ' から木の先端への仰角が であ るとき, 木の高さを求めよ ただし, 目の高さを.m とし, Q' を右の図のように定める ' 0 Q' '.m Q 7m 要点 PQ PQ PQ' =x とおき,' Q',' Q' を

More information

中学 3 年数学 ( 東京書籍 ) 単元別コンテンツ一覧 単元ドリル教材解説教材 確認問題ライブラリ (OP) プリント教材 教材数 :17 問題数 : 基本 145, 標準 145, 挑戦 145 多項式と単項式の乗法 除法 式の展開 乗法公式などの問題を収録 解説教材 :6 確認問題 :6 単項

中学 3 年数学 ( 東京書籍 ) 単元別コンテンツ一覧 単元ドリル教材解説教材 確認問題ライブラリ (OP) プリント教材 教材数 :17 問題数 : 基本 145, 標準 145, 挑戦 145 多項式と単項式の乗法 除法 式の展開 乗法公式などの問題を収録 解説教材 :6 確認問題 :6 単項 教材数 :17 問題数 : 基本 145, 標準 145, 挑戦 145 多項式と単項式の乗法 除法 式の展開 乗法公式などの問題を収録 解説教材 :6 確認問題 :6 単項式と多項式の乗除 多項式の乗法などの解説 確認問題 ステープラオリジナル問題を簡単な操作で作成 (OP) 中学校プリントパック単元別プリント 26 枚 多項式多項式の計算 教材数 :8 問題数 : 基本 75, 標準 75, 挑戦

More information

振動学特論火曜 1 限 TA332J 藤井康介 6 章スペクトルの平滑化 スペクトルの平滑化とはギザギザした地震波のフーリエ スペクトルやパワ スペクトルでは正確にスペクトルの山がどこにあるかはよく分からない このようなスペクトルから不純なものを取り去って 本当の性質を浮き彫

振動学特論火曜 1 限 TA332J 藤井康介 6 章スペクトルの平滑化 スペクトルの平滑化とはギザギザした地震波のフーリエ スペクトルやパワ スペクトルでは正確にスペクトルの山がどこにあるかはよく分からない このようなスペクトルから不純なものを取り去って 本当の性質を浮き彫 6 章スペクトルの平滑化 スペクトルの平滑化とはギザギザした地震波のフーリエ スペクトルやパワ スペクトルでは正確にスペクトルの山がどこにあるかはよく分からない このようなスペクトルから不純なものを取り去って 本当の性質を浮き彫りにするために スペクトルを滑らかにする操作のことをいう 6.1 合積のフーリエ変換スペクトルの平滑化を行う際に必要な 合積とそのフーリエ変換について説明する 6.2 データ

More information

数学 t t t t t 加法定理 t t t 倍角公式加法定理で α=β と置く. 三角関数

数学 t t t t t 加法定理 t t t 倍角公式加法定理で α=β と置く. 三角関数 . 三角関数 基本関係 t cot c sc c cot sc t 還元公式 t t t t t t cot t cot t 数学 数学 t t t t t 加法定理 t t t 倍角公式加法定理で α=β と置く. 三角関数 数学. 三角関数 5 積和公式 6 和積公式 数学. 三角関数 7 合成 t V v t V v t V V V V VV V V V t V v v 8 べき乗 5 6 6

More information

工場・事業場、ばい煙・指定物質等自主管理要綱

工場・事業場、ばい煙・指定物質等自主管理要綱 工場 事業場騒音 振動 悪臭自主管理要領 1 目的この要領は, 宇都宮市と 宇都宮市環境協定 を締結する者が, その工場 事業場の敷地の境界において, 事業活動に伴う騒音, 振動及び悪臭の発生について自主管理体制を確立するとともに, その発生状況を把握し, 必要な措置を講じることで周辺住民の生活環境を保全することを目的とする 測定方法等は, 騒音規制法, 振動規制法, 悪臭防止法及び栃木県生活環境の保全等に関する条例の規定に準じるものとする

More information

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ 数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュレーションによって計算してみる 4.1 放物運動一様な重力場における放物運動を考える 一般に質量の物体に作用する力をとすると運動方程式は

