DAA09
|
|
|
- ふみな うとだ
- 7 years ago
- Views:
Transcription
1
2 > summary(dat.lm1) Call: lm(formula = sales ~ price, data = dat) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) e-12 *** price e-06 *** --- Signif. codes: 0 *** ** 0.01 * Residual standard error: 26 on 48 degrees of freedom Multiple R-squared: ,Adjusted R-squared: F-statistic: on 1 and 48 DF, p-value: 8.486e-06
3 > dat.lm2 <- lm(sales~price+material,data = dat) > summary(dat.lm2) Call: lm(formula = sales ~ price + material, data = dat) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) e-11 *** price e-05 *** material Signif. codes: 0 *** ** 0.01 * Residual standard error: on 47 degrees of freedom Multiple R-squared: , Adjusted R-squared: F-statistic: on 2 and 47 DF, p-value: 4.578e-05
4 > dat.regall<-lm(sales~.,data=dat) > summary(dat.regall) Residual standard error: 17 on 46 degrees of freedom Multiple R-squared: , Adjusted R-squared: F-statistic: on 3 and 46 DF, p-value: 3.874e-13 σ 1 σ 2! " # :;<= *+,(./012) 5 *+,(1,,/,) = 66> 5 08<??:?! # # ~% & ',& : : *+,./012 = *+,(1,,/,) E 66> = B CD" F C HF C # 667 = B C F C F #
5 ! " # = 0, ( ), *+ = ), *, ( cov " #, " 0 = 0, (, 1 "~3 0, ) *! 4 6 =! : 6 + " 6 =! ! 7 : 6 6 +! " 6 = : 6 VAR 4 6 = VAR : 6 + " 6 = VAR " 6 = ) *, 4~ : 6, ) * 6
6 dat<-read.csv(" dat.lm01<-lm(sales~price, data=as.data.frame(scale(dat))) Residuals vs Fitted >plot(dat.lm01,which=1)! " # = 0, ( ), *+ = ), *, ( Residuals Fitted values lm(sales ~ price)
7 >plot(dat.lm01,which=2) Normal Q-Q!~# 0, & ' Standardized residuals Theoretical Quantiles lm(sales ~ price)
8 norm.vars=rnorm(300) qqnorm(norm.vars) qqline(norm.vars,col='red',lwd=2) Normal Q-Q Plot unif.vars=runif(300) qqnorm(unif.vars) qqline(unif.vars,col='green',lwd=2) Normal Q-Q Plot Sample Quantiles Sample Quantiles Theoretical Quantiles Theoretical Quantiles
9 > plot(sort(unif.vars),sort(unif.vars)) sort(unif.vars) > plot(sort(norm.vars),sort(unif.vars)) sort(unif.vars) sort(unif.vars) sort(norm.vars)
10 par(mfrow=c(2,2)) plot(dat.lm01) Residuals Residuals vs Fitted Standardized residuals Normal Q-Q Fitted values Theoretical Quantiles Standardized residuals Scale-Location Standardized residuals Residuals vs Leverage Cook's distance Fitted values Leverage
11 dat<-read.csv(" > levels(dat$method) [1] "free" "image" "repeat" "sentence" # factor dat$method=factor(dat$method, levels(dat$method)[c(1,3,4,2)]) > levels(dat$method) [1] "free" "repeat" "sentence" "image"
12 Residuals vs Fitted Normal Q-Q > dat.lm<-lm(result~method,data=dat) > par(mfrow=c(2,2)) > plot(dat.lm) Residuals Standardized residuals Fitted values Theoretical Quantiles Standardized residuals Scale-Location Standardized residuals Constant Leverage: Residuals vs Factor Levels 8 method : free repeat image Fitted values Factor Level Combinations
13 ! " = $ " &$ " = $ " ' ( ' ) * "! " =, -. )/0 - h " = ) / / 4 6
14
