Explicit MPS Algorithm for Large-scale Free Surface Flow Analysis

Size: px
Start display at page:

Download "Explicit MPS Algorithm for Large-scale Free Surface Flow Analysis"

Transcription

1 先駆的科学計算に関するフォーラム 014 大規模分散メモリ並列 MS 法の開発と 市街地浸水津波解析 開催日 014 年 8 月 5 日 ( 火 )-8 月 6 日 ( 水 ) 会場福岡市博多区リファレンス駅東ビル 5 階会議室 V- 室谷浩平 ( 東京大学 )

2 目次 MS 陽解法 並列計算 津波解析 MS 陽解法とMS 半陰解法の比較

3 目次 MS 陽解法 並列計算 津波解析 MS 陽解法とMS 半陰解法の比較 3

4 MS 陽解法 4

5 支配方程式 : ナビエスストークス方程式 連続の式 半陰解法 陽解法 非圧縮条件 d 0 dt 微圧縮性を仮定 c c ρ : 音速 : 密度 運動方程式 dv dt 1 v g 5

6 MS 法 初期化 重力 粘性による力の計算 速度 位置更新 flud Fst tme step wall 圧力計算 圧力勾配による力の計算 速度 位置修正 終了判定 終了 6

7 MS 法 初期化 Fst tme step wall 重力 粘性による力の計算 速度 位置更新 flud v * v k t v k g 圧力計算 圧力勾配による力の計算 速度 位置修正 は速度 終了判定 終了 7

8 MS 法 初期化 Fst tme step wall 重力 粘性による力の計算 速度 位置更新 flud * k t v * 圧力計算 圧力勾配による力の計算 速度 位置修正 は速度 終了判定 終了 8

9 MS 法 初期化 重力 粘性による力の計算 速度 位置更新 flud 陽解法 k1 半陰解法 n c * 1 k t n n 0 n 0 * n n 0 0 wall 圧力計算 圧力勾配による力の計算 速度 位置修正 色は圧力 終了判定 終了 9

10 MS 法 初期化 Fst tme step wall 重力 粘性による力の計算 速度 位置更新 flud t v' k1 圧力計算 圧力勾配による力の計算 速度 位置修正 は修正速度 色は圧力 終了判定 終了 10

11 MS 法 初期化 Fst tme step wall 重力 粘性による力の計算 速度 位置更新 flud 1 v k 1 k v * * v' t v' 圧力計算 圧力勾配による力の計算 速度 位置修正 は修正速度 色は圧力 終了判定 終了 11

12 MS 法 初期化 Second tme step wall 重力 粘性による力の計算 速度 位置更新 flud v * v k t v k g 圧力計算 圧力勾配による力の計算 速度 位置修正 は速度 終了判定 終了 1

13 MS 法 初期化 Second tme step wall 重力 粘性による力の計算 速度 位置更新 flud * k t v * 圧力計算 圧力勾配による力の計算 速度 位置修正 は速度 終了判定 終了 13

14 MS 法 初期化 重力 粘性による力の計算 速度 位置更新 flud 陽解法 k1 半陰解法 n c * 1 k t n n 0 n 0 * n n 0 0 wall 圧力計算 圧力勾配による力の計算 速度 位置修正 色は圧力 終了判定 終了 14

15 MS 法 初期化 Second tme step wall 重力 粘性による力の計算 速度 位置更新 flud t v' k1 圧力計算 圧力勾配による力の計算 速度 位置修正 は修正速度 色は圧力 終了判定 終了 15

16 MS 法 初期化 Second tme step wall 重力 粘性による力の計算 速度 位置更新 flud 1 v k 1 k v * * v' t v' 圧力計算 圧力勾配による力の計算 速度 位置修正 は修正速度 色は圧力 終了判定 終了 16

17 目次 MS 陽解法 並列計算 津波解析 MS 陽解法とMS 半陰解法の比較 17

18 動的負荷分散 18

19 バケットベースの領域分割と通信方法 粒子をバケットに格納 E 0 Halo E 1 exchange 領域分割 Halo exchange Halo exchange E E 3 19

20 動的負荷分散 9,136 粒子 4 ノード dt: 秒 sec sec Numbe of patcles 5,500 E0 E1 E E3 5,000 4,500 1 つの計算ノードの粒子数が 5,500 になったら 領域再分割を行う. 4, Tme 0

21 高速化に関わる 3 つの開発項目 1 毎ステップ行う隣接間通信のための通信テーブルの作成 ( 並列性能 単体性能 ) バケットベースの通信 領域分割による動的負荷分散 ( 並列性能 ) ametis によって 5% 程度の負荷分散を実現 3 ノード内チューニング ( 単体性能 ) 粒子データの再配置 GU と MIC 向け最適化

22 東京大学 FX10 による 314,57,800 粒子のストロングスケーリング (1 ノード ~4800 ノード ) Wall-clock tme (s) Effcency T11 T n n Tme of l0x.0 Tme of l0x4.0 Effcency of l0x.0 Effcency of l0x The numbe of nodes Stong scalng of 314,57,800 patcles Stong scalng s defned as how the calculaton tme vaes wth the numbe of pocessos fo a fxed total poblem sze.