More information

<4D F736F F D208E9197BF A815B E B89B992B28DB88C8B89CA E646F63>

<4D F736F F D208E9197BF A815B E B89B992B28DB88C8B89CA E646F63> 事前質問回答表 騒音 振動 資料 1 項目 質問 回答 騒音 1 2 3 (P12-7-7 P12 7-25) 回折減衰量について 観客声援のパワーレベル分布 周波数特性 音源の位置情報と障壁の設定と経路差計算等の前提条件について どのように仮定しているか P.12-7-27 に試合歓声騒音レベルは類似施設における実測値より 1 m2あたりのパワーレベルを設定しているが どのような計算を行ったのか

More information

Microsoft PowerPoint - 第5回電磁気学I 

Microsoft PowerPoint - 第5回電磁気学I  1 年 11 月 8 日 ( 月 ) 1:-1: Y 平成 年度工 系 ( 社会環境工学科 ) 第 5 回電磁気学 Ⅰ 天野浩 項目 電界と電束密度 ガウスの発散定理とガウスの法則の積分形と微分形 * ファラデーの電気力線の使い方をマスターします * 電界と電束密度を定義します * ガウスの発散定理を用いて ガウスの法則の積分形から微分形をガウスの法則の積分形から微分形を導出します * ガウスの法則を用いて

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 音響解析プログラム WAON 最新開発動向と適用例のご紹介 サイバネットシステム株式会社 メカニカル CAE 事業部 WAON 推進室 アジェンダ 1. 会社紹介 2. WAON とは? 3. なぜ WAON なのか? 4. 各種適用例のご紹介 5. 最新開発動向 2 1. 会社紹介サイバネットシステム ( 株 ) メカニカル CAE 事業部 音響 構造 熱 電磁場 熱流体 衝突 板成形 樹脂流動などの各種解析

More information

学習指導要領

学習指導要領 (1 ) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 自然数 整数 有理数 無理数の包含関係など 実 数の構成を理解する ( 例 ) 次の空欄に適当な言葉をいれて, 数の集合を表しなさい 実数の絶対値が実数と対応する点と原点との距離で あることを理解する ( 例 ) 次の値を求めよ (1) () 6 置き換えなどを利用して 三項の無理数の乗法の計

More information

ゲームエンジンの構成要素

ゲームエンジンの構成要素 cp-3. 計算 (C プログラムの書き方を, パソコン演習で学ぶシリーズ ) https://www.kkaneko.jp/cc/adp/index.html 金子邦彦 1 本日の内容 例題 1. 自由落下距離四則演算例題 2. 三角形の面積浮動小数の変数, 入力文, 出力文, 代入文例題 3. sin 関数による三角形の面積ライブラリ関数 2 今日の到達目標 プログラムを使って, 自分の思い通りの計算ができるようになる

More information

3 音波の測定 1. ほとんどのノートPCにはマイクロフォンが内蔵されている. 2. 他の音源から一定の振動数の音を発生し録音する. 3. PCに録音した音の波形を表示すると, サイン波といわれる波形が観測できる. 4. これが単一の振動数しか持たない音波の波形である. 5. 別の音源 ( たとえば

3 音波の測定 1. ほとんどのノートPCにはマイクロフォンが内蔵されている. 2. 他の音源から一定の振動数の音を発生し録音する. 3. PCに録音した音の波形を表示すると, サイン波といわれる波形が観測できる. 4. これが単一の振動数しか持たない音波の波形である. 5. 別の音源 ( たとえば 2 音波の発生 音の発生空気中で振動している物体は, その物体の表面が空気を押したり引いたりするので, 周囲の空気に音波を放出する. 音波は縦波であり空気の圧縮波が物体から出て広がる. したがって圧縮 ( 空気が通常より高い圧力になる ) と膨張 ( 空気が通常より低圧になる ) の繰り返しが音波であるとも考えられる. 圧縮のとき空気の密度が通常より上がり, 膨張のとき通常より下がる. 伝播の道筋にそって横軸をとり,