15 > dat <- read.csv(" > summary(dat) material price design sales Min. : 1.00 Min. :100.0 Min. :10.00 Min. : st Qu.: st Qu.: st Qu.: st Qu.: 99.0 Median : 5.00 Median :145.0 Median :39.00 Median :106.5 Mean : 5.22 Mean :144.3 Mean :39.12 Mean : rd Qu.: rd Qu.: rd Qu.: rd Qu.:127.5 Max. :10.00 Max. :195.0 Max. :70.00 Max. :203.0 > dat2 <- rbind(dat,c(0,0,100,250)) > tail(dat2) material price design sales plot(dat2,col=c(rep("black",50),"red"),pch=20,cex=3)
16
17 > dat.lm<-lm(sales~design,data=dat) > summary(dat.lm) Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) e-07 *** design Signif. codes: 0 *** ** 0.01 * Residual standard error: 31.1 on 48 degrees of freedom Multiple R-squared: , Adjusted R-squared: F-statistic: on 1 and 48 DF, p-value: > dat2.lm<-lm(sales~design,data=dat2) > summary(dat2.lm) Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) e-06 *** design *** --- Signif. codes: 0 *** ** 0.01 * Residual standard error: on 49 degrees of freedom Multiple R-squared: , Adjusted R-squared: F-statistic: on 1 and 49 DF, p-value:
18 ! #! # = % 1 h #
19 !""#$%&' ( = $ ( = * +, -* +. / , ( = , /
20 b = ( X T X) 1 X T y
21 dat<-read.csv(" plot(dat) >dat.lm<-lm(sales~., data=dat) material price design sales dump
22 material > summary(dat.lm) Call: lm(formula = sales ~., data = dat) Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) e-13 *** material e-05 *** price e-06 *** design e-07 *** dump * --- Signif. codes: 0 *** ** 0.01 * price design sales dump Residual standard error: on 29 degrees of freedom Multiple R-squared: , Adjusted R-squared: F-statistic: on 4 and 29 DF, p-value: 9.846e-09
23 VIF i = 1-1 R 2 i
24 dat.lm<-lm(sales~., data=dat) install.packages("daag") library(daag) vif(dat.lm) material price design dump lm.price<-lm(price~material+design+dump, data=dat) p.rsq = summary(lm.price)$r.squared vif.p = 1/(1-p.rsq) > vif.p [1]
25 > dat<-read.csv(" > head(dat) grade study study.sq study.type g g g g g g2
26 Polynomial regression > poly.lm<-lm(grade~study+study.sq, data= dat) > summary(poly.lm) Call: lm(formula = grade ~ study + study.sq, data = dat) Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) * study e-13 *** study.sq e-08 *** --- Signif. codes: 0 *** ** 0.01 * Residual standard error: on 47 degrees of freedom Multiple R-squared: 0.905, Adjusted R-squared: F-statistic: on 2 and 47 DF, p-value: < 2.2e-16
27 Polynomial regression plot(grade~study,data=dat,pch=20,xlab = "hours studied",xlim=c(3,27), ylim =c(0,110),cex=2) x = seq(0,30,0.1) y = *x *x^2 lines(x,y,col='red',lwd=3)
28
29
30 dat<-read.table(" plot(dat,pch=20,cex=2)
31 Absence = b 1 Interest + e 1 Study = b 2 Interest + b 3 Knowledge + e 2 Grade = b 4 Knldg.+ b 5 Ab.+ b 6 Std.+ e 3 b1 b2 b3 b4 b5 b6
32 dat<-read.table(" dat.lm1<-lm(absence~interest,dat) > summary(dat.lm1) Call: lm(formula = absence ~ interest, data = dat) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) < 2e-16 *** interest e-13 *** --- Signif. codes: 0 *** ** 0.01 *
33 dat.lm2<-lm(study~interest+knowledge,dat) > summary(dat.lm2) Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) ** interest e-15 *** knowledge *** dat.lm3<-lm(grade~knowledge+study+absence,dat) > summary(dat.lm3) Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) e-07 *** knowledge *** study *** absense e-06 ***
34