23 東京大学 FX10 による 5000 万粒子から 00 億粒子のウィークスケーリング (1 ノード ~4800 ノード ) Wall-clock tme (s) Effcency T 1 T n Tme of l0x.0 Tme of l0x4.0 Effcency of l0x.0 Effcency of l0x The numbe of nodes Weak scalng fom 50,331,648 patcles 0,13,659,00 patcles Weak scalng s defned as how the calculaton tme vaes accodng to the numbe of pocessng elements fo a fxed poblem sze pe pocessng element. 3

24 Calculaton Tme and Flops/eak n case of 4,194,304 patcles n a node e =.0 l 0 Tme (s) Effcency of flop/s (%) Total calculaton tme n 1 tme step 1 ノード 4800 ノード Tme (s) Effcency of flop/s (%) Vscosty tem nd ode polynomal appoxmaton Collson essue 1 st ode polynomal appoxmaton essue gadent tem Othe (communcaton, communcaton table and sotng)

25 Calculaton Tme and Flops/eak n case of 4,194,304 patcles n a node e = 4.0 l 0 Tme (s) Effcency of flop/s (%) Total calculaton tme n 1 tme step 1 ノード 4800 ノード Tme (s) Effcency of flop/s (%) Vscosty tem nd ode polynomal appoxmaton Collson essue 1 st ode polynomal appoxmaton essue gadent tem Othe (communcaton, communcaton table and sotng)

26 高速化に関わる 3 つの開発項目 1 毎ステップ行う隣接間通信のための通信テーブルの作成 ( 並列性能 単体性能 ) バケットベースの通信 領域分割による動的負荷分散 ( 並列性能 ) ametis によって 5% 程度の負荷分散を実現 3 ノード内チューニング ( 単体性能 ) 粒子データの再配置

27 粒子データの再配置 bucket[] bucket[3] Indect fst_patcle_n_bucket = {0, 4, -1, 1}; patcle_ndex = {, 3, -1, 5, -1, -1}; 0 bucket[0] 4 bucket[1] 粒子データの再配置 bucket[] 1 0 bucket[0] bucket[3] Dect 座標が近い粒子データは メモリ上の物理的に近い所に保存する. 4 counte = {0,, 3, 3, 6}; を新たに作成する. 3 5 粒子データの再配置後は bucket[0] に counte[0]~counte[1]-1 番の粒子が保存され bucket[1] に counte[1]~counte[]-1 番の粒子が保存され bucket[] に counte[]~counte[3]-1 番の粒子が保存され bucket[1] bucket[3] に counte[3]~counte[4]-1 番の粒子が保存される.

28 リンクリストと粒子データを再配置した場合の計算時間の違い ( 九大 CX400) 標準 MS( 計算量が少ない場合 ) 影響半径 :l 0 x.1 Wall-clock tme (s) ,016 粒子 Indect Assgnng patcles to buckets and eaangng patcle data Dect Total MS calculaton by eaangng patcle data afte assgnng patcles to buckets Assgnng patcles to buckets and makng a lnked lst Total MS calculaton by lnked lst Tme (s)

29 L1 キャッシュミス率 ( 東京大学 FX10) Radus of olynomal Tme (s) L1 Cache Mss Rate (%) nteacton doman: e Ode Indect Dect Indect Dect.1 l l l l l l l

30 CU,GU,MIC 向け最適化の結果 粒子数 :13,651 影響半径 :l 0 x4.1 解析領域 :1.0x1.0x タイムステップの計算時間粒子番号は乱数でシャッフルする プロセッサ Intel Coe Tesla K0m 九大 CX400 Xeon h 310 名大 CX400 理論性能 (GFLOS) 手法 計算時間 (s) 標準 MS ピーク性能比 (%) Speed up 計算時間 (s) 高次精度 MS ピーク性能比 (%) Indect Speed up Dect Indect Dect Indect Dect

31 目次 MS 陽解法 並列計算 津波解析 MS 陽解法とMS 半陰解法の比較 31

32 津波解析の目的 1. 津波が市街地を遡上する解析. 浮遊物がながれ 浮遊物同士や地上構造物に衝突する解析 3. 水圧と浮遊物の衝突による地上構造物の応力解析 3

33 3 段階の津波解析 第 1 の解析 : 震源で発生する波源から沿岸部までの津波伝播計算 ( 数十 ~ 数百キロ四方程度 ) 第 3 の解析 : 市街地に浮遊物が衝突しながら浮遊する市街地浸水解析 (500m 四方程度 ) 第 の解析 : 沿岸部に押し寄せた津波が地上へ遡上する解析 ( 数 km~10km 四方程度 ) 33

