CBRC CBRC DNA
|
|
|
- ぜんま さだい
- 7 years ago
- Views:
Transcription
1
2 CBRC CBRC DNA
3 生命現象のシステム的理解のために 生命の単位 細胞は非常に複雑 システム バイオロジー 生命現象を記述するモデル 細胞はいつ なにをするのか 生命現象は遺伝子が制御している 遺伝子ネットワーク 遺伝子発現を記述するモデル 構造解明 医療技術 創薬 シミュレーション
4
5
6 1.遺伝子ネットワーク 機能発現 = タンパク質 遺伝子間の間接的な制御関係 遺伝子 遺伝子 遺伝子ネットワーク 定量的シミュレーションができるモデリング
7 1.遺伝子ネットワーク 遺伝子 = 発現 非発現のモデルだった DNAマイクロアレイによる制約 連続モデルを導入 S-system 連立微分方程式 Tominaga(03), Kikuchi(03) 遺伝子発現のダイナミクスを表現できる 遺伝子ネットワークの システム バイオロジー
8 1.遺伝子ネットワーク S-systemによるネットワーク表現 dxi = αi dt n+m! j=1 gij Xj βi n+m! hij Xj X1 g21 j=1 h21 X2 パラメータ値でモデルが定義される パラメータ値はネットワーク構造を表現する 動特性解析が容易 感度解析 安定性判別など パラメータ決定 逆問題&多次元非線形最適化 逆問題 観測データだけからモデルを決定できない 多次元非線形関数 局所解が無数にある
9 1.遺伝子ネットワーク 多次元非線形関数の最適化 遺伝的アルゴリズム GA) 大域探索 並列計算 計算速度の向上 逆問題 べき乗則制約 Scale-free性 現実的な構造にしぼる べき乗則 一部の遺伝子が多くの遺伝子を制御 多くの遺伝子は一つの遺伝子とだけ関わる 代謝系など
10 1.遺伝子ネットワーク ケーススタディ 遺伝子数5 ループを2つ含む系 パラメータ数 30 7つの制御関係のうち6カ所を同定 計算時間 約2時間(Pentium III 867MHz 64台) i αi gi1 gi2 gi3 gi4 gi5 βi hi1 hi2 hi hi hi
11 2. DNA
12 2.マイクロアレイ解析 共同研究 産総研 ゲノムファクトリー研究部門 (2002) 旧 生物機能工学研究部門 酵母ショック応答 アステラス製薬 (2004) 旧 山之内製薬 マウス疾病
13 _at
14 _at ,, ( )
15 2. 24h n p ^σ 2 BIC = n log 2π + n log ˆσ 2 + n + (p + 1) log n
16 ( 12 ) 1000 ( / / ) DC DZ WC WZ only 1 experiment 2 experiments 3 experiments 4 experiments 16
17
18 CBRC Computational Biology Research Center National Institute of Advanced Industrial Science and Technology (AIST) TOMINAGA daisuke KADOTA Koji TAKAHASHI Katsutoshi Paul HORTON RICE Tissue Engineering Research Complex (Research Institute for Cell Engineering) National Institute of Advanced Industrial Science and Technology (AIST) Acknowledgment YOSHIKAWA Tomohiro MIYAKE Masato MIYAKE Jun
19 TFA Transfection array %#$$$$$$$ %)#$$$$$$ %)$$$$$$$ %(#$$$$$$ %($$$$$$$ %'#$$$$$$ %'$$$$$$$ %&#$$$$$$ %&$$$$$$$ %$#$$$$$$ *+,-./+0.12& *+,-./+0.12' *+,-./+0.12( *+,-./+0.12) *+,-./+0.12# *+,-./+0.12! *+,-./+0.12% *+,-./ *+,-./+0.12" *+,-./+0.12&$ *+,-./+0.12&& *+,-./+0.12&' *+,-./+0.12&( *+,-./+0.12&) *+,-./+0.12&# *+,-./+0.12&! %$$$$$$$$!"#$$$$$$ $ #$$ &$$$ &#$$ '$$$ '#$$ ($$$ (#$$
20 TFA AIST (MIT ) H17 NEDO (,, )
21 TFA
22 TFA AIC AIC AIC = n log σ + 2s log(n!) n s : n : σ : α k = k 1 c N c i,j Z c p ij pij : Zc : c Nc : Zc
23 TFA = A B
24 TFA解析 全自動解析システムをweb上に 構築 解析サーバー 利用者
25 TFA HeLa (RICE )