35 dat.std<-as.data.frame(scale(dat)) > summary(dat.std) interest knowledge absence study grade Min. : Min. : Min. : Min. : Min. : st Qu.: st Qu.: st Qu.: st Qu.: st Qu.: Median : Median : Median : Median : Median : Mean : Mean : Mean : Mean : Mean : rd Qu.: rd Qu.: rd Qu.: rd Qu.: rd Qu.: Max. : Max. : Max. : Max. : Max. : > var(dat.std) interest knowledge absence study grade interest knowledge absence study grade
36 > summary(lm(absence~interest,dat.std)) Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) 5.658e e interest e e e-13 *** > summary(lm(study~interest+knowledge,datstd)) Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) e e e interest 9.272e e e-15 *** knowledge e e *** > summary(lm(grade~study+absence+knowledge,datstd)) Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) 1.822e e e study 3.100e e *** absence e e e-06 *** knowledge 2.727e e ***
37
Use R
Use R! 2008/05/23( ) Index Introduction (GLM) ( ) R. Introduction R,, PLS,,, etc. 2. Correlation coefficient (Pearson s product moment correlation) r = Sxy Sxx Syy :, Sxy, Sxx= X, Syy Y 1.96 95% R cor(x,
<4D F736F F F696E74202D BD95CF97CA89F090CD F6489F18B4195AA90CD816A>
主な多変量解析 9. 多変量解析 1 ( 重回帰分析 ) 目的変数 量的 説明変数 質的 あり量的 重回帰分析 数量化 Ⅰ 類 質的 判別分析 数量化 Ⅱ 類 なし 主成分分析因子分析多次元尺度構成法 数量化 Ⅲ 類数量化 Ⅳ 類 その他 クラスタ分析共分散構造分析 説明変数 : 独立変数 予測変数 目的変数 : 従属変数 基準変数 3 1. 単回帰分析各データの構造 y b ax a α: 1,,,
R John Fox R R R Console library(rcmdr) Rcmdr R GUI Windows R R SDI *1 R Console R 1 2 Windows XP Windows * 2 R R Console R ˆ R
R John Fox 2006 8 26 2008 8 28 1 R R R Console library(rcmdr) Rcmdr R GUI Windows R R SDI *1 R Console R 1 2 Windows XP Windows * 2 R R Console R ˆ R GUI R R R Console > ˆ 2 ˆ Fox(2005) [email protected]
1 15 R Part : website:
1 15 R Part 4 2017 7 24 4 : website: email: http://www3.u-toyama.ac.jp/kkarato/ [email protected] 1 2 2 3 2.1............................... 3 2.2 2................................. 4 2.3................................
201711grade2.pdf
2017 11 26 1 2 28 3 90 4 5 A 1 2 3 4 Web Web 6 B 10 3 10 3 7 34 8 23 9 10 1 2 3 1 (A) 3 32.14 0.65 2.82 0.93 7.48 (B) 4 6 61.30 54.68 34.86 5.25 19.07 (C) 7 13 5.89 42.18 56.51 35.80 50.28 (D) 14 20 0.35
インターネットを活用した経済分析 - フリーソフト Rを使おう
R 1 1 1 2017 2 15 2017 2 15 1/64 2 R 3 R R RESAS 2017 2 15 2/64 2 R 3 R R RESAS 2017 2 15 3/64 2-4 ( ) ( (80%) (20%) 2017 2 15 4/64 PC LAN R 2017 2 15 5/64 R R 2017 2 15 6/64 3-4 R 15 + 2017 2 15 7/64
講義のーと : データ解析のための統計モデリング. 第3回
Title 講義のーと : データ解析のための統計モデリング Author(s) 久保, 拓弥 Issue Date 2008 Doc URL http://hdl.handle.net/2115/49477 Type learningobject Note この講義資料は, 著者のホームページ http://hosho.ees.hokudai.ac.jp/~kub ードできます Note(URL)http://hosho.ees.hokudai.ac.jp/~kubo/ce/EesLecture20
DAA04
# plot(x,y, ) plot(dat$shoesize, dat$h, main="relationship b/w shoesize and height, xlab = 'shoesize, ylab='height, pch=19, col='red ) Relationship b/w shoesize and height height 150 160 170 180 21 22
一般化線形 (混合) モデル (2) - ロジスティック回帰と GLMM
.. ( ) (2) GLMM [email protected] I http://goo.gl/rrhzey 2013 08 27 : 2013 08 27 08:29 kubostat2013ou2 (http://goo.gl/rrhzey) ( ) (2) 2013 08 27 1 / 74 I.1 N k.2 binomial distribution logit link function.3.4!