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) マクスウェルの方程式 : 真空中 () 1. 電磁波 ( 光波 ) の姿 : 真空中. エネルギー密度 3. ポインティング ベクトル 4. 絵解き : ポインティング ベクトル 5. ポインティング ベクトル : 再確認 6. 両者の関係 7. 付録 : ベクトル解析 注意 1. 本付録 : マクスウェルの方程式: 微分型 を使用. マクスウェルの方程式を数学的に取扱います

More information

Microsoft Word - ultrasonic_2010.doc

Microsoft Word - ultrasonic_2010.doc 超音波の基礎 改訂版 機能材料工学科 阿部洋 目次. 音響振動と音場音場. 音圧. 速度ポテンシャル. 音響インピーダンス 5. 超音波の反射と透過 6. 液浸法 ( パルス超音波透過 ). 超音波吸収 8. 減衰定数 8. 音速測定 9. 測定例 9. 横波反射法を用いたずりいたずりインピーダンスインピーダンス測定. 弾性 0. 粘性 0. 粘弾性. 音波の緩和現象 5 付録 A 弾性論 7 参考文献

More information

学習指導要領

学習指導要領 (1) 数と式 学習指導要領ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 第 1 章第 節実数 東高校学力スタンダード 4 実数 (P.3~7) 自然数 整数 有理数 無理数 実数のそれぞれの集 合について 四則演算の可能性について判断できる ( 例 ) 下の表において, それぞれの数の範囲で四則計算を考えるとき, 計算がその範囲で常にできる場合には

More information

JAS Journal 2015 Vol.55 No.2(3 月号 ) 特集 : カーオーディオ ハイレゾ時代に相応しい高性能スピーカー振動板の開発 三菱電機株式会社鈴木聖記 NCV という名の革新的なスピーカー振動板を開発した NCV は Nano Carbonized high Velocity

JAS Journal 2015 Vol.55 No.2(3 月号 ) 特集 : カーオーディオ ハイレゾ時代に相応しい高性能スピーカー振動板の開発 三菱電機株式会社鈴木聖記 NCV という名の革新的なスピーカー振動板を開発した NCV は Nano Carbonized high Velocity 特集 : カーオーディオ ハイレゾ時代に相応しい高性能スピーカー振動板の開発 三菱電機株式会社鈴木聖記 NCV という名の革新的なスピーカー振動板を開発した NCV は Nano Carbonized high Velocity の略で 数種類の高分子材料とカーボンナノチューブを組み合わせた新素材である 最大の特徴としては 樹脂系材料でありながらチタンを超える伝搬速度を持ち かつ紙と同等の適度な内部損失を持つことである

More information

(Microsoft Word -

(Microsoft Word - 19. 環境音響 騒音 19.1 波動伝播と音源 19.1.1 波動伝播の簡易モデル電気系には電圧と電流 機械系には力と速度があるように 音響系にも音圧と粒子速度という つの基本量がある 音圧の単位はパスカル (Pa N/m ) であり 単位面積に加わる力である ±1Pa は水位がほぼ ±.1mm 変化するときに生じる圧力変化である 粒子速度はそれに伴う空気粒子の振動である 波動の伝播は図 1の質量とばねが繋がった系を考えると分かりやすい

More information

<4D F736F F F696E74202D C CC89C88A B8CDD8AB B83685D>

<4D F736F F F696E74202D C CC89C88A B8CDD8AB B83685D> 断面積 (A) を使わずに, 間隙率を使う透水係数の算定 図に示したような 本の孔を掘って, 上流側から食塩を投入した 食塩を投入してから,7 時間後に下流側に食塩が到達したことが分かった この地盤の透水係数を求めよ 地盤の間隙比は e=0.77, 水位差は 0 cmであった なお, この方法はトレーサ法の中の食塩法と呼ばれている Nacl 計測器 0 cm 0.0 m 断面積 (A) を使わずに,

More information

学習指導要領

学習指導要領 (1) いろいろな式 学習指導要領紅葉川高校学力スタンダードア式と証明展開の公式を用いて 3 乗に関わる式を展開すること ( ア ) 整式の乗法 除法 分数式の計算ができるようにする 三次の乗法公式及び因数分解の公式を理解し そ 3 次の因数分解の公式を理解し それらを用いて因数れらを用いて式の展開や因数分解をすること また 分解することができるようにする 整式の除法や分数式の四則計算について理解し

