2.1 R, ( ), Download R for Windows base. R ( ) R win.exe, 2.,.,.,. R > 3*5 # [1] 15 > c(19,76)+c(11,13)

Size: px
Start display at page:

Download "2.1 R, ( ), Download R for Windows base. R ( ) R win.exe, 2.,.,.,. R > 3*5 # [1] 15 > c(19,76)+c(11,13)"

Transcription

1 3 ( ) R , 2016/4/7( ), 4/14( ), 4/21( ) R, ( ) ggm , ( ) ( ) ,,.,,.,,. 2.,, 2 (p. 10). 1, 6 356, [email protected]; TA. jikken3.html 1

2 2.1 R, ( ), Download R for Windows base. R ( ) R win.exe, 2.,.,.,. R > 3*5 # [1] 15 > c(19,76)+c(11,13) # [1] > x <- c(3,1,4,1,5,9) # > 1:4 # [1] > 1:4+1 # (1:4)+1 [1] > f <- function(x,y){ sqrt(x^2+y^2) } # > f(3,4) [1] 5 R, ,. 2. R...,., browser()., R, URL. 2 PC R 2

3 1. R R web 3 sum, prod, cumsum abs, log, sqrt mean, sd, min, median, max scale combine, c list, matrix, array %*% t rbind, cbind diag cor det or apply solve read.table, write.table plot, pairs EPS dev.copy2eps which pnorm, rnorm ls, rm browser for, while, repeat 2.2 ggm, ggm (Graphical Gaussian Models). 1. R ( Japan (Tsukuba) ). 2. ggm. 3. package ggm successfully unpacked and MD5 sums checked. graph RBGL graph R : graph > source(" > bioclite("graph") RBGL 3 3

4 RBGL > source(" > bioclite("rbgl").,., R 1.,,,. > library(ggm) 2.3,,.,,,.., ggm marks,.. > data(marks) > marks mechanics vectors algebra analysis statistics ( ) , 5, 88.,., (X t,i ) 1 t n,1 i p (n = 88, p = 5). X 2,3 = 80. summary (min), 1 (1st Qu.), = 2 (median), (mean), 3 (3rd Qu.), (max)., X i = 1 n 4 n t=1 X t,i

5 , 25%, 50%, 75%. > summary(marks) mechanics vectors algebra analysis statistics Min. : 0.00 Min. : 9.00 Min. :15.00 Min. : 9.00 Min. : st Qu.: st Qu.: st Qu.: st Qu.: st Qu.:31.00 Median :41.50 Median :51.00 Median :50.00 Median :49.00 Median :40.00 Mean :38.97 Mean :50.59 Mean :50.60 Mean :46.68 Mean : rd Qu.: rd Qu.: rd Qu.: rd Qu.: rd Qu.:51.50 Max. :77.00 Max. :82.00 Max. :80.00 Max. :70.00 Max. : (r i,j ) r i,j = s i,j si,i s j,j, s i,j = 1 n (X t,i n X i )(X t,j X j ) t=1 > cor(marks) mechanics vectors algebra analysis statistics mechanics vectors algebra analysis statistics > round(cor(marks),3) # 3 mechanics vectors algebra analysis statistics mechanics vectors algebra analysis statistics i j,,. R,., ( ) 1. marks,, mechanics statistics., 2,., vectors mechanics statistics,. 4,. 5

6 mechanics vectors algebra analysis statistics :. > pairs(marks), 2,.,,,.,, G, V E V V., (= G = (V, E)). V = {a, b, c, d}, E = {(a, b), (a, c), (b, d)} ggm., drawgraph adjust TRUE,.. > amat <- UG(~ a*b + a*c + b*d) > amat a b c d a b c d > drawgraph(amat,adjust=false) d a c b 6

7 2.5 1 ( ),, ( ),,., web (1997),., R = (r i,j ), R 1 = (r i,j )., p i,j = r i,j r i,i r j,j (i j), 1 (i = j) (1), i j. P = (p i,j )., ( ) 1.,.,, ( )., S1 = mechanics, S2 = vectors, S3 = algebra, S4 = analysis, S5 = statistics. 1: ( ) ( ). S1 S2 S3 S4 S5 S S S S1 S2 S3 S4 S5 S S S S , R, P. I cor2par <- function(r){ X <- solve(r) p <- nrow(r) P <- matrix(0,p,p) dimnames(p) <- dimnames(r) for(i in (1:p)){ for(j in (1:p)){ if(i!= j) P[i,j] <- -X[i,j]/sqrt(X[i,i]*X[j,j]) if(i == j) P[i,j] <- 1 }} P } 7