kubostat2017c p (c) Poisson regression, a generalized linear model (GLM) : :
kubostat2017c p.1 2017 (c), a generalized linear model (GLM) : [email protected] http://goo.gl/76c4i 2017 11 14 : 2017 11 07 15:43 kubostat2017c (http://goo.gl/76c4i) 2017 (c) 2017 11 14 1 / 47 agenda
回帰分析 単回帰
回帰分析 単回帰 麻生良文 単回帰モデル simple regression model = α + β + u 従属変数 (dependent variable) 被説明変数 (eplained variable) 独立変数 (independent variable) 説明変数 (eplanator variable) u 誤差項 (error term) 撹乱項 (disturbance term)
R による共和分分析 1. 共和分分析を行う 1.1 パッケージ urca インスツールする 共和分分析をするために R のパッケージ urca をインスツールする パッケージとは通常の R には含まれていない 追加的な R のコマンドの集まりのようなものである R には追加的に 600 以上のパッ
R による共和分分析 1. 共和分分析を行う 1.1 パッケージ urca インスツールする 共和分分析をするために R のパッケージ urca をインスツールする パッケージとは通常の R には含まれていない 追加的な R のコマンドの集まりのようなものである R には追加的に 600 以上のパッケージが用意されており それぞれ分析の目的に応じて標準の R にパッケージを追加していくことになる インターネットに接続してあるパソコンで
統計研修R分散分析(追加).indd
http://cse.niaes.affrc.go.jp/minaka/r/r-top.html > mm mm TRT DATA 1 DM1 2537 2 DM1 2069 3 DM1 2104 4 DM1 1797 5 DM2 3366 6 DM2 2591 7 DM2 2211 8
.3 ˆβ1 = S, S ˆβ0 = ȳ ˆβ1 S = (β0 + β1i i) β0 β1 S = (i β0 β1i) = 0 β0 S = (i β0 β1i)i = 0 β1 β0, β1 ȳ β0 β1 = 0, (i ȳ β1(i ))i = 0 {(i ȳ)(i ) β1(i ))
Copright (c) 004,005 Hidetoshi Shimodaira 1.. 3. 4. 004-10-01 16:15:07 shimo cat(" 1: "); c(mea(), mea()) cat(" : "); mmea
kubostat2017e p.1 I 2017 (e) GLM logistic regression : : :02 1 N y count data or
kubostat207e p. I 207 (e) GLM [email protected] https://goo.gl/z9ycjy 207 4 207 6:02 N y 2 binomial distribution logit link function 3 4! offset kubostat207e (https://goo.gl/z9ycjy) 207 (e) 207 4
最小2乗法
2 2012 4 ( ) 2 2012 4 1 / 42 X Y Y = f (X ; Z) linear regression model X Y slope X 1 Y (X, Y ) 1 (X, Y ) ( ) 2 2012 4 2 / 42 1 β = β = β (4.2) = β 0 + β (4.3) ( ) 2 2012 4 3 / 42 = β 0 + β + (4.4) ( )
と入力する すると最初の 25 行が表示される 1 行目は変数の名前であり 2 列目は企業番号 (1,,10),3 列目は西暦 (1935,,1954) を表している ( 他のパネルデータを分析する際もデ ータをこのように並べておかなくてはならない つまりまず i=1 を固定し i=1 の t に関
R によるパネルデータモデルの推定 R を用いて 静学的パネルデータモデルに対して Pooled OLS, LSDV (Least Squares Dummy Variable) 推定 F 検定 ( 個別効果なしの F 検定 ) GLS(Generalized Least Square : 一般化最小二乗 ) 法による推定 およびハウスマン検定を行うやり方を 動学的パネルデータモデルに対して 1 階階差
第11回:線形回帰モデルのOLS推定
11 OLS 2018 7 13 1 / 45 1. 2. 3. 2 / 45 n 2 ((y 1, x 1 ), (y 2, x 2 ),, (y n, x n )) linear regression model y i = β 0 + β 1 x i + u i, E(u i x i ) = 0, E(u i u j x i ) = 0 (i j), V(u i x i ) = σ 2, i
1 2 Windows 7 *3 Windows * 4 R R Console R R Console ˆ R GUI R R R *5 R 2 R R R 6.1 ˆ 2 ˆ 2 ˆ Graphics Device 1 Rcmdr R Console R Rconsole R --sdi R M
R John Fox and Milan Bouchet-Valat Version 2.0-1 2013 11 8 2013 11 11 1 R Fox 2005 R R Core Team, 2013 GUI R R R R R R R R R the Comprehensive R Archive Network (CRAN) R CRAN 6.4 R Windows R Rcmdr Mac
1 Stata SEM LightStone 3 2 SEM. 2., 2,. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press.
1 Stata SEM LightStone 3 2 SEM. 2., 2,. Alan C. Acock, 2013. Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press. 2 3 2 Conservative Depress. 3.1 2. SEM. 1. x SEM. Depress.