More information

重要例題113

重要例題113 04_ 高校 数学 Ⅱ 必須基本公式 定理集 数学 Ⅱ 第 章式の計算と方程式 0 商と余り についての整式 A をについての整式 B で割ったときの商を Q, 余りを R とすると, ABQ+R (R の次数 ) > 0

More information

Microsoft PowerPoint - ip02_01.ppt [互換モード]

Microsoft PowerPoint - ip02_01.ppt [互換モード] 空間周波数 周波数領域での処理 空間周波数 (spatial frquncy) とは 単位長さ当たりの正弦波状の濃淡変化の繰り返し回数を表したもの 正弦波 : y sin( t) 周期 : 周波数 : T f / T 角周波数 : f 画像処理 空間周波数 周波数領域での処理 波形が違うと 周波数も違う 画像処理 空間周波数 周波数領域での処理 画像処理 3 周波数領域での処理 周波数は一つしかない?-

More information

Microsoft Word - 201hyouka-tangen-1.doc

Microsoft Word - 201hyouka-tangen-1.doc 数学 Ⅰ 評価規準の作成 ( 単元ごと ) 数学 Ⅰ の目標及び図形と計量について理解させ 基礎的な知識の習得と技能の習熟を図り それらを的確に活用する機能を伸ばすとともに 数学的な見方や考え方のよさを認識できるようにする 評価の観点の趣旨 式と不等式 二次関数及び図形と計量における考え方に関 心をもつとともに 数学的な見方や考え方のよさを認識し それらを事象の考察に活用しようとする 式と不等式 二次関数及び図形と計量における数学的な見

More information

ギリシャ文字の読み方を教えてください

ギリシャ文字の読み方を教えてください 埼玉工業大学機械工学学習支援セミナー ( 小西克享 ) 単振り子の振動の近似解と厳密解 -/ テーマ H: 単振り子の振動の近似解と厳密解. 運動方程式図 のように, 質量 m のおもりが糸で吊り下げられている時, おもりには重力 W と糸の張力 が作用しています. おもりは静止した状態なので,W と F は釣り合った状態注 ) になっています. すなわち, W です.W は質量 m と重力加速度

More information

伝熱学課題

伝熱学課題 練習問題解答例 < 第 章強制対流熱伝達 >. 式 (.9) を導出せよ (.6) を変換する 最初に の微分値を整理しておく (.A) (.A) これを用いて の微分値を求める (.A) (.A) (.A) (.A6) (.A7) これらの微分値を式 (.6) に代入する (.A8) (.A9) (.A) (.A) (.A) (.9). 薄い平板が温度 で常圧の水の一様な流れの中に平行に置かれている

More information

Microsoft PowerPoint - 流体力学の基礎02(OpenFOAM 勉強会 for geginner).pptx

Microsoft PowerPoint - 流体力学の基礎02(OpenFOAM 勉強会 for geginner).pptx ~ 流体力学の基礎 ~ 第 2 回 流体静力学 2011 年 10 月 22 日 ( 土 ) 講習会のスケジュール概要 ( あくまでも現時点での予定です ) 流体力学の基礎 第 1 回目 2011.09 流体について 第 2 回目 2011.10 流体静力学 第 3 回目 2011.11/12 流体運動の基礎理論 1 第 4 回目 2012.01 流体運動の基礎理論 2 第 5 回目 2012.02

More information

ジャイロスコープの実験

ジャイロスコープの実験 振動実験 2018 年版 目的 : 機械及び電気工学実験における 機械振動の測定 では 1 自由度振動系に関して自由振動より固有振動数および減衰比を 強制振動より振幅倍率と位相差の周波数変化を求めた 本実験では

More information

学習指導要領

学習指導要領 (1) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 自然数 整数 有理数 無理数の包含関係など 実数 の構成を理解する ( 例 ) 次の空欄に適当な言葉をいれて, 数の集合を表しなさい ア イ 無理数 整数 ウ 無理数の加法及び減法 乗法公式などを利用した計 算ができる また 分母だけが二項である無理数の 分母の有理化ができる ( 例 1)