8 II cor2par <- function(r){ X <- solve(r) d <- sqrt(diag(x)) P <- -X / (d %*% t(d)) diag(p) <- 1 P } 2.6, 4 8.,,,, StatLib web. : "math" "phys" "chem" "eng" "1" "2" "3" "4" "5" "6" mark4.txt R...,, : > X <- read.table("mark4.txt") 3., ( Word ) ( ) i j p i,j, 8

9 i j, i j.. 1 ( ).., i j,, p i,j., i j p i,j = 0., p i,j = 0, i j,.,, analysis mechanics (p 41 = 0.001) 0.,, vectors, algebra, statistics, analysis mechanics.,, 5., ,, 10 4.,, 2.., ,,. 2: ( ) ( ) S1 S2 S3 S4 S5 S S S S1 S2 S3 S4 S5 S S S S ,. (1997) ( [2]). 2 ( )., a, b, s, a b s (a b s, )., s, a b. 5,.,. 9

10 2:., a = {vectors}, b = {statistics}, s = {algebra}, 2 2., algebra, vectors statistics (mechanics analysis )., a = {mechanics,vectors}, b = {analysis,statistics}, s = {algebra}, 2., mechanics vectors algebra. 4. a = {mechanics}, b = {statistics}, s = {vectors,analysis} a b s (, 1 2 )., web.,,,., R, n ( n = 88). AIC ( ) G, G M = M(G), P = P (G),.., G, G,,., AIC (Akaike s Information Criterion) ( ), AIC = 2 ( ) 2 ( ) + ( ) 10

11 ., AIC 0 ( web )., ggm fitcongraph. 2, AIC. fitcongraph, AIC > options(digits=3) # 3 > X <- marks # > n <- nrow(x); p <- ncol(x) # > R <- cor(x) # > amat <- matrix(1,p,p)-diag(p); #, # amat <- UG(~a*b*c*d*e). > dimnames(amat) <- dimnames(r) # > amat[4,1] <- amat[1,4] <- 0 # (4,1) > amat[4,2] <- amat[2,4] <- 0 # (4,2) > amat[5,1] <- amat[1,5] <- 0 # (5,1) > amat[5,2] <- amat[2,5] <- 0 # (5,2) > amat # mechanics vectors algebra analysis statistics mechanics vectors algebra analysis statistics > f <- fitcongraph(amat,r,n) # > f # $Shat # mechanics vectors algebra analysis statistics mechanics vectors algebra analysis statistics $dev # [1] 0.9 $df # [1] 4 $it # [1] 2 > f$dev # [1] 0.9 > aic <- f$dev - 2*f$df # AIC > aic [1]

12 . 1. G ( ). M = R. AIC 0 AIC. 2. M (R ) P = (p i,j ) ( 2 ). 3. G (i, j), p i,j (i, j), G. 4. G M = M(G) AIC = AIC(G) (fitcongraph fitcongraph M R ). 5. AIC 2. AIC, G (i, j), p ij (i, j),. G amat., select.ij <- function(p,amat){ p <- nrow(p); minabsp <- Inf for(i in (2:p)){ for(j in (1:(i-1))){ if(amat[i,j] == 1 && abs(p[i,j]) < minabsp){ minabsp <- abs(p[i,j]); i0 <- i; j0 <- j }}} c(i0,j0) },. 1,. M 0, P 0. M 0 S1 S2 S3 S4 S5 S S S P 0 S1 S2 S3 S4 S5 S S S S P 0 AIC 0 AIC 0 = 0. P 0, (4,1) (4,1). fitcongraph, AIC, 12

13 M 1 S1 S2 S3 S4 S5 S S S P 1 S1 S2 S3 S4 S5 S S S S AIC 1 AIC 0. AIC 1 = 2 P 1, (5,2) 0.02 (P 0 P 1 )., (5,2), M 2 S1 S2 S3 S4 S5 S S S P 2 S1 S2 S3 S4 S5 S S S S AIC 2 = AIC 2 AIC 1,., P 2 (5, 1) (0.032), M 3 S1 S2 S3 S4 S5 S S S P 3 S1 S2 S3 S4 S5 S S S S AIC 3 = 5.86 P 3 (4, 2) (0.085), M 4 S1 S2 S3 S4 S5 S S S P 4 S1 S2 S3 S4 S5 S S S S AIC 4 = 7.1 P 4 (3, 1) (0.235), M 5 S1 S2 S3 S4 S5 S S S P 5 S1 S2 S3 S4 S5 S S S S AIC 5 =