σ t σ t σt nikkei HP nikkei4csv H R nikkei4<-readcsv("h:=y=ynikkei4csv",header=t) (1) nikkei header=t nikkei4csv 4 4 nikkei nikkei4<-dataframe(n
R 1 R R R tseries fseries 1 tseries fseries R Japan(Tokyo) R library(tseries) library(fseries) 2 t r t t 1 Ω t 1 E[r t Ω t 1 ] ɛ t r t = E[r t Ω t 1 ] + ɛ t ɛ t 2 iid (independently, identically distributed)
k3 ( :07 ) 2 (A) k = 1 (B) k = 7 y x x 1 (k2)?? x y (A) GLM (k
2012 11 01 k3 (2012-10-24 14:07 ) 1 6 3 (2012 11 01 k3) [email protected] web http://goo.gl/wijx2 web http://goo.gl/ufq2 1 3 2 : 4 3 AIC 6 4 7 5 8 6 : 9 7 11 8 12 8.1 (1)........ 13 8.2 (2) χ 2....................
1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3.
1 Stata SEM LightStone 4 SEM 4.. Alan C. Acock, 2013. Discovering Structural Equation Modeling Using Stata, Revised Edition, Stata Press 3. 2 4, 2. 1 2 2 Depress Conservative. 3., 3,. SES66 Alien67 Alien71,
q( ) 2: R 2 R R R R C:nProgram FilesnRnrw1030) [File] [Change Dir] c:ndatadir OK 2
R 2001 9 R R S Splus R S 1 R 1: R 2 [File] [Exit] 1 q( ) 2: R 2 R R R R C:nProgram FilesnRnrw1030) [File] [Change Dir] c:ndatadir OK 2 2.1 7+3 1 10 7-3 7*3 7/3 7^3 2 > 7+3 [1] 10 > 7-3 [1] 4 > 7*3 [1]
Microsoft Word - 計量研修テキスト_第5版).doc
Q10-2 テキスト P191 1. 記述統計量 ( 変数 :YY95) 表示変数として 平均 中央値 最大値 最小値 標準偏差 観測値 を選択 A. 都道府県別 Descriptive Statistics for YY95 Categorized by values of PREFNUM Date: 05/11/06 Time: 14:36 Sample: 1990 2002 Included
卒業論文
Y = ax 1 b1 X 2 b2...x k bk e u InY = Ina + b 1 InX 1 + b 2 InX 2 +...+ b k InX k + u X 1 Y b = ab 1 X 1 1 b 1 X 2 2...X bk k e u = b 1 (ax b1 1 X b2 2...X bk k e u ) / X 1 = b 1 Y / X 1 X 1 X 1 q YX1
% 10%, 35%( 1029 ) p (a) 1 p 95% (b) 1 Std. Err. (c) p 40% 5% (d) p 1: STATA (1). prtesti One-sample test of pr
1 1. 2014 6 2014 6 10 10% 10%, 35%( 1029 ) p (a) 1 p 95% (b) 1 Std. Err. (c) p 40% 5% (d) p 1: STATA (1). prtesti 1029 0.35 0.40 One-sample test of proportion x: Number of obs = 1029 Variable Mean Std.
Stata11 whitepapers mwp-037 regress - regress regress. regress mpg weight foreign Source SS df MS Number of obs = 74 F(
mwp-037 regress - regress 1. 1.1 1.2 1.3 2. 3. 4. 5. 1. regress. regress mpg weight foreign Source SS df MS Number of obs = 74 F( 2, 71) = 69.75 Model 1619.2877 2 809.643849 Prob > F = 0.0000 Residual
こんにちは由美子です
Analysis of Variance 2 two sample t test analysis of variance (ANOVA) CO 3 3 1 EFV1 µ 1 µ 2 µ 3 H 0 H 0 : µ 1 = µ 2 = µ 3 H A : Group 1 Group 2.. Group k population mean µ 1 µ µ κ SD σ 1 σ σ κ sample mean
Microsoft Word - 計量研修テキスト_第5版).doc
Q4-1 テキスト P83 多重共線性が発生する回帰 320000 280000 240000 200000 6000 4000 160000 120000 2000 0-2000 -4000 74 76 78 80 82 84 86 88 90 92 94 96 98 R e s i dual A c tual Fi tted Dependent Variable: C90 Date: 10/27/05
講義のーと : データ解析のための統計モデリング. 第5回
Title 講義のーと : データ解析のための統計モデリング Author(s) 久保, 拓弥 Issue Date 2008 Doc URL http://hdl.handle.net/2115/49477 Type learningobject Note この講義資料は, 著者のホームページ http://hosho.ees.hokudai.ac.jp/~kub ードできます Note(URL)http://hosho.ees.hokudai.ac.jp/~kubo/ce/EesLecture20
00 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.... 0........ 0 0 0 0 0 0 0 0 0 0..0..........0 0 0 0 0 0 0 0 0 0 0.... 0........ 0 0 0 0 0 0 0 0 0 0... 0...... 0... 0 0 0 0 0 0..0 0... 0 0 0 0 0.0.....0.