More information

Microsoft PowerPoint - 第1回 騒音・振動Q&A.ppt

Microsoft PowerPoint - 第1回 騒音・振動Q&A.ppt 第 1 回騒音 振動勉強会 ( 社 ) 静岡県計量協会環境計量証明部会技術グループ第 3 委員会 騒音測定時の留意点 騒音の測定は 精度の良い測定器を用いることは勿論のこと 測定者が騒音を測定する場合 いかに精度を保つか 正確に測るかの心構えが重要である 測定者の感覚がそのまま騒音測定値に反映され 誤差が大きく含まれる結果となることもある 騒音は全く目に見えない この目に見えないものを量として表わすために

More information

0302

0302 防振ゴム 総合カタログ 建築音響用 目次ボールダンパー YB-100 YB-200 YB-300 YB-400 4 5 6 7 丸型防振ゴム YMD YMD YMD YMDH YMDK 8 9 10 11 12 13 YMDG YH CH YC シールハンガー ( 吊り形防振ゴム ) 14 15 16 遮音ふさぎ材 17 YGS ストッパーゴム 18 YT 防振パッド 19 YGB ゴムブッシュ

More information

二等辺三角形の性質 (2) 次の図の の大きさを求めなさい () = P=Q P=R Q 68 R P (2) (3) 五角形 は正五角形 = F 50 F (4) = = (5) === = 80 2 二等辺三角形の頂角の外角を 底角を y で表すとき y を の式で表しなさい y 2-5-2

二等辺三角形の性質 (2) 次の図の の大きさを求めなさい () = P=Q P=R Q 68 R P (2) (3) 五角形 は正五角形 = F 50 F (4) = = (5) === = 80 2 二等辺三角形の頂角の外角を 底角を y で表すとき y を の式で表しなさい y 2-5-2 三角形 四角形 二等辺三角形の性質 () 二等辺三角形と正三角形 二等辺三角形 2つの辺が等しい三角形( 定義 ) 二等辺三角形の性質定理 二等辺三角形の底角は等しい 定理 2 二等辺三角形の頂点の二等分線は 底辺を直角に2 等分する 正三角形 3 辺が等しい三角形 ( 定義 ) 次の図で 同じ印をつけた辺や角が等しいとき の大きさを求めなさい () (2) (3) 65 40 25 (4) (5)

More information

比例・反比例 例題編 問題・解答

比例・反比例 例題編 問題・解答 中学数学比例 反比例の問題 関数 ( 移行措置による追加 ) 比例 変域 座標 比例のグラフ 比例の式 比例の文章問題 座標と変域 反比例とグラフ 反比例の式 反比例の文章問題 比例と反比例のグラフ * ページ表示 を 見開き でご覧いただきますと 問題とその 答えが見やすくなります * このテキストは家庭学習の補助教材としてのみご利用いただけま す その他 ( 問題の改変 商用など ) の利用はご遠慮くださいま

More information

大阪大学物理 8 を解いてみた Ⅱ. 問 ( g cosq a sin q ) m - 台 B 上の観測者から見ると, 小物体は, 斜面からの垂直抗力 N, 小物体の重力 mg, 水平左向きの慣性力 ma を受け, 台 B の斜面と平行な向きに運動する したがって, 小物体は台 B の斜面に垂直な方

大阪大学物理 8 を解いてみた Ⅱ. 問 ( g cosq a sin q ) m - 台 B 上の観測者から見ると, 小物体は, 斜面からの垂直抗力 N, 小物体の重力 mg, 水平左向きの慣性力 ma を受け, 台 B の斜面と平行な向きに運動する したがって, 小物体は台 B の斜面に垂直な方 大阪大学物理 8 を解いてみた Ⅰ. 問 g 最高点の座標を y max とすると, 力学的エネルギー保存則より \ y m mgy 補足 max g max 小物体の運動方向に対する仕事は重力 ( 保存力 ) の斜面に沿った成分のみであり, 垂直抗力 ( 非保存力 ) の仕事は である よって, 力学的エネルギー保存則が成り立つ これを確かめてみよう 小物体は重力の斜面に沿った外力を受けながらその運動エネルギーを失っていく