14 . AIC 5 > AIC 4, P ,,, P 0 P 1,. web.) 2.9 3, 2.3, 2.8. ( ) 3 4 (zip )., PDF, or Word. (2.3 ). (2.3 ). (2.8 ), AIC..... [email protected] 2016/4/28( ).,. 3,. [1] (2004), The R Book R,. [2] (1997),,. 14

1 R Windows R 1.1 R The R project web R web Download [CRAN] CRAN Mirrors Japan Download and Install R [Windows 9

1 R Windows R 1.1 R The R project web   R web Download [CRAN] CRAN Mirrors Japan Download and Install R [Windows 9 1 R 2007 8 19 1 Windows R 1.1 R The R project web http://www.r-project.org/ R web Download [CRAN] CRAN Mirrors Japan Download and Install R [Windows 95 and later ] [base] 2.5.1 R - 2.5.1 for Windows R

More information

R による統計解析入門

R による統計解析入門 R May 31, 2016 R R R R Studio GUI R Console R Studio PDF URL http://ruby.kyoto-wu.ac.jp/konami/text/r R R Console Windows, Mac GUI Unix R Studio GUI R version 3.2.3 (2015-12-10) -- "Wooden Christmas-Tree"

More information

k3 ( :07 ) 2 (A) k = 1 (B) k = 7 y x x 1 (k2)?? x y (A) GLM (k

k3 ( :07 ) 2 (A) k = 1 (B) k = 7 y x x 1 (k2)?? x y (A) GLM (k 2012 11 01 k3 (2012-10-24 14:07 ) 1 6 3 (2012 11 01 k3) [email protected] web http://goo.gl/wijx2 web http://goo.gl/ufq2 1 3 2 : 4 3 AIC 6 4 7 5 8 6 : 9 7 11 8 12 8.1 (1)........ 13 8.2 (2) χ 2....................

More information

講義のーと : データ解析のための統計モデリング. 第2回

講義のーと :  データ解析のための統計モデリング. 第2回 Title 講義のーと : データ解析のための統計モデリング Author(s) 久保, 拓弥 Issue Date 2008 Doc URL http://hdl.handle.net/2115/49477 Type learningobject Note この講義資料は, 著者のホームページ http://hosho.ees.hokudai.ac.jp/~kub ードできます Note(URL)http://hosho.ees.hokudai.ac.jp/~kubo/ce/EesLecture20

More information

一般化線形 (混合) モデル (2) - ロジスティック回帰と GLMM

一般化線形 (混合) モデル (2) - ロジスティック回帰と GLMM .. ( ) (2) GLMM [email protected] I http://goo.gl/rrhzey 2013 08 27 : 2013 08 27 08:29 kubostat2013ou2 (http://goo.gl/rrhzey) ( ) (2) 2013 08 27 1 / 74 I.1 N k.2 binomial distribution logit link function.3.4!

More information

講義のーと : データ解析のための統計モデリング. 第3回

講義のーと :  データ解析のための統計モデリング. 第3回 Title 講義のーと : データ解析のための統計モデリング Author(s) 久保, 拓弥 Issue Date 2008 Doc URL http://hdl.handle.net/2115/49477 Type learningobject Note この講義資料は, 著者のホームページ http://hosho.ees.hokudai.ac.jp/~kub ードできます Note(URL)http://hosho.ees.hokudai.ac.jp/~kubo/ce/EesLecture20

More information

講義のーと : データ解析のための統計モデリング. 第5回

講義のーと :  データ解析のための統計モデリング. 第5回 Title 講義のーと : データ解析のための統計モデリング Author(s) 久保, 拓弥 Issue Date 2008 Doc URL http://hdl.handle.net/2115/49477 Type learningobject Note この講義資料は, 著者のホームページ http://hosho.ees.hokudai.ac.jp/~kub ードできます Note(URL)http://hosho.ees.hokudai.ac.jp/~kubo/ce/EesLecture20

More information

「産業上利用することができる発明」の審査の運用指針(案)