R R-console R R Rscript R-console GUI 1
November 2015 R R-console R R Rscript R-console GUI 1 2 X Y 1 11.04 21.03 2 15.76 24.75 3 17.72 31.28 4 9.15 11.16 5 10.10 18.89 6 12.33 24.25 7 4.20 10.57 8 17.04 33.99 9 10.50 21.01 10 8.36 9.68 x =
2 / 39
W707 [email protected] 1 / 39 2 / 39 1 2 3 3 / 39 q f (x; α) = α j B j (x). j=1 min α R n+2 n ( d (Y i f (X i ; α)) 2 2 ) 2 f (x; α) + λ dx 2 dx. i=1 f B j 4 / 39 : q f (x) = α j B j (x). j=1 : x
以下の内容について説明する 1. VAR モデル推定する 2. VAR モデルを用いて予測する 3. グレンジャーの因果性を検定する 4. インパルス応答関数を描く 1. VAR モデルを推定する ここでは VAR(p) モデル : R による時系列分析の方法 2 y t = c + Φ 1 y t
以下の内容について説明する 1. VAR モデル推定する 2. VAR モデルを用いて予測する 3. グレンジャーの因果性を検定する 4. インパルス応答関数を描く 1. VAR モデルを推定する ここでは VAR(p) モデル : R による時系列分析の方法 2 y t = c + Φ 1 y t 1 + + Φ p y t p + ε t, ε t ~ W.N(Ω), を推定することを考える (
Microsoft Word - 計量研修テキスト_第5版).doc
Q9-1 テキスト P166 2)VAR の推定 注 ) 各変数について ADF 検定を行った結果 和文の次数はすべて 1 である 作業手順 4 情報量基準 (AIC) によるラグ次数の選択 VAR Lag Order Selection Criteria Endogenous variables: D(IG9S) D(IP9S) D(CP9S) Exogenous variables: C Date:
<4D F736F F D20939D8C7689F090CD985F93C18EEA8D758B E646F63>
Gretl OLS omitted variable omitted variable AIC,BIC a) gretl gretl sample file Greene greene8_3 Add Define new variable l_g_percapita=log(g/pop) Pg,Y,Pnc,Puc,Ppt,Pd,Pn,Ps Add logs of selected variables
2 と入力すると以下のようになる > x1<-c(1.52,2,3.01,9,2,6.3,5,11.2) > y1<-c(4,0.21,-1.5,8,2,6,9.915,5.2) > cor(x1,y1) [1] > cor.test(x1,y1) Pearson's produ
1 統計 データ解析セミナーの予習 2010.11.24 粕谷英一 ( 理 生物 生態 ) GCOE アジア保全生態学 本日のメニュー R 一般化線形モデル (Generalized Linear Models 略して GLM) R で GLM を使う R でグラフを描く 説明しないこと :R でできること全般 たくさんあるので時間的に無理 R でするプログラミング-データ解析なら使いやすい R 起動と終了
こんにちは由美子です
1 2 . sum Variable Obs Mean Std. Dev. Min Max ---------+----------------------------------------------------- var1 13.4923077.3545926.05 1.1 3 3 3 0.71 3 x 3 C 3 = 0.3579 2 1 0.71 2 x 0.29 x 3 C 2 = 0.4386
kubostat2018d p.2 :? bod size x and fertilization f change seed number? : a statistical model for this example? i response variable seed number : { i
kubostat2018d p.1 I 2018 (d) model selection and [email protected] http://goo.gl/76c4i 2018 06 25 : 2018 06 21 17:45 1 2 3 4 :? AIC : deviance model selection misunderstanding kubostat2018d (http://goo.gl/76c4i)