26 TFA HeLa (RICE ) GRE AP1(PMA) STAT3 NFAT Caspase3 TRE RARE p53-egfp Myc GAS ISRE ERE SRE CREB-EGFP CREB-EGFP AP1(PMA) p53-egfp NFKB ERE p53 NFAT GAS IkB-EGFP TRE SRE Myc ERE AP1(PMA) p53-egfp E2F CRE AP1 Rb TRE RARE NFAT IKB-EGFP p53 Caspase3 ISRE GRE GAS STAT3 Myc SRE HSE
27 TFA HeLa
28 TFA 28
29 4. sanalysis S-system clarinet TFA DB GEO Web S-system
30 4. clarinet S-system sanalysis
31 TFA AIST NEDO
32
33 =
34
35 clarinets
36 TERC (2003)
37 H15jyuutenHoukokuFromMasato.doc
38 %#$$$$$$$ %)#$$$$$$ %)$$$$$$$ %(#$$$$$$ %($$$$$$$ %'#$$$$$$ %'$$$$$$$ %&#$$$$$$ %&$$$$$$$ %$#$$$$$$ *+,-./+0.12& *+,-./+0.12' *+,-./+0.12( *+,-./+0.12) *+,-./+0.12# *+,-./+0.12! *+,-./+0.12% *+,-./ *+,-./+0.12" *+,-./+0.12&$ *+,-./+0.12&& *+,-./+0.12&' *+,-./+0.12&( *+,-./+0.12&) *+,-./+0.12&# *+,-./+0.12&! %$$$$$$$$!"#$$$$$$ $ #$$ &$$$ &#$$ '$$$ '#$$ ($$$ (#$$
39 TFA Software Micro-array Network model TFA Software Micro-array Network model TFA Software Micro-array Network model TFA Software Micro-array Network model
40
33312004_先端融合開発専攻_観音0314PDF用
Advanced Course for Interdisciplinary Technology Development National Institute of Technology, Gifu College Advanced Course for Interdisciplinary Technology Development 1 5 Curriculum National Institute
1 911 9001030 9:00 A B C D E F G H I J K L M 1A0900 1B0900 1C0900 1D0900 1E0900 1F0900 1G0900 1H0900 1I0900 1J0900 1K0900 1L0900 1M0900 9:15 1A0915 1B0915 1C0915 1D0915 1E0915 1F0915 1G0915 1H0915 1I0915
t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1
t χ F Q t χ F µ, σ N(µ, σ ) f(x µ, σ ) = ( exp (x ) µ) πσ σ 0, N(0, ) (00 α) z(α) t χ *. t (i)x N(µ, σ ) x µ σ N(0, ) (ii)x,, x N(µ, σ ) x = x+ +x N(µ, σ ) (iii) (i),(ii) z = x µ N(0, ) σ N(0, ) ( 9 97.
JR東日本会社要覧2012-2013
Technology Planning Department Frontier Service Development Laboratory Advanced Railway System Development Center Safety Research Laboratory Disaster Prevention Research Laboratory Technical Center Environmental
PowerPoint プレゼンテーション
復習 ) 時系列のモデリング ~a. 離散時間モデル ~ y k + a 1 z 1 y k + + a na z n ay k = b 0 u k + b 1 z 1 u k + + b nb z n bu k y k = G z 1 u k = B(z 1 ) A(z 1 u k ) ARMA モデル A z 1 B z 1 = 1 + a 1 z 1 + + a na z n a = b 0
Probit , Mixed logit
Probit, Mixed logit 2016/5/16 スタートアップゼミ #5 B4 後藤祥孝 1 0. 目次 Probit モデルについて 1. モデル概要 2. 定式化と理解 3. 推定 Mixed logit モデルについて 4. モデル概要 5. 定式化と理解 6. 推定 2 1.Probit 概要 プロビットモデルとは. 効用関数の誤差項に多変量正規分布を仮定したもの. 誤差項には様々な要因が存在するため,
位相最適化?