「産業上利用することができる発明」の審査の運用指針(案) 1 1.... 2 1.1... 2 2.... 4 2.1... 4 3.... 6 4.... 6 1 1 29 1 29 1 1 1. 2 1 1.1 (1) (2) (3) 1 (4) 2 4 1 2 2 3 4 31 12 5 7 2.2 (5) ( a ) ( b ) 1 3 2 ( c ) (6) 2. 2.1 2.1 (1) 4 ( i ) ( ii ) ( iii ) ( iv)

More information

(2/24) : 1. R R R

(2/24) : 1. R R R R? http://hosho.ees.hokudai.ac.jp/ kubo/ce/2004/ : [email protected] (2/24) : 1. R 2. 3. R R (3/24)? 1. ( ) 2. ( I ) : (p ) : cf. (power) p? (4/24) p ( ) I p ( ) I? ( ) (5/24)? 0 2 4 6 8 A B A B (control)

More information

2 Excel =sum( ) =average( ) B15:D20 : $E$26 E26 $ =A26*$E$26 $ $E26 E$26 E$26 $G34 $ E26 F4

2 Excel =sum( ) =average( ) B15:D20 : $E$26 E26 $ =A26*$E$26 $ $E26 E$26 E$26 $G34 $ E26 F4 1234567 0.1234567 = 2 3 =2+3 =2-3 =2*3 =2/3 =2^3 1:^, 2:*/, 3:+- () =2+3*4 =(2+3)*4 =3*2^2 =(3*2)^2 =(3+6)^0.5 A12 =A12+B12 ( ) ( )0.4 ( 100)0.9 % 1 2 Excel =sum( ) =average( ) B15:D20 : $E$26 E26 $ =A26*$E$26

More information

untitled

untitled R R R 2 R 2 R R R R R R R R R R 3 R R 4 R C JAVA 5 R EXCEL GUI 6 R SAS SPSS 7 R 8 R EXCEL GUI R GUI RR Commander 9 R Auckland Ross Ihaka Robert Gentleman Fred Hutchinson Cancer Research Center AT&T Lucent

More information

Microsoft Word - 計量研修テキスト_第5版).doc

Microsoft Word - 計量研修テキスト_第5版).doc Q10-2 テキスト P191 1. 記述統計量 ( 変数 :YY95) 表示変数として 平均 中央値 最大値 最小値 標準偏差 観測値 を選択 A. 都道府県別 Descriptive Statistics for YY95 Categorized by values of PREFNUM Date: 05/11/06 Time: 14:36 Sample: 1990 2002 Included

More information

Use R

Use R Use R! 2008/05/23( ) Index Introduction (GLM) ( ) R. Introduction R,, PLS,,, etc. 2. Correlation coefficient (Pearson s product moment correlation) r = Sxy Sxx Syy :, Sxy, Sxx= X, Syy Y 1.96 95% R cor(x,

More information

- 1-128 - 2 -

- 1-128 - 2 - 127 - 1-128 - 2 - - 3-129 - 4 - 2-5 - 130-6 - - 7-131 - 8 - - 9-132 - 10 - 6041 3 () 1 ( ) () 6041 (1010) 1041 (192) 1941 () 2 (1) (2) (3) () 3 1 1 () 4 2 () 5 1 2 3 4 () 6 () 7-11 - 133-12 - 134 135 136

More information

DAA09

DAA09 > summary(dat.lm1) Call: lm(formula = sales ~ price, data = dat) Residuals: Min 1Q Median 3Q Max -55.719-19.270 4.212 16.143 73.454 Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) 237.1326

More information

1997 1... 1... 2... 2... 2... 3... 6... 9... 9... 24... 39... 54... 69 4 1995 1996 A B C D 1 1 2 1 2 3 3 1 1 (1) (2) (3) 32 2 (1) (2) (3) 3 3 4 1 11 12 13 21 22 / / 23 5 4 4 1 9 1997 2 1 1 1 2 1 1 3 2

More information

i I Excel iii Excel Excel Excel

i I Excel iii Excel Excel Excel Excel i I Excel iii 1 1 2 Excel 2 2.1..................................... 2 2.2 Excel................................................ 2 2.3 Excel................................................ 4 2.4..............................................