RとExcelを用いた分布推定の実践例
R Excel 1 2 1 2 2011/11/09 ( IMI) R Excel 2011/11/09 1 / 12 (1) R Excel (2) ( IMI) R Excel 2011/11/09 2 / 12 R Excel R R > library(fitdistrplus) > x fitdist(x,"norm","mle")
講義のーと : データ解析のための統計モデリング. 第2回
Title 講義のーと : データ解析のための統計モデリング Author(s) 久保, 拓弥 Issue Date 2008 Doc URL http://hdl.handle.net/2115/49477 Type learningobject Note この講義資料は, 著者のホームページ http://hosho.ees.hokudai.ac.jp/~kub ードできます Note(URL)http://hosho.ees.hokudai.ac.jp/~kubo/ce/EesLecture20
¥¤¥ó¥¿¡¼¥Í¥Ã¥È·×¬¤È¥Ç¡¼¥¿²òÀÏ Âè2²ó
2 2015 4 20 1 (4/13) : ruby 2 / 49 2 ( ) : gnuplot 3 / 49 1 1 2014 6 IIJ / 4 / 49 1 ( ) / 5 / 49 ( ) 6 / 49 (summary statistics) : (mean) (median) (mode) : (range) (variance) (standard deviation) 7 / 49
Rによる計量分析:データ解析と可視化 - 第3回 Rの基礎とデータ操作・管理
R 3 R 2017 Email: [email protected] October 23, 2017 (Toyama/NIHU) R ( 3 ) October 23, 2017 1 / 34 Agenda 1 2 3 4 R 5 RStudio (Toyama/NIHU) R ( 3 ) October 23, 2017 2 / 34 10/30 (Mon.) 12/11 (Mon.)
Microsoft Word - 計量研修テキスト_第5版).doc
Q8-1 テキスト P131 Engle-Granger 検定 Dependent Variable: RM2 Date: 11/04/05 Time: 15:15 Sample: 1967Q1 1999Q1 Included observations: 129 RGDP 0.012792 0.000194 65.92203 0.0000 R -95.45715 11.33648-8.420349
- 1-128 - 2 -
127 - 1-128 - 2 - - 3-129 - 4 - 2-5 - 130-6 - - 7-131 - 8 - - 9-132 - 10 - 6041 3 () 1 ( ) () 6041 (1010) 1041 (192) 1941 () 2 (1) (2) (3) () 3 1 1 () 4 2 () 5 1 2 3 4 () 6 () 7-11 - 133-12 - 134 135 136
7. フィリップス曲線 経済統計分析 (2014 年度秋学期 ) フィリップス曲線の推定 ( 経済理論との関連 ) フィリップス曲線とは何か? 物価と失業の関係 トレード オフ 政策運営 ( 財政 金融政策 ) への含意 ( 計量分析の手法 ) 関数形の選択 ( 関係が直線的でない場合の推定 ) 推
7. フィリップス曲線 経済統計分析 ( 年度秋学期 ) フィリップス曲線の推定 ( 経済理論との関連 ) フィリップス曲線とは何か? 物価と失業の関係 トレード オフ 政策運営 ( 財政 金融政策 ) への含意 ( 計量分析の手法 ) 関数形の選択 ( 関係が直線的でない場合の推定 ) 推定結果に基づく予測シミュレーション 物価と失業の関係......... -. -. -........ 失業率
: (EQS) /EQUATIONS V1 = 30*V F1 + E1; V2 = 25*V *F1 + E2; V3 = 16*V *F1 + E3; V4 = 10*V F2 + E4; V5 = 19*V99
218 6 219 6.11: (EQS) /EQUATIONS V1 = 30*V999 + 1F1 + E1; V2 = 25*V999 +.54*F1 + E2; V3 = 16*V999 + 1.46*F1 + E3; V4 = 10*V999 + 1F2 + E4; V5 = 19*V999 + 1.29*F2 + E5; V6 = 17*V999 + 2.22*F2 + E6; CALIS.