34 浮遊物 多数の浮遊物が漂流する解析を行う 浮遊物は剛体としてモデル化する ( 将来は弾性体にする ) 剛体 - 流体の弱連成問題を解く 34

35 流体 - 剛体連成 [1] ( 弱連成 ) 1 全粒子を流体粒子として計算する. 剛体の並進量と回転量を求める. 3 移動前の剛体粒子に対して 剛体の並進量と回転量を加える. 1 並進動量 ' g 1 N k 1 k ˆ RgdBody 回転量 ( 角運動量 ) L RgdBody k1 k k1 k1 m ˆ ˆ g t 3 並進 回転 [1] S. Koshzuka, A. Nobe, Y. Oka, Numecal Analyss of Beakng Waves Usng the Movng atcle Sem-mplct Method, Int. 35 J. Nume. Meth. Fluds, 6, , 1998

36 流体 - 剛体連成の通信 総和計算の部分だけ 通信 ( 全体通信 ) が発生する. 移動後の重心 並進量 回転量の 3 つのベクトルを求める時に総和計算が行われる. 移動後の重心と並進量は同時に通信 ( 全体通信 ) できるが 回転量は移動後の重心を用いて計算されるので 回に分けて通信 ( 全体通信 ) が行われる. 例えば 100 個の剛体の場合 8(sze of double)x6x100 byte と 8(sze of double)x3x100 byte の 回の通信 ( 全体通信 ) が行われる. 通信量 ( 全体通信量 ) は少ない. 1 1 k 1 k 並進動量 ' g ˆ 回転量 ( 角運動量 ) L RgdBody N RgdBody k1 k k1 k1 m ˆ ˆ g t 3 並進 回転 全体通信によって総和計算を行う 新しい重心 1 k 1 k1 g ˆ N RgdBody 36

37 4 つの計算モデル Model Stage Aea Buldngs Floatng objects A Second 10.5km 10km Non Non B Second 4.5km 3km Non Non C Thd 400m 550m Modelng Two (Tanks) D Thd 660m 810m Modelng 431(Buldng) Model A Model B Model C Model D 37

38 Model A n nd stage: 石巻湾沿岸の広範囲津波遡上解析 粒子直径 : m 解析領域 : 10.5km 10.0km 解析時間 : 000sec (33mn) dt : 0.01s (o Couant numbe 0.1) 東京大学 FX10 (Fujtsu Spac) 10 nodes (190 coes) MI + OpenM 最大粒子数 : 1.3 億 計算時間 : 3 days 1 tme step (aveage):.4 sec 4.3km 38

39 MS 法と浅水長波方程式による差分法の計算結果の比較 Flow depth 0m Flow depth m 39

40 Model B n nd stage : 3 d ステージ解析のための流入境界条件を作成するための解析 粒子直径 : 1m 解析領域 : 4.0km 3.5km 解析時間 : 800sec dt : Couant numbe=0.1 東京大学 FX10 (Fujtsu Spac) 144 nodes (104 coes) MI+OpenM 最大粒子数 :.6 億 計算時間 : 1 weak 1 tme step (aveage): 5.5 sec Tme of doman decomposton (aveage) : 60 sec Bounday of Mode C & D n 3 d stage aea 40

41 階層の領域分割 第 1 段階目の領域分割 第 段階目の領域分割 41

42 Model C n 3 d stage : つのタンクが市街地を漂流する解析 粒子直径 : 0.m 解析領域 : 400m 550m 解析時間 : 00sec dt : Couant numbe=0.1 Two tanks ae eleased at 60 sec 九州大学 CX400 (Intel Xeon) 3 nodes (51 coes) MI+OpenM 最大粒子数 : 4.0 億 計算時間 : 30 days 1 tme step (aveage): 8. sec Tme of doman decomposton : 6 sec 4

43 Model D n 3 d stage : 431 つの浮遊物が市街地を漂流する解析 粒子直径 : 0.5m 解析領域 : 660m 810m 解析時間 : 400sec dt : Couant numbe=0.1 All buldngs ae eleased at 00 sec 九州大学 CX400 (Intel Xeon) 7 nodes (115 coes) MI+OpenM 最大粒子数 : 80 mllons 計算時間 : 40 hous 1 tme step (aveage): 0.78 sec Tme of doman decomposton (aveage): 4 sec 43

44 石巻市街地のメッシュモデルメッシュサイズ m 44

45 第 3 の解析 : 地上構造物に線形応力解析を行った市街地浸水解析 名古屋大学 CX400 (Intel Xeon) 3 nodes (768 coes) MI+OpenM 流体解析 : 4000 万粒子 (0.5m) by 分散並列 MS 陽解法 構造解析 : 100 万要素 (m) by ADVENTURE_Sold v1.1 連成方法 : 流体圧力を構造に渡す片方向連成 計算時間 : 74 時間 45

46 目次 MS 陽解法 並列計算 津波解析 MS 陽解法とMS 半陰解法の比較 46

47 MS 陽解法 (E-MS 法 ) 初期化 重力 粘性による力の計算 速度 位置更新 圧力計算 圧力勾配による力の計算 速度 位置更新 終了判定 終了 Halo exchange Halo exchange Halo exchange u * * 1 u k u k t k t u n n c n0 t u' 1 k u * * * 0 k 1 u' t u' u g k 圧力を粒子数密度差から陽的に求める 0 c c n n 0 n n n 0 流体の密度 : 音速 [m/s] 位置 : 速度 : 圧力 : 動粘性係数 : 重力加速度 : 粒子 の粒子数密度 d c d 粒子数密度の基準値 u v g