More information

統計研修R分散分析(追加).indd

統計研修R分散分析(追加).indd http://cse.niaes.affrc.go.jp/minaka/r/r-top.html > mm mm TRT DATA 1 DM1 2537 2 DM1 2069 3 DM1 2104 4 DM1 1797 5 DM2 3366 6 DM2 2591 7 DM2 2211 8

More information

FAX780TA_chap-first.fm

FAX780TA_chap-first.fm FAX-780TA ABCDEFGHIα 01041115:10 :01 FAX-780CL α 1 1 2 3 1 2 f k b a FAX-780TA α n p q 09,. v m t w FAX-780TA A BC B C D E F G H I c i c s s i 0 9 i c i k o o o t c 0 9 - = C t C B t - = 1 2 3

More information

1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3.

1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3. 1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, 2013. Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3. 2 4, 2. 1 2 2 Depress Conservative. 3., 3,. SES66 Alien67 Alien71,

More information

Stata 11 Stata ROC whitepaper mwp anova/oneway 3 mwp-042 kwallis Kruskal Wallis 28 mwp-045 ranksum/median / 31 mwp-047 roctab/roccomp ROC 34 mwp-050 s

Stata 11 Stata ROC whitepaper mwp anova/oneway 3 mwp-042 kwallis Kruskal Wallis 28 mwp-045 ranksum/median / 31 mwp-047 roctab/roccomp ROC 34 mwp-050 s BR003 Stata 11 Stata ROC whitepaper mwp anova/oneway 3 mwp-042 kwallis Kruskal Wallis 28 mwp-045 ranksum/median / 31 mwp-047 roctab/roccomp ROC 34 mwp-050 sampsi 47 mwp-044 sdtest 54 mwp-043 signrank/signtest

More information

( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp

( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp ( 28) ( ) ( 28 9 22 ) 0 This ote is c 2016, 2017 by Setsuo Taiguchi. It may be used for persoal or classroom purposes, but ot for commercial purposes. i (http://www.stat.go.jp/teacher/c2epi1.htm ) = statistics

More information

Excel97関数編

Excel97関数編 Excel97 SUM Microsoft Excel 97... 1... 1... 1... 2... 3... 3... 4... 5... 6... 6... 7 SUM... 8... 11 Microsoft Excel 97 AVERAGE MIN MAX SUM IF 2 RANK TODAY ROUND COUNT INT VLOOKUP 1/15 Excel A B C A B

More information

T rank A max{rank Q[R Q, J] t-rank T [R T, C \ J] J C} 2 ([1, p.138, Theorem 4.2.5]) A = ( ) Q rank A = min{ρ(j) γ(j) J J C} C, (5) ρ(j) = rank Q[R Q,

T rank A max{rank Q[R Q, J] t-rank T [R T, C \ J] J C} 2 ([1, p.138, Theorem 4.2.5]) A = ( ) Q rank A = min{ρ(j) γ(j) J J C} C, (5) ρ(j) = rank Q[R Q, (ver. 4:. 2005-07-27) 1 1.1 (mixed matrix) (layered mixed matrix, LM-matrix) m n A = Q T (2m) (m n) ( ) ( ) Q I m Q à = = (1) T diag [t 1,, t m ] T rank à = m rank A (2) 1.2 [ ] B rank [B C] rank B rank

More information

FdData社会歴史

FdData社会歴史 ( ) Home [http://www.fdtext.com/dat/ ] [ ](1 ) (1) (2) (1) (1) (2) [ ](1) (2) [ ] [ ](3 ) () () [ ] [ ] (1874 ) (1876 ) 1877 ( 10 ) ( (1877) ) [ ](2 ) 1877 (1) [ ] (2) (1) (2) [ ](1) (2) [ ](2 ) 1877 (

More information

P P P P P P P P P P P P P

P P P P P P P P P P P P P P P P P P P P P P P P P P 1 (1) (2) (3) (1) (2) (3) 1 ( ( ) ( ) ( ) 2 ( 0563-00-0000 ( 090-0000-0000 ) 052-00-0000 ( ) ( ) () 1 3 0563-00-0000 3 [] g g cc [] [] 4 5 1 DV 6 7 1 DV 8 9 10 11 12 SD 13 .....