第2回 回帰と分散分析
1 環境統計学ぷらす 第 2 回 分散分析と回帰 高木俊 [email protected] 2013/10/31 2 予定 第 1 回 : Rの基礎と仮説検定 第 2 回 : 分散分析と回帰 第 3 回 : 一般線形モデル 交互作用 第 4 回 : 一般化線形モデル モデル選択 第 5 回 : 一般化線形混合モデル 第 6 回 : 多変量解析 3 今日やること R 操作編 RエディタからのRの実行
Stata User Group Meeting in Kyoto / ( / ) Stata User Group Meeting in Kyoto / 21
Stata User Group Meeting in Kyoto / 2017 9 16 ( / ) Stata User Group Meeting in Kyoto 2017 9 16 1 / 21 Rosenbaum and Rubin (1983) logit/probit, ATE = E [Y 1 Y 0 ] ( / ) Stata User Group Meeting in Kyoto
10 2 2 10 6.5 78 1 65 / 30 / - 2 -
- 1 - 10 2 2 10 6.5 78 1 65 / 30 / - 2 - 3 3 30 8 4 8 6 11 14 45 14 7 8 1-3 - 4 1 () 20 4 9 4 9 3 9 4 PR 4 3-4 - - 5 - PR 15 4 PR 7 8 4 9 10-6 - 9 10 9 10 4 9 10 3 9 10 9 9 9 10 PR 1-7 - PR - 8 - 30 100-9
第9回 日経STOCKリーグレポート 審査委員特別賞<地域の元気がでるで賞>
1/21 1 2 3 1 2 3 4 5 4 5 6 2/21 2 3 2 4 5 6 3/21 38 38 4 2007 10 471 10 10 () () () OKI () () () () () 1989 2008 4 13 10 10 1 2 3 4 1 3 1 4/21 2 3 3 2 5/21 3 100 1.5 1/2 4 () 1991 2002 10 3 1 6/21 10 6
Dependent Variable: LOG(GDP00/(E*HOUR)) Date: 02/27/06 Time: 16:39 Sample (adjusted): 1994Q1 2005Q3 Included observations: 47 after adjustments C -1.5
第 4 章 この章では 最小二乗法をベースにして 推計上のさまざまなテクニックを検討する 変数のバリエーション 係数の制約係数にあらかじめ制約がある場合がある たとえばマクロの生産関数は 次のように表すことができる 生産要素は資本と労働である 稼動資本は資本ストックに稼働率をかけることで計算でき 労働投入量は 就業者数に総労働時間をかけることで計算できる 制約を掛けずに 推計すると次の結果が得られる
1 環境統計学ぷらす 第 5 回 一般 ( 化 ) 線形混合モデル 高木俊 2013/11/21
1 環境統計学ぷらす 第 5 回 一般 ( 化 ) 線形混合モデル 高木俊 [email protected] 2013/11/21 2 予定 第 1 回 : Rの基礎と仮説検定 第 2 回 : 分散分析と回帰 第 3 回 : 一般線形モデル 交互作用 第 4.1 回 : 一般化線形モデル 第 4.2 回 : モデル選択 (11/29?) 第 5 回 : 一般化線形混合モデル
kubostat2017j p.2 CSV CSV (!) d2.csv d2.csv,, 286,0,A 85,0,B 378,1,A 148,1,B ( :27 ) 10/ 51 kubostat2017j (http://goo.gl/76c4i
kubostat2017j p.1 2017 (j) Categorical Data Analsis [email protected] http://goo.gl/76c4i 2017 11 15 : 2017 11 08 17:11 kubostat2017j (http://goo.gl/76c4i) 2017 (j) 2017 11 15 1 / 63 A B C D E F G
2 3
Sample 2 3 4 5 6 7 8 9 3 18 24 32 34 40 45 55 63 70 77 82 96 118 121 123 131 143 149 158 167 173 187 192 204 217 224 231 17 285 290 292 1 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
1 R Windows R 1.1 R The R project web R web Download [CRAN] CRAN Mirrors Japan Download and Install R [Windows 9
1 R 2007 8 19 1 Windows R 1.1 R The R project web http://www.r-project.org/ R web Download [CRAN] CRAN Mirrors Japan Download and Install R [Windows 95 and later ] [base] 2.5.1 R - 2.5.1 for Windows R
Microsoft PowerPoint - 201409_秀英体の取組み素材(予稿集).ppt
1 2 3 4 5 6 7 8 9 10 11 No Image No Image 12 13 14 15 16 17 18 19 20 21 22 23 No Image No Image No Image No Image 24 No Image No Image No Image No Image 25 No Image No Image No Image No Image 26 27 28
JA2008
A1 1 10 vs 3 2 1 3 2 0 3 2 10 2 0 0 2 1 0 3 A2 3 11 vs 0 4 4 0 0 0 0 0 3 6 0 1 4 x 11 A3 5 4 vs 5 6 5 1 0 0 3 0 4 6 0 0 1 0 4 5 A4 7 11 vs 2 8 8 2 0 0 0 0 2 7 2 7 0 2 x 11 A5 9 5 vs 3 10 9 4 0 1 0 0 5