48 MS 半陰解法 (SI-MS 法 ) 初期化重力 粘性による力の計算速度 位置更新 圧力計算 圧力勾配による力の計算速度 位置更新 終了判定 Halo exchange aallel BCGStab Halo exchange u * u Halo exchange * 1 u k 1 k k t k t u u * 1 k * * t u' u' t u' u g t k n * k 1 n n 0 0 流体の密度 : 位置 : 速度 : 圧力 : 動粘性係数 : 重力加速度 : 圧力のポアソン方程式 u v g 終了

49 MS, SI-MS, LS-MS Method Explct MS (E-MS) Sem-Implct MS (SI-MS) Least Squae MS (LS-MS) ublshed yea 010 [1] 1996 [] 014 [3] To obtan pessue Gadent opeato Laplacan opeato essue state equaton (explct) Gadent model of ognal MS (not consstency) Laplacan model of ognal MS (not consstency) essue osson equaton (mplct) Fst-ode polynomal appoxmaton Second-ode polynomal appoxmaton essue oscllaton Hgh ( ) Low ( ) Vey low ( ) Accuacy Low ( ) Medum ( ) Hgh ( ) Calculaton tme Vey shot ( ) Long ( ) Long ( ) Requed Memoy Vey small ( ) Lage ( ) Lage ( ) [1] A. Shakbaena, Y. C. Jn: A Weakly Compessble MS Method fo Modelng of Open-bounday Fee-suface Flow, Int. J. Nume. Meth. Fluds, 63, pp , 010. [] S. Koshzuka. and Y. Oka: Movng-patcle sem-mplct method fo fagmentaton of ncompessble flud, Nuclea Scence and Engneeng, 13, pp , [3] T. Tama, S. Koshzuka: Least squaes movng patcle sem-mplct method, Computatonal atcle Mechancs, 49 DOI /s , July, 014.

50 To calculate pessue Explct MS k1 n c * n n 0 0 粒子数密度 n * * * w j j Sem-Implct MS & Least Squae MS k (1 ) t v * Mxed souce tem by Tanaka [1] 0 n 0 n 0 t n * Method Ognal Sem-Implct MS 1.0 Incompessble SH [] 1.0 ojecton SH [3] 0.0 α mass consevaton pessue oscllaton α = 1.0 Kept ( ) Hgh ( ) α = 0.0 Not kept ( ) Low ( ) α > 0.01 Almost kept ( ) Low ( ) α [1] M. Tanaka, T. Masunaga: Stablzaton and Smoothng of essue on MS Method by Quas-Compessblty, Tansactons of JSCES, ape Numbe , 8pages, 008. [] S. Shao & E. YM Lo: Incompessble SH method fo smulatng newtonan and non-newtonan flows wth a fee suface. Advances n Wate Resouces, Vol. 6, No. 7, pp , 003. [3] S. J. Cummns & M. Rudman: An SH pojecton method. Jounal of computatonal physcs, Vol. 15, No., pp , 1999.

51 Gadent & Laplacan opeatos j j j w d 0 j j j j j w n d 0 Explct MS 越塚による MS 勾配, ラプラシアン作用素 ( 工学的近似 ) j j j w d 0 j j j j j w n d 0 ˆ Sem-Implct MS 越塚による MS 勾配, ラプラシアン作用素 ( 工学的近似 ) : poston vecto ), ( y x

52 : poston vecto Gadent & Laplacan opeatos j j j j j j j j j j j j j j j j j s j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j s j s z y s z x s y x s z s y s x s z s y s x z y z x y x z z y y x x z y x w z y z x y x z z y y x x z y x z y z x y x z z y y x x z y x w 1 / / / T z y x,, z y x Least Squae MS テイラー展開に基づく最小 乗近似を用いた高次精度微分作用素任意次数の多項式を基底にあつかえ フリーメッシュ向けコンパクトスキームであることが特徴 ), ( y x s j x x x j s j y y y j s j z z z j

53 Hydostatc pessue (a) Explct MS (c) Sem-mplct MS (b) Explct MS smoothed essue smoothng (d) Least Squae MS

54 essue of flud patcles (a) Explct MS (c) Sem-mplct MS (b) Explct MS smoothed essue smoothng (d) Least Squae MS 54

55 Dambeak (sceen shots) (a) Explct MS (c) Sem-mplct MS (b) Explct MS smoothed essue smoothng (d) Least Squae MS 55

56 圧力の測定 圧力の測定点 56

57 圧力の測定 57

58 essue essue (a) Explct MS (c) Sem-mplct MS essue essue smoothng essue (b) Explct MS smoothed (d) Least Squae MS 58

59 Consstency 青粒子 : 流体粒子 ( 評価粒子 ) 粒子配置 規則配置 不規則配置 : 規則配置に最大 l 0 x0.5の摂動を加える 空間離散化スキーム 3 次元 Ognal MS Least Squae MS. l 0 : 0.0, 0.01, 0.005, 0.00 緑粒子 :Dchlet 粒子 ( 非評価粒子 ) 影響半径 : 3.1l 0 o 4.1l 0 領域外に 3 層の Dchlet 粒子を配置 評価関数は 59