More information

平成 31 年度 前期選抜学力検査問題 数学 ( 2 時間目 45 分 ) 受検番号氏名 注 意 1 問題は, 表と裏にあります 2 答えは, すべて解答欄に記入しなさい 1 次の (1)~(7) の問いに答えなさい (1) 3 (-2 2 ) を計算しなさい 表合計 2 次の (1)~(6) の問

平成 31 年度 前期選抜学力検査問題 数学 ( 2 時間目 45 分 ) 受検番号氏名 注 意 1 問題は, 表と裏にあります 2 答えは, すべて解答欄に記入しなさい 1 次の (1)~(7) の問いに答えなさい (1) 3 (-2 2 ) を計算しなさい 表合計 2 次の (1)~(6) の問 平成 1 年度 前期選抜学力検査問題 数学 ( 時間目 45 分 ) 受検番号氏名 注 意 1 問題は, 表と裏にあります 答えは, すべて解答欄に記入しなさい 1 次の ~(7) の問いに答えなさい (- ) を計算しなさい 表合計 次の ~(6) の問いに答えなさい 合計 関数 y = x のグラフについて正しいものを, 次のア ~ エからすべて選んで記号を書きなさい アイウエ グラフは原点を通る

More information

<4D F736F F F696E74202D E F18AC28BAB8FC A83588C9F93A289EF28919B89B E18EFC946789B9292E

<4D F736F F F696E74202D E F18AC28BAB8FC A83588C9F93A289EF28919B89B E18EFC946789B9292E 風力発電に係る環境影響評価の基本的考え方に関する検討会 ( 第 3 回 : 騒音 低周波音 ) 2010 年 12 月 9 日一般社団法人日本風力発電協会 http://jwpa.jp/ 1 目次 風力発電機からの音 騒音 低周波音の苦情の発生状況 対応 風力発電機からの騒音 低周波音への取組み 風力発電の環境影響評価規定 ( 自主規制 ) 騒音の予測と測定 測定 評価方法の課題 環境省が実施する調査

More information

Microsoft Word - 18環設演付録0508.doc

Microsoft Word - 18環設演付録0508.doc Excel の関数について 注 ) 下記の内容は,Excel のバージョンや OS の違いによって, 多少異なる場合があります 1. 演算子 等式はすべて等号 (=) から始まります 算術演算子には, 次のようなものがあります 内が,Excel 上で打ち込むものです 足し算 +, 引き算 -, かけ算 *, わり算 /, べき乗 ^ 2. 三角関数 メニューバーの [ 挿入 ] ダイアログボックスの

More information

6.シリーズ低周波音第一回

6.シリーズ低周波音第一回 シリーズ 低周波音に関わる苦情への対応 - 第 1 回低周波音の基礎 - シリーズの連載にあたって地方公共団体に寄せられる公害苦情相談に対応する担当者向け資料として 本誌第 65 号から第 72 号まで全 8 回にわたりシリーズ 騒音に関わる苦情とその解決方法 を 第 73 号から第 80 号まで全 8 回にわたり 振動に関わる苦情への対応 を 第 83 号から第 85 号まで全 3 回にわたり 悪臭に関わる苦情への対応

More information

木村の物理小ネタ ケプラーの第 2 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という) が単位時間に描く面積を 動点 P の定点 O に

木村の物理小ネタ   ケプラーの第 2 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という) が単位時間に描く面積を 動点 P の定点 O に ケプラーの第 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という が単位時間に描く面積を 動点 P の定点 O に関する面積速度の大きさ という 定点 O まわりを回る面積速度の導き方導き方 A ( x( + D, y( + D v ( q r ( A ( x (, y( 動点 P が xy 座標平面上を時刻

More information

技術解説_有田.indd

技術解説_有田.indd Acceleration / G 2 18 16 14 12 1 8 6 4 2 Damping : 1. Period / s XY.1.1 1. 6533 283 3333 423 155 15 (X) 26.12 Hz 15 12 (Y) 28.32 Hz (Z) 43.98 Hz GS Yuasa Technical Report 211 年 6 月 第8巻 水平方向 X_3G 1.7e+7