More information

DPCはやわかり表紙_2014_H1-H4.indd

DPCはやわかり表紙_2014_H1-H4.indd C O N T E N T S 1 2 3 4 5 6 7 A B AB 15 15 25 2SD 1 1 A B 15 AB 25 2SD 1 1 1 A B 25 2SD 10 10 10 AB 1 1 1 1 A 1 A 1 B1 15 B 2SD 8 9 10 11 12 13 14 15 16 17 18 DPCA DPCA 7 DPCA DPCA 7 DPCA DPCA 7 DPCA DPCA

More information

Microsoft Word - .....J.^...O.|Word.i10...j.doc

Microsoft Word - .....J.^...O.|Word.i10...j.doc P 1. 2. R H C H, etc. R' n R' R C R'' R R H R R' R C C R R C R' R C R' R C C R 1-1 1-2 3. 1-3 1-4 4. 5. 1-5 5. 1-6 6. 10 1-7 7. 1-8 8. 2-1 2-2 2-3 9. 2-4 2-5 2-6 2-7 10. 2-8 10. 2-9 10. 2-10 10. 11. C

More information

program_japanese

program_japanese Eng Eng Eng - 40 - Eng Eng - 41 - Eng Eng - 42 - Eng - 43 - Eng - 44 - Eng Eng - 45 - Eng - 46 - - 47 - Eng - 48 - - 49 - - 50 - - 51 - - 52 - - 53 - - 54 - - 55 - - 56 - - 57 - - 58 - - 59 - - 60 - -

More information

Rによる計量分析:データ解析と可視化 - 第3回 Rの基礎とデータ操作・管理

Rによる計量分析:データ解析と可視化 - 第3回  Rの基礎とデータ操作・管理 R 3 R 2017 Email: [email protected] October 23, 2017 (Toyama/NIHU) R ( 3 ) October 23, 2017 1 / 34 Agenda 1 2 3 4 R 5 RStudio (Toyama/NIHU) R ( 3 ) October 23, 2017 2 / 34 10/30 (Mon.) 12/11 (Mon.)

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 200831012 200810-12 200810-12 200710-12 669 749 700 7.0 % 70 116 99 16.5 % 599 633 600 5.4 % 331 331 312 6.0 % 328 328 308 6.5 % 191 191 171 11.4 % EPS 322 322 283 13.6 % 5,928 5,928 6,048-2.0 % EPS

More information

13 Student Software TI-Nspire CX CAS TI Web TI-Nspire CX CAS Student Software ( ) 1 Student Software 37 Student Software Nspire Nspire Nspir

13 Student Software TI-Nspire CX CAS TI Web TI-Nspire CX CAS Student Software ( ) 1 Student Software 37 Student Software Nspire Nspire Nspir 13 Student Software TI-Nspire CX CAS TI Web TI-Nspire CX CAS Student Software ( ) 1 Student Software 37 Student Software 37.1 37.1 Nspire Nspire Nspire 37.1: Student Software 13 2 13 Student Software esc

More information

Excel基礎講座演習-表紙とはじめにv1.3.doc

Excel基礎講座演習-表紙とはじめにv1.3.doc Future Lifestyle Inc. IT Microsoft Excel 2000 Microsoft Microsoft Corporation B4 11 14 1999 1 C4 E7 C4 E7 2 =C4+D4+E4 SUM MAX MIN B3 F7 Sheet2 1999 2000 3 B3 F7 C4 F7 Delete C4 F7 SUM SUM() C4 SUM 4 B3

More information

13,825,228 3,707,995 26.8 4.9 25 3 8 9 1 50,000 0.29 1.59 70,000 0.29 1.74 12,500 0.39 1.69 12,500 0.55 10,000 20,000 0.13 1.58 30,000 0.00 1.26 5,000 0.13 1.58 25,000 40,000 0.13 1.58 50,000 0.00 1.26

More information

R John Fox R R R Console library(rcmdr) Rcmdr R GUI Windows R R SDI *1 R Console R 1 2 Windows XP Windows * 2 R R Console R ˆ R

R John Fox R R R Console library(rcmdr) Rcmdr R GUI Windows R R SDI *1 R Console R 1 2 Windows XP Windows * 2 R R Console R ˆ R R John Fox 2006 8 26 2008 8 28 1 R R R Console library(rcmdr) Rcmdr R GUI Windows R R SDI *1 R Console R 1 2 Windows XP Windows * 2 R R Console R ˆ R GUI R R R Console > ˆ 2 ˆ Fox(2005) [email protected]

More information

大学等における社会人の受け入れ状況調査

大学等における社会人の受け入れ状況調査 1 1 2 3 4 - - - - - - 6 8 6 2001 30 7 6 3 30 8 6 1 4 3,6,9,12 4 1 1 E 1 3 13 15 4 3 1 ( ) 8. 6 14 8 6 2002 8 8 3 7 60 1 4 4 32 100 12