60 相対誤差 :Gadent & Laplacan 近似作用素規則粒子配置 Relatve eos 1.00E E E E-06 Relatve eos of Gadent fo egula aangement o (3.1) 1.00E-08 1st (3.1) nd (3.1) 1.00E-10 3d (3.1) damete of patcle 4th (4.1) Relatve eos of Gadent Damete Convegence ate o (3.1) 5.94E E E E st (3.1) 5.94E E E E nd (3.1) 8.15E-03.04E E E d (3.1) 1.E E E-08 1.E th (4.1) 3.86E-05.4E E E Relatve eos 1.00E E E E-06 Relatve eos of Laplacan fo egula aangement Relatve eos of Laplacan Damete Convegence ate o (3.1).35E E E-04.36E nd (3.1).86E E E-04.86E d (3.1).86E E E-04.86E th (4.1) 1.06E E E E E-08 o (3.1) nd (3.1) 1.00E-10 3d (3.1) 0.00 damete of patcle 4th (4.1)

61 相対誤差 :Gadent & Laplacan 近似作用素不規則粒子配置 Relatve eos 1.00E E E E-06 Relatve eos of Gadent fo egula aangement o (3.1) 1.00E-08 1st (3.1) nd (3.1) 1.00E-10 3d (3.1) damete of patcle 4th (4.1) Relatve eos of Gadent Damete Convegence ate o (3.1) 5.09E E E E st (3.1) 6.E-03.33E E E nd (3.1) 8.17E-03.05E E E d (3.1) 1.97E E E E th (4.1) 3.85E-05.41E E E Relatve eos 1.00E E E-04 Relatve eos of Laplacan fo egula aangement Relatve eos of Laplacan Damete Convegence ate o (3.1) 1.30E E E-01.45E nd (3.1).83E E-04.64E E d (3.1).87E E E-04.87E th (4.1) 1.08E E E E E E-08 o (3.1) nd (3.1) 1.00E-10 3d (3.1) 0.00 damete of patcle 4th (4.1)

62 Vefcaton model of osson equaton wth Neumann and Dchlet BCs 粒子配置 不規則配置 : 規則配置に最大 l 0 x0.5の摂動を加える 空間離散化スキーム Ognal MS Least Squae MS. Blue patcles : Flud patcles Geen patcles : Dchlet patcles Red patcles : Neumann patcles 影響半径 : 3.1l 0 osson equaton f f ( ) f f ( ) f n f ( ) n n on on D N 6

63 Total elatve eo Convegence of osson equaton 1.00E E E E E E+00 BCGStab toleance : 1e E E E-04 SI-MS 1.00E E-06 LS-MS(nd ode) 1.00E E E E-0 Damete of patcle Damete of patcle.00.e E E E E E E E E E-04 # of patcles (DOF) 64 6, , ,40,685,619 10,16,83 4,137,569 40,867,94 81,734,588 04,336,469 MS LSMS elatve eo 3.5E E E E E E E E E E+00 # of teatons elatve eo 1.19E E E E E E-05.19E E E E-06 # of teatons

64 Iteatons The numbe of teatons of osson equaton BCGStab toleance : 1e SI-MS 1 LS-MS(nd ode) 1.E+01 1.E+03 1.E+05 1.E+07 1.E+09 Numbe of patcles Damete of patcle.00.e E E E E E E E E E-04 # of patcles (DOF) 64 6, , ,40,685,619 10,16,83 4,137,569 40,867,94 81,734,588 04,336,469 MS LSMS elatve eo 3.5E E E E E E E E E E+00 # of teatons elatve eo 1.19E E E E E E-05.19E E E E-06 # of teatons

65 Effcency Effcency (Weak scalng) T 1 T n SI-MS LS-MS(nd ode) E-MS E-MS(nd ode) Numbe of nodes 1.E+00 1.E+01 1.E # of nodes Damete of patcle.81.e E E E E E-04 # of patcles (DOF) 851,40 10,16,83 4,137,569 40,867,94 81,734,588 04,336,469 SI-MS LS-MS (nd ode) E-MS E-MS (nd ode)

66 Total calculaton tme (s) 計算時間の比較 (Weak scalng) SI-MS LS-MS(nd ode) E-MS E-MS(nd ode) BCGStab toleance : 1e Numbe of nodes 1.E+00 1.E+01 1.E+0 # of nodes Damete of patcle.81.e E E E E E-04 # of patcles (DOF) 851,40 10,16,83 4,137,569 40,867,94 81,734,588 04,336,469 SI-MS LS-MS (nd ode) E-MS E-MS (nd ode)

67 Matx geneaton tme (s) Total CG tme (s) Total calculaton tme (s) 計算時間の比較 (Stong Scalng) , , x BCGStab toleance : 1e-10 40,867,94 patcles SI-MS 1 LS-MS(nd ode) E-MS 0.4 E-MS(nd ode) E E E E Numbe of nodes 0.1 x x SI-MS 1 LS-MS(nd ode) E E E E Numbe of nodes SI-MS LS-MS(nd ode) E E E E Numbe of nodes 67