More information

学習指導要領

学習指導要領 (1) 数と式 学習指導要領ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 都立大江戸高校学力スタンダード 平方根の意味を理解し 平方根の計算法則に従って平方根を簡単にすることができる ( 例 1) 次の値を求めよ (1)5 の平方根 () 81 ( 例 ) 次の数を簡単にせよ (1) 5 () 7 1 (3) 49 無理数の加法や減法 乗法公式を利用した計算がで

More information

.( 斜面上の放物運動 ) 目的 : 放物運動の方向の分け方は, 鉛直と水平だけではない 図のように, 水平面から角 だけ傾いた固定した滑らかな斜面 と, 質量 の小球を用意する 原点 から斜面に垂直な向きに, 速さ V で小球を投げ上げた 重力の加速度を g として, 次の問い に答えよ () 小

.( 斜面上の放物運動 ) 目的 : 放物運動の方向の分け方は, 鉛直と水平だけではない 図のように, 水平面から角 だけ傾いた固定した滑らかな斜面 と, 質量 の小球を用意する 原点 から斜面に垂直な向きに, 速さ V で小球を投げ上げた 重力の加速度を g として, 次の問い に答えよ () 小 折戸の物理 演習編 ttp://www.orito-buturi.co/ N..( 等加速度運動目的 : 等加速度運動の公式を使いこなす 問題を整理する能力を養う ) 直線上の道路に,A,B の 本の線が 5. の間隔で道路に 垂直に交差して引かれている この線上を一定の加速度で運 動しているトラックが通過する トラックの先端が A を通過してか ら後端が B を通過するまでの時間は.8s であった

More information

ギリシャ文字の読み方を教えてください

ギリシャ文字の読み方を教えてください 埼玉工業大学機械工学学習支援セミナー ( 小西克享 ) 慣性モーメント -1/6 テーマ 01: 慣性モーメント (Momet of ietia) コマ回しをすると, 長い時間回転させるには重くて大きなコマを選ぶことや, ひもを早く引くことが重要であることが経験的にわかります. 遊びを通して, 回転の運動エネルギーを増やせば, 回転の勢いが増すことを学習できるので, 機械系の学生にとってコマ回しも大切な体験学習のひとつと言えます.

More information

線形システム応答 Linear System response

線形システム応答 Linear System response 画質が異なる画像例 コントラスト劣 コントラスト優 コントラスト普 鮮鋭性 普 鮮鋭性 優 鮮鋭性 劣 粒状性 普 粒状性 劣 粒状性 優 医用画像の画質 コントラスト, 鮮鋭性, 粒状性の要因が互いに密接に関わり合って形成されている. 比 鮮鋭性 コントラスト 反 反 粒状性 増感紙 - フィルム系での 3 要因の関係 ディジタル画像処理系でもおよそ成り立つ WS u MTFu 画質に影響する因子

More information

スペクトルに対応する英語はスペクトラム(spectrum)です

スペクトルに対応する英語はスペクトラム(spectrum)です 7. ハミング窓とフラットトップ窓の等価ノイズ帯域幅 (ENBW) (1) Hamming 窓 Hamming 窓は次式で表されます MaTX にも関数が用意されています win = 0.54-0.46*cos(2*PI*[k/(N-1)); ただし k=0,1,---,n-1 N=256; K=[0:N-1]; w=0.54-0.46*cos(2*pi*k/(n-1)); mgplot_reset(1);

More information

3. 試験体および実験条件 試験体は丸孔千鳥配置 (6 配置 ) のステンレス製パンチングメタルであり, 寸法は 70mm 70mm である 実験条件は, 孔径および板厚をパラメータとし ( 開口率は一定 ), および実験風速を変化させて計測する ( 表 -1, 図 -4, 図 -) パンチングメタ