均質化設計法 藤井大地 ( 東京大学 ) 位相最適化? 従来の考え方 境界形状を変化させて最適な形状 位相を求める Γ t Ω b Γ D 境界形状を変化させる問題点 解析が進むにつれて, 有限要素メッシュが異形になり, 再メッシュが必要になる 位相が変化する問題への適応が難しい Γ Γ t t Ω b Ω b Γ D Γ D 領域の拡張と特性関数の導入 χ Ω ( x) = f 0 f x Ω x
研究最前線 HAL QCD Collaboration ダイオメガから始まる新粒子を予言する時代 Qantm Chromodynamics QCD 1970 QCD Keiko Mrano QCD QCD QCD 3 2
ISSN 1349-1229 No. 446 2018 8 Keiko Mrano 02 06 15 TOPICS 16 10 FANTOM 研究最前線 2018 5 6 1 HAL QCD Collaboration ダイオメガから始まる新粒子を予言する時代 3 1960 Qantm Chromodynamics QCD 1970 QCD Keiko Mrano 1 3 2 QCD 1 1 1974
研修コーナー
l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l
PowerPoint プレゼンテーション
20150528 信号処理システム特論 本日の内容 適応フィルタ ( 時間領域 ) 適応アルゴリズム (LMS,NLMS,RLS) 適応フィルタの応用例 適応処理 非適応処理 : 状況によらずいつでも同じ処理 適応処理 : 状況に応じた適切な処理 高度な適応処理の例 雑音抑圧, 音響エコーキャンセラ, 騒音制御など 時間領域の適応フィルタ 誤差信号 与えられた手順に従ってフィルタ係数を更新し 自動的に所望の信号を得るフィルタ
Introduction to System Identification
y(t) モデルベースデザイン 制御系設計のためのシステム同定入門 s 2 Teja Muppirala t s 2 3s 4 2012 The MathWorks, Inc. 1 モデルベースデザイン 正確なモデルがあることが大前提 実行可能な仕様書 シミュレーションによる設計 モデル 連続したテスト 検証 コード生成による実装 2 動的システムのモデリング モデリング手法 第一原理モデリング データドリブンモデリング
Microsoft PowerPoint - 6.PID制御.pptx
プロセス制御工学 6.PID 制御 京都大学 加納学 Division of Process Control & Process Systems Engineering Department of Chemical Engineering, Kyoto University [email protected] http://www-pse.cheme.kyoto-u.ac.jp/~kano/
_0212_68<5A66><4EBA><79D1>_<6821><4E86><FF08><30C8><30F3><30DC><306A><3057><FF09>.pdf
sekibun.dvi
a d = a + a+ (a ), e d = e, sin d = cos, (af() + bg())d = a d = log, cosd = sin, f()d + b g()d d 3 d d d d d d d ( + 3 + )d ( + )d ( 3 )d (e )d ( sin 3 cos)d g ()f (g())d = f(g()) e d e d ( )e d cos d
21世紀型パラメータ設計―標準SN比の活用―
世紀のパラメータ設計ースイッチ機構のモデル化ー 接点 ゴム 変位 スイッチ動作前 スイッチ動作後 反転ばねでスイッチの クリック感 を実現した構造 世紀型パラメータ設計 標準 SN 比の活用 0 世紀の品質工学においては,SN 比の中に, 信号因子の乱れである 次誤差 (S res ) もノイズの効果の中に加えて評価してきた.のパラメータ設計の例では, 比例関係が理想であるから, 次誤差も誤差の仲間と考えてもよかったが,
Micro-D 小型高密度角型コネクタ
Micro- 1 2 0.64 1.27 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 11 12 13 1.09 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 3 4 J J
...Z _01.T.v (Page 1)
S c i e n c e & T e c h n o l o g y T r e n d s 2002 8 No.17 5 6 Science & Technology Trends August 2002 1 7 8 8 9 2 9 10 Science & Technology Trends August 2002 3 11 23 4 Science & Technology Trends
概況