68 Speed up Speed up (Stong Scalng) T 4 T n SI-MS LS-MS(nd ode) E-MS E-MS(nd ode) Theotcal value BCGStab toleance : 1e-10 40,867,94 patcles Numbe of nodes 1.E+00 1.E+01 1.E+0 1.E+03 68

69 Futue wok 物理モデル 浮遊物の動弾性解析 浮遊物の地上構造物への衝突解析 水圧と衝突による地上構造の破壊解析 高速計算 ポアソン方程式の反復法の検討 GU&MIC 対応 69

70 Thank fo you attenton

A Precise Calculation Method of the Gradient Operator in Numerical Computation with the MPS Tsunakiyo IRIBE and Eizo NAKAZA A highly precise numerical

A Precise Calculation Method of the Gradient Operator in Numerical Computation with the MPS Tsunakiyo IRIBE and Eizo NAKAZA A highly precise numerical A Precise Calculation Method of the Gradient Operator in Numerical Computation with the MPS Tsunakiyo IRIBE and Eizo NAKAZA A highly precise numerical calculation method of the gradient as a differential

More information

平成18年度

平成18年度 平成 18 年度 修士論文 粒子法によるキャビティ流れの数値シミュレーション 高知工科大学大学院工学研究科基盤工学専攻知能機械システム工学コース知能流体力学研究室 矢野敦大 目次 第 1 章 緒言 -1-1. 1 はじめに -1-1. 差分法と粒子法の比較 -- 1. 3 研究目的 -3- 第 章 基礎方程式 -4-. 1 オイラーの方法とラグランジュの方法 -4-. 基礎方程式 -5-. 3 無次元化

More information

粒子法による流れの数値解析

粒子法による流れの数値解析 21 2002 230 239. Numercal Analyss of Flow usng Partcle Method Sech KOSHIZUKA 1 1 2 Los Alamos PAF Partcle-and-Force MAC Marker-and- Cell MAC PIC Partcle-n-Cell 319-1188 2-22 E-mal: kosh@utnl.jp PIC Los

More information

IPSJ SIG Technical Report Vol.2017-HPC-158 No /3/9 OpenACC MPS 1,a) 1 Moving Particle Semi-implicit (MPS) MPS MPS OpenACC GPU 2 4 GPU NVIDIA K2

IPSJ SIG Technical Report Vol.2017-HPC-158 No /3/9 OpenACC MPS 1,a) 1 Moving Particle Semi-implicit (MPS) MPS MPS OpenACC GPU 2 4 GPU NVIDIA K2 OpenACC MPS 1,a) 1 Movng Partcle Sem-mplct (MPS) MPS MPS OpenACC GPU 2 4 GPU NVIDIA K20c GTX1080 P100(PCIe) P100(NVlnk) 5 OpenACC 3.5 3 Fortran 29.0 74.5 GPU 1. MPS [1] 1 MPS MPS CUDA GPU [2] [3] [4] OpenACC

More information

Microsoft PowerPoint - 夏の学校(CFD).pptx

Microsoft PowerPoint - 夏の学校(CFD).pptx /9/5 FD( 計算流体力学 ) の基礎理論 性能 運動分野 夏の学校 神戸大学大学院海事科学研究科勝井辰博 流体の質量保存 流体要素内の質量の増加率 [ 単位時間当たりの増加量 ] 単位時間に流体要素に流入する質量 流体要素 Fl lm (orol olm) v ( ) ガウスの定理 v( ) /9/5 = =( ) b=b =(b b b ) b= b = b + b + b アインシュタイン表記

More information

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように 3 章 Web に Link 解説 連続式 微分表示 の誘導.64 *4. 連続式連続式は ある領域の内部にある流体の質量の収支が その表面からの流入出の合計と等しくなることを定式化したものであり 流体における質量保存則を示したものである 2. 連続式 微分表示 の誘導図のような微小要素 コントロールボリューム の領域内の流体の増減と外部からの流体の流入出を考えることで定式化できる 微小要素 流入

More information

Microsoft PowerPoint - 2_FrontISTRと利用可能なソフトウェア.pptx

Microsoft PowerPoint - 2_FrontISTRと利用可能なソフトウェア.pptx 東京大学本郷キャンパス 工学部8号館2階222中会議室 13:30-14:00 FrontISTRと利用可能なソフトウェア 2017年4月28日 第35回FrontISTR研究会 FrontISTRの並列計算ハンズオン 精度検証から並列性能評価まで 観測された物理現象 物理モデル ( 支配方程式 ) 連続体の運動を支配する偏微分方程式 離散化手法 ( 有限要素法, 差分法など ) 代数的な数理モデル

More information

Microsoft Word - NumericalComputation.docx

Microsoft Word - NumericalComputation.docx 数値計算入門 武尾英哉. 離散数学と数値計算 数学的解法の中には理論計算では求められないものもある. 例えば, 定積分は, まずは積分 ( 被積分関数の原始関数をみつけること できなければ値を得ることはできない. また, ある関数の所定の値における微分値を得るには, まずその関数の微分ができなければならない. さらに代数方程式の解を得るためには, 解析的に代数方程式を解く必要がある. ところが, これらは必ずしも解析的に導けるとは限らない.