More information

kubostat2017e p.1 I 2017 (e) GLM logistic regression : : :02 1 N y count data or

kubostat2017e p.1 I 2017 (e) GLM logistic regression : : :02 1 N y count data or kubostat207e p. I 207 (e) GLM [email protected] https://goo.gl/z9ycjy 207 4 207 6:02 N y 2 binomial distribution logit link function 3 4! offset kubostat207e (https://goo.gl/z9ycjy) 207 (e) 207 4

More information

1 2 3 4 5 1 1:30 NPO 16 1 19 16 2 17-6 - 10 2008 2010 120 150 IT( ) 60 21 40-7 - - 8-10 ( ) NPO 2 10 16:40-9 - 10 ii NPO NPO ( ) ( ) 11 12 13 14 15 22 26 27 28 29 30 31 32 33 34 m3 m3

More information

LGBZ3107-T3A1

LGBZ3107-T3A1 LGBZ3107 - T3B LGBZ3107 - T3D LGBZ3107 - T3F LGBZ3107 - T3H LGBZ3107 - T3J LGBZ3107 - T3L LGBZ3107 - T3K LGBZ3107 - T3I LGBZ3107 - T3G1 LGBZ3107 - T3E1 LGBZ3107 - T3C1 LGBZ3107 - T3A1 N0215-010615

More information

kubostat2017c p (c) Poisson regression, a generalized linear model (GLM) : :

kubostat2017c p (c) Poisson regression, a generalized linear model (GLM) : : kubostat2017c p.1 2017 (c), a generalized linear model (GLM) : [email protected] http://goo.gl/76c4i 2017 11 14 : 2017 11 07 15:43 kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 1 / 47 agenda

More information

¥¤¥ó¥¿¡¼¥Í¥Ã¥È·×¬¤È¥Ç¡¼¥¿²òÀÏ Âè2²ó

¥¤¥ó¥¿¡¼¥Í¥Ã¥È·×¬¤È¥Ç¡¼¥¿²òÀÏ Âè2²ó 2 2015 4 20 1 (4/13) : ruby 2 / 49 2 ( ) : gnuplot 3 / 49 1 1 2014 6 IIJ / 4 / 49 1 ( ) / 5 / 49 ( ) 6 / 49 (summary statistics) : (mean) (median) (mode) : (range) (variance) (standard deviation) 7 / 49

More information

Microsoft Word - 教材ガイド一覧ビデオ.doc

Microsoft Word - 教材ガイド一覧ビデオ.doc V V V V V V V V V V V V 1 V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V IT Web CG V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V NO V V V V V

More information

2.2 Sage I 11 factor Sage Sage exit quit 1 sage : exit 2 Exiting Sage ( CPU time 0m0.06s, Wall time 2m8.71 s). 2.2 Sage Python Sage 1. Sage.sage 2. sa

2.2 Sage I 11 factor Sage Sage exit quit 1 sage : exit 2 Exiting Sage ( CPU time 0m0.06s, Wall time 2m8.71 s). 2.2 Sage Python Sage 1. Sage.sage 2. sa I 2017 11 1 SageMath SageMath( Sage ) Sage Python Sage Python Sage Maxima Maxima Sage Sage Sage Linux, Mac, Windows *1 2 Sage Sage 4 1. ( sage CUI) 2. Sage ( sage.sage ) 3. Sage ( notebook() ) 4. Sage

More information

7... 1... 34... 55... 86... 108 15 2003 1 2 3 1 7 pdf 2 8 1996 2-1 9010 5 247 362 4 7 5 4 11 7 22 4 29 45 5 59 6 61 4 63 10 2 820 3 1646 19 1944 1 2 4 11 3 11 22 4 1 340 2 20 3 13 4 450 1 2 3 4 2-2 29

More information

卒業論文

卒業論文 Y = ax 1 b1 X 2 b2...x k bk e u InY = Ina + b 1 InX 1 + b 2 InX 2 +...+ b k InX k + u X 1 Y b = ab 1 X 1 1 b 1 X 2 2...X bk k e u = b 1 (ax b1 1 X b2 2...X bk k e u ) / X 1 = b 1 Y / X 1 X 1 X 1 q YX1

More information