2 4 6 2 2 2 3 2 4 22 5 23 27 34 37 44 45 46 2 78.67 85.77 2.6. 7. 2 2, 65 85,464 93,8 65 85.5 93.2 8 56.2 77.9 2 8.87 88.8 3 () 65 3 6 2 2 2 2 2 22 3 2 2 2 2 2 2 2 2 28.58 28.74 29.9 8.8 8.84 2.63 65 28.3
( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +
(.. C. ( d 5 5 + C ( d d + C + C d ( d + C ( ( + d ( + + + d + + + + C (5 9 + d + d tan + C cos (sin (6 sin d d log sin + C sin + (7 + + d ( + + + + d log( + + + C ( (8 d 7 6 d + 6 + C ( (9 ( d 6 + 8 d
Microsoft PowerPoint - H22制御工学I-2回.ppt
制御工学 I 第二回ラプラス変換 平成 年 4 月 9 日 /4/9 授業の予定 制御工学概論 ( 回 ) 制御技術は現在様々な工学分野において重要な基本技術となっている 工学における制御工学の位置づけと歴史について説明する さらに 制御システムの基本構成と種類を紹介する ラプラス変換 ( 回 ) 制御工学 特に古典制御ではラプラス変換が重要な役割を果たしている ラプラス変換と逆ラプラス変換の定義を紹介し
Microsoft PowerPoint - シミュレーション工学-2010-第1回.ppt
シミュレーション工学 ( 後半 ) 東京大学人工物工学研究センター 鈴木克幸 CA( Compter Aded geerg ) r. Jaso Lemo (SC, 98) 設計者が解析ツールを使いこなすことにより 設計の評価 設計の質の向上を図る geerg の本質の 計算機による支援 (CA CAM などより広い名前 ) 様々な汎用ソフトの登場 工業製品の設計に不可欠のツール 構造解析 流体解析
スライド 1
機構学 Part6: ロボットの運動学 金子真 きんにく筋肉 筋紡錘 : 筋肉の長さを測るセンサ モータ センサ ロボットの運動学 関節にモータがついている場合の角度の取り方 関節にモータがついている場合の角度の取り方 関節にモータがついている場合の角度の取り方 関節にモータがついている場合の角度の取り方 関節にモータがついている場合の角度の取り方 ワイヤ駆動式ロボット ワイヤ駆動式ロボット ワイヤプーリ機構の場合
PowerPoint プレゼンテーション
回転型クレーン / 倒立振子の制御 回転型クレーンの制御 状態方程式 コントローラ設計 ( 極配置法 ) コントローラ設計 ( 最適レギュレータ ) 回転型倒立振子の制御 状態方程式 コントローラ設計 コントローラの形式 : 状態フィードバック P-D コントローラ アームの P-D 振子の P-D 目標値 状態フィードバック制御 回転型クレーン コントローラ で 状態フィードバック制御 回転型クレーン
パソコンシミュレータの現状
第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に
様々なミクロ計量モデル†
担当 : 長倉大輔 ( ながくらだいすけ ) この資料は私の講義において使用するために作成した資料です WEB ページ上で公開しており 自由に参照して頂いて構いません ただし 内容について 一応検証してありますが もし間違いがあった場合でもそれによって生じるいかなる損害 不利益について責任を負いかねますのでご了承ください 間違いは発見次第 継続的に直していますが まだ存在する可能性があります 1 カウントデータモデル
( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (
6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b
モデリングとは
コンピュータグラフィックス基礎 第 5 回曲線 曲面の表現 ベジェ曲線 金森由博 学習の目標 滑らかな曲線を扱う方法を学習する パラメトリック曲線について理解する 広く一般的に使われているベジェ曲線を理解する 制御点を入力することで ベジェ曲線を描画するアプリケーションの開発を行えるようになる C++ 言語の便利な機能を使えるようになる 要素数が可変な配列としての std::vector の活用 計算機による曲線の表現
: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs
15 C11-4 Numerical analysis of flame propagation in a combustor of an aircraft gas turbine, 4-6-1 E-mail: [email protected], 2-11-16 E-mail: [email protected], 4-6-1 E-mail: [email protected],
n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m