More information

FEM原理講座 (サンプルテキスト)

FEM原理講座 (サンプルテキスト) サンプルテキスト FEM 原理講座 サイバネットシステム株式会社 8 年 月 9 日作成 サンプルテキストについて 各講師が 講義の内容が伝わりやすいページ を選びました テキストのページは必ずしも連続していません 一部を抜粋しています 幾何光学講座については 実物のテキストではなくガイダンスを掲載いたします 対象とする構造系 物理モデル 連続体 固体 弾性体 / 弾塑性体 / 粘弾性体 / 固体

More information

Microsoft PowerPoint - シミュレーション工学-2010-第1回.ppt

Microsoft PowerPoint - シミュレーション工学-2010-第1回.ppt シミュレーション工学 ( 後半 ) 東京大学人工物工学研究センター 鈴木克幸 CA( Compter Aded geerg ) r. Jaso Lemo (SC, 98) 設計者が解析ツールを使いこなすことにより 設計の評価 設計の質の向上を図る geerg の本質の 計算機による支援 (CA CAM などより広い名前 ) 様々な汎用ソフトの登場 工業製品の設計に不可欠のツール 構造解析 流体解析

More information

Microsoft PowerPoint - GPUシンポジウム _d公開版.ppt [互換モード]

Microsoft PowerPoint - GPUシンポジウム _d公開版.ppt [互換モード] 200/0/9 数値流体解析の並列効率とその GPU による高速化の試み 清水建設 ( 株 ) 技術研究所 PHAM VAN PHUC ( ファムバンフック ) 流体計算時間短縮と GPU の活用の試み 現 CPUとの比較によりGPU 活用の可能性 現 CPU の最大利用 ノード内の最大計算資源の利用 すべてCPUコアの利用 適切なアルゴリズムの利用 CPU コア性能の何倍? GPU の利用の試み

More information

タイトル

タイトル Flud Flow Smulton wth Cellulr Automt 00N2100008J 2002 225 1. cellulr utomton n t+ 1 t t = f( r, L, + r (1 t t+ 1 f t r t +1 Prllel Vrtul Mchne Messge-Pssng Interfce 1 2. 2. 1 t t 0 t = 1 = 1 = t = 2 2

More information

NS NS Scalar turbulence 5 6 FEM NS Mesh (A )

NS NS Scalar turbulence 5 6 FEM NS Mesh (A ) 22 3 2 1 2 2 2 3 3 4 NS 4 4.1 NS............ 5 5 Scalar turbulence 5 6 FEM 5 6.1 NS.................................... 6 6.2 Mes A )................................... 6 6.3.....................................

More information

Microsoft PowerPoint - 第8章

Microsoft PowerPoint - 第8章 講義予定 案. 9/ 数値シミュレーションの手続き テキスト第 章. 9/ 9 偏微分方程式と解析解 テキスト第 章 3. 9/6 休講 4. 9/30 差分方程式とそのスキーム テキスト第 3 章 変換 テキスト第 4 章 5. 0/ 7 計算 テキスト第 5 章 連立一次方程式の解法 テキスト第 6 章 6. 0/ 流れ関数 ポテンシャルによる解法 テキスト第 7 章 7. 0/8 流速 圧力を用いた解法

More information

Microsoft Word - 01マニュアル・入稿原稿p1-112.doc

Microsoft Word - 01マニュアル・入稿原稿p1-112.doc 4 54 55 56 ( ( 1994 1st stage 2nd stage 2012 57 / 58 365 46.6 120 365 40.4 120 13.0 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 4 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

More information

(Microsoft PowerPoint - \221\34613\211\361)

(Microsoft PowerPoint - \221\34613\211\361) 計算力学 ~ 第 回弾性問題の有限要素解析 (Ⅱ)~ 修士 年後期 ( 選択科目 ) 担当 : 岩佐貴史 講義の概要 全 5 講義. 計算力学概論, ガイダンス. 自然現象の数理モデル化. 行列 場とその演算. 数値計算法 (Ⅰ) 5. 数値計算法 (Ⅱ) 6. 初期値 境界値問題 (Ⅰ) 7. 初期値 境界値問題 (Ⅱ) 8. マトリックス変位法による構造解析 9. トラス構造の有限要素解析. 重み付き残差法と古典的近似解法.