3. 試験体および実験条件 試験体は丸孔千鳥配置 (6 配置 ) のステンレス製パンチングメタルであり, 寸法は 70mm 70mm である 実験条件は, 孔径および板厚をパラメータとし ( 開口率は一定 ), および実験風速を変化させて計測する ( 表 -1, 図 -4, 図 -) パンチングメタ パンチングメタルから発生する風騒音に関する研究 孔径および板厚による影響 吉川優 *1 浅見豊 *1 田端淳 *2 *2 冨高隆 Keywords : perforated metal, low noise wind tunnel test, aerodynamic noise パンチングメタル, 低騒音風洞実験, 風騒音 1. はじめにバルコニー手摺や目隠しパネル, または化粧部材としてパンチングメタルが広く使用されている

More information

学習指導要領

学習指導要領 (1) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 自然数 整数 有理数 無理数 実数のそれぞれの集 合について 四則演算の可能性について判断できる ( 例 ) 下の表において それぞれの数の範囲で四則計算を考えるとき 計算がその範囲で常にできる場合には を 常にできるとは限らない場合には を付けよ ただし 除法では 0 で割ることは考えない

More information

エラー動作 スピンドル動作 スピンドルエラーの計測は 通常 複数の軸にあるセンサーによって行われる これらの計測の仕組みを理解するために これらのセンサーの 1つを検討する シングル非接触式センサーは 回転する対象物がセンサー方向またはセンサー反対方向に移動する1 軸上の対象物の変位を測定する 計測

エラー動作 スピンドル動作 スピンドルエラーの計測は 通常 複数の軸にあるセンサーによって行われる これらの計測の仕組みを理解するために これらのセンサーの 1つを検討する シングル非接触式センサーは 回転する対象物がセンサー方向またはセンサー反対方向に移動する1 軸上の対象物の変位を測定する 計測 LION PRECISION TechNote LT03-0033 2012 年 8 月 スピンドルの計測 : 回転数および帯域幅 該当機器 : スピンドル回転を測定する静電容量センサーシステム 適用 : 高速回転対象物の回転を計測 概要 : 回転スピンドルは 様々な周波数でエラー動作が発生する これらの周波数は 回転スピード ベアリング構成部品の形状のエラー 外部影響およびその他の要因によって決定される

More information

2011年度 東京工大・数学

2011年度 東京工大・数学 東京工業大学前期日程問題 解答解説のページへ n n を自然数とする 平面上で行列 n( n+ ) n+ の表す 次変換 ( 移動とも いう ) を n とする 次の問いに答えよ () 原点 O(, ) を通る直線で, その直線上のすべての点が n により同じ直線上に移 されるものが 本あることを示し, この 直線の方程式を求めよ () () で得られた 直線と曲線 (3) を求めよ n Sn 6

More information

第 3 章二相流の圧力損失

第 3 章二相流の圧力損失 第 3 章二相流の圧力損失 単相流の圧力損失 圧力損失 (/) 壁面せん断応力 τ W 力のバランス P+ u m πd 4 τ w 4 τ D u τ w m w πd : 摩擦係数 λ : 円管の摩擦係数 λ D u m D P τ W 摩擦係数 層流 16/Re 乱流 0.079 Re -1/4 0.046 Re -0.0 (Blasius) (Colburn) 大まかには 0.005 二相流の圧力損失液相のみが流れた場合の単相流の圧力損失

More information

線形代数とは

線形代数とは 線形代数とは 第一回ベクトル 教科書 エクササイズ線形代数 立花俊一 成田清正著 共立出版 必要最低限のことに限る 得意な人には物足りないかもしれません 線形代数とは何をするもの? 線形関係 y 直線 yもも 次式で登場する (( 次の形 ) 線形 ただし 次元の話世の中は 3 次元 [4[ 次元 ] 次元 3 次元 4 次元 はどうやって直線を表すの? ベクトルや行列の概念 y A ベクトルを使うと

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 電磁波工学 第 5 回平面波の媒質への垂直および射入射と透過 柴田幸司 Bounda Plan Rgon ε μ Rgon Mdum ( ガラスなど ε μ z 平面波の反射と透過 垂直入射の場合 左図に示す様に 平面波が境界面に対して垂直に入射する場合を考える この時の入射波を とすると 入射波は境界において 透過波 と とに分解される この時の透過量を 反射量を Γ とおくと 領域 における媒質の誘電率に対して透過量

More information