1 1 1 + 1 4 + + 1 n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m a n < ε 1 1. ε = 10 1 N m, n N a m a n < ε = 10 1 N
,, Poisson 3 3. t t y,, y n Nµ, σ 2 y i µ + ɛ i ɛ i N0, σ 2 E[y i ] µ * i y i x i y i α + βx i + ɛ i ɛ i N0, σ 2, α, β *3 y i E[y i ] α + βx i
Armitage.? SAS.2 µ, µ 2, µ 3 a, a 2, a 3 a µ + a 2 µ 2 + a 3 µ 3 µ, µ 2, µ 3 µ, µ 2, µ 3 log a, a 2, a 3 a µ + a 2 µ 2 + a 3 µ 3 µ, µ 2, µ 3 * 2 2. y t y y y Poisson y * ,, Poisson 3 3. t t y,, y n Nµ,
表紙1
Graduate School of Engineering Nagasaki Institute of Applied Science Graduate School of Engineering Nagasaki Institute of Applied Science Institute for Innovative Science and Technology Doctoral Program
航空機の縦系モデルに対する、非線形制御の適用例
制御システム工学研究グルプ 航空機の縦系モデルに対する非線形最適制御の適用例 菊池芳光 * * 名古屋大学 MBD 中部コンファレンス @2014 年 12 月 18 日 目次 はじめに 先行研究 提案手法 縦系航空機モデル シミュレーション結果 おわりに はじめに PIO(Pilot Induced Oscillation) Category II 速度飽和 位相遅れ PIO 事故 PIOにより墜落するGripen
論文題目 腸管分化に関わるmiRNAの探索とその発現制御解析
論文題目 腸管分化に関わる microrna の探索とその発現制御解析 氏名日野公洋 1. 序論 microrna(mirna) とは細胞内在性の 21 塩基程度の機能性 RNA のことであり 部分的相補的な塩基認識を介して標的 RNA の翻訳抑制や不安定化を引き起こすことが知られている mirna は細胞分化や増殖 ガン化やアポトーシスなどに関与していることが報告されており これら以外にも様々な細胞諸現象に関与していると考えられている
(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n
. 99 () 0 0 0 () 0 00 0 350 300 () 5 0 () 3 {a n } a + a 4 + a 6 + + a 40 30 53 47 77 95 30 83 4 n S n S n = n = S n 303 9 k d 9 45 k =, d = 99 a d n a n d n a n = a + (n )d a n a n S n S n = n(a + a n
Microsoft PowerPoint - ã…⁄ㅼㇿ咄儌ç€flç©¶ä¼ı_æ‘’å⁄º.pptx
第 5 回設計に活かすデータ同化研究会 2019 年 3 月 7 日 ( 木 ) データ同化と機械学習を用いた実践事例の紹介 ~ 日本酒醸造 AI の実証試験から考える ~ 菊地亮太 ( 株式会社富士通研究所 ) 0 自己紹介 1 1 菊地亮太 ( きくちりょうた ) 略歴 2017 年 3 月東北大学工学研究科航空宇宙工学専攻博士後期課程修了 2017 年 4 月 ~ 現職富士通研究所人工知能研究所研究員
Microsoft PowerPoint - 発表II-3原稿r02.ppt [互換モード]
地震時の原子力発電所燃料プールからの溢水量解析プログラム 地球工学研究所田中伸和豊田幸宏 Central Research Institute of Electric Power Industry 1 1. はじめに ( その 1) 2003 年十勝沖地震では 震源から離れた苫小牧地区の石油タンクに スロッシング ( 液面揺動 ) による火災被害が生じた 2007 年中越沖地震では 原子力発電所内の燃料プールからの溢水があり
板バネの元は固定にします x[0] は常に0です : > x[0]:=t->0; (1.2) 初期値の設定をします 以降 for 文処理のため 空集合を生成しておきます : > init:={}: 30 番目 ( 端 ) 以外については 初期高さおよび初速は全て 0 にします 初期高さを x[j]
機械振動論固有振動と振動モード 本事例では 板バネを解析対象として 数値計算 ( シミュレーション ) と固有値問題を解くことにより振動解析を行っています 実際の振動は振動モードと呼ばれる特定パターンが複数組み合わされますが 各振動モードによる振動に分けて解析を行うことでその現象を捉え易くすることが出来ます そこで 本事例では アニメーションを活用した解析結果の可視化も取り入れています 板バネの振動
平成20年5月 協会創立50年の歩み 海の安全と環境保全を目指して 友國八郎 海上保安庁 長官 岩崎貞二 日本船主協会 会長 前川弘幸 JF全国漁業協同組合連合会 代表理事会長 服部郁弘 日本船長協会 会長 森本靖之 日本船舶機関士協会 会長 大内博文 航海訓練所 練習船船長 竹本孝弘 第二管区海上保安本部長 梅田宜弘
微分方程式による現象記述と解きかた
微分方程式による現象記述と解きかた 土木工学 : 公共諸施設 構造物の有用目的にむけた合理的な実現をはかる方法 ( 技術 ) に関する学 橋梁 トンネル ダム 道路 港湾 治水利水施設 安全化 利便化 快適化 合法則的 経済的 自然および人口素材によって作られた 質量保存則 構造物の自然的な性質 作用 ( 外力による応答 ) エネルギー則 の解明 社会的諸現象のうち マスとしての移動 流通 運動量則
Microsoft PowerPoint - qcomp.ppt [互換モード]
量子計算基礎 東京工業大学 河内亮周 概要 計算って何? 数理科学的に 計算 を扱うには 量子力学を計算に使おう! 量子情報とは? 量子情報に対する演算 = 量子計算 一般的な量子回路の構成方法 計算って何? 計算とは? 計算 = 入力情報から出力情報への変換 入力 計算機構 ( デジタルコンピュータ,etc ) 出力 計算とは? 計算 = 入力情報から出力情報への変換 この関数はどれくらい計算が大変か??
DV-0001_センダイウイルス(SeV)ミニゲノムベクター調整キット(120425_ver._2.3)
For Research Use Only. Not for use in diagnostic procedures. For Research Use Only. Not for use in diagnostic procedures. 1/25 2/25 3/25 4/25 5/25 6/25 µ µµ µ µµ µ µ 7/25 8/25 9/25 µ µ 10/25 11/25 µ 12/25
A4パンフ
Gifu University Faculty of Engineering Gifu University Faculty of Engineering the structure of the faculty of engineering DATA Gifu University Faculty of Engineering the aim of the university education
Microsoft PowerPoint - chap8.ppt
第 8 章 : フィードバック制御系の設計法 第 8 章 : フィードバック制御系の設計法 8. 設計手順と性能評価 キーワード : 設計手順, 性能評価 8. 補償による制御系設計 キーワード : ( 比例 ),( 積分 ),( 微分 ) 学習目標 : 一般的な制御系設計における手順と制御系の性能評価について学ぶ. 学習目標 : 補償の有効性について理解し, その設計手順を習得する. 第 8 章
1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +
( )5 ( ( ) ) 4 6 7 9 M M 5 + 4 + M + M M + ( + ) () + + M () M () 4 + + M a b y = a + b a > () a b () y V a () V a b V n f() = n k= k k () < f() = log( ) t dt log () n+ (i) dt t (n + ) (ii) < t dt n+ n
2011年度 筑波大・理系数学
0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ O を原点とするy 平面において, 直線 y= の を満たす部分をC とする () C 上に点 A( t, ) をとるとき, 線分 OA の垂直二等分線の方程式を求めよ () 点 A が C 全体を動くとき, 線分 OA の垂直二等分線が通過する範囲を求め, それ を図示せよ -- 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ
極限
si θ = ) θ 0 θ cos θ θ 0 θ = ) P T θ H A, 0) θ, 0 < θ < π ) AP, P H A P T PH < AP < AT si θ < θ < ta θ si θ < θ < si θ cos θ θ cos θ < si θ θ < θ < 0 θ = h θ 0 cos θ =, θ 0 si θ θ =. θ 0 cos θ θ θ 0 cos
1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l
1 1 ϕ ϕ ϕ S F F = ϕ (1) S 1: F 1 1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l : l r δr θ πrδr δf (1) (5) δf = ϕ πrδr
ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.
24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)