More information

パソコンシミュレータの現状

パソコンシミュレータの現状 第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に

More information

<4D F736F F F696E74202D20836F CC8A C58B858B4F93B982A882E682D1978E89BA814091B28BC68CA48B E >

<4D F736F F F696E74202D20836F CC8A C58B858B4F93B982A882E682D1978E89BA814091B28BC68CA48B E > バットの角度 打球軌道および落下地点の関係 T999 和田真迪 担当教員 飯田晋司 目次 1. はじめに. ボールとバットの衝突 -1 座標系 -ボールとバットの衝突の前後でのボールの速度 3. ボールの軌道の計算 4. おわりに参考文献 はじめに この研究テーマにした理由は 好きな野球での小さい頃からの疑問であるバッテングについて 角度が変わればどう打球に変化が起こるのかが大学で学んだ物理と数学んだ物理と数学を使って判明できると思ったから

More information

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ

数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ 数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュレーションによって計算してみる 4.1 放物運動一様な重力場における放物運動を考える 一般に質量の物体に作用する力をとすると運動方程式は

More information

シミュレーション物理4

シミュレーション物理4 シミュレーション物理 4 運動方程式の方法 運動方程式 物理で最もよく出てくる そもそも物理はものの運動を議論する学問から出発 ( つり合いは運動を行わないという意味で含まれる ) 代表例 ニュートンの運動方程式 波動方程式 シュレーディンガー方程式 運動方程式 ( 微分方程式の解法 ) 高次の微分方程式を 1 階微分方程式に変形 N 変数の 階微分方程式 N 変数の 1 階微分方程式 dy/dt=f(t,y)

More information

Microsoft PowerPoint - 2_6_shibata.ppt [互換モード]

Microsoft PowerPoint - 2_6_shibata.ppt [互換モード] 圧密問題への逆問題の適用 一次元圧密と神戸空港の沈下予測 1. 一次元圧密の解析 2. 二次元圧密問題への適用 3. 神戸空港の沈下予測 1. 一次元圧密の解析 一次元圧密の実験 試験システムの概要 分割型圧密試験 逆解析の条件 未知量 ( 同定パラメータ ) 圧縮指数 :, 透水係数 :k 初期体積ひずみ速度 : 二次圧密係数 : 観測量沈下量 ( 計 4 点 ) 逆解析手法 粒子フィルタ (SIS)

More information

Microsoft PowerPoint - 1章 [互換モード]

Microsoft PowerPoint - 1章 [互換モード] 1. 直線運動 キーワード 速さ ( 等速直線運動, 変位 ) 加速度 ( 等加速度直線運動 ) 重力加速度 ( 自由落下 ) 力学 I 内容 1. 直線運動 2. ベクトル 3. 平面運動 4. 運動の法則 5. 摩擦力と抵抗 6. 振動 7. 仕事とエネルギー 8. 運動量と力積, 衝突 9. 角運動量 3 章以降は, 運動の向きを考えなければならない 1. 直線運動 キーワード 速さ ( 等速直線運動,

More information

シリコン結晶化過程の分子動力学

シリコン結晶化過程の分子動力学 1-65 13 16 96154 1 4 1.1 5 1.1.1 5 1.1. 5 1.1.3 5 1.1.4 CVD 7 1. 8 1..1 8 1.. SPE 10 1.3 11 1.1 13. 14..1 Tesoff 14.. Lennad-Jones 17.3 18.4 19.5 0.6 Langevn.7 3.7.1 SPE 3.7. 4.7.3 6 3 SPE 8 3.1 9 3. [111]

More information

FRP SPH(Smoothed Partcle Hydrodynamcs) (3) MPS(Movng Partcle sem-mplct) (4) MPS (5) (6) (7, 8) (9) (10) (11) Tama and Koshzuka LSMPS(Least Squares Mov

FRP SPH(Smoothed Partcle Hydrodynamcs) (3) MPS(Movng Partcle sem-mplct) (4) MPS (5) (6) (7, 8) (9) (10) (11) Tama and Koshzuka LSMPS(Least Squares Mov Transactons of JSCES, Paper No.20160015 Ansotropc Hgh Vscosty Flud Analyss Usng a Partcle Method for Evaluatng CFRTP Press Moldng Process 1 1 1 2 2 Ryosaku SHINO, Tasuku TAMAI, Sech KOSHIZUKA, Akra MAKI

More information

<4D F736F F F696E74202D20906C8D488AC28BAB90DD8C7689F090CD8D488A D91E F1>

<4D F736F F F696E74202D20906C8D488AC28BAB90DD8C7689F090CD8D488A D91E F1> 人工環境設計解析工学構造力学と有限要素法 ( 第 回 ) 東京大学新領域創成科学研究科 鈴木克幸 固体力学の基礎方程式 変位 - ひずみの関係 適合条件式 ひずみ - 応力の関係 構成方程式 応力 - 外力の関係 平衡方程式 境界条件 変位規定境界 反力規定境界 境界条件 荷重応力ひずみ変形 場の方程式 Γ t Γ t 平衡方程式構成方程式適合条件式 構造力学の基礎式 ひずみ 一軸 荷重応力ひずみ変形

More information

Kumamoto University Center for Multimedia and Information Technologies Lab. 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI 宮崎県美郷

Kumamoto University Center for Multimedia and Information Technologies Lab. 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI 宮崎県美郷 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI プロジェクト @ 宮崎県美郷町 熊本大学副島慶人川村諒 1 実験の目的 従来 信号の受信電波強度 (RSSI:RecevedSgnal StrengthIndcator) により 対象の位置を推定する手法として 無線 LAN の AP(AccessPont) から受信する信号の減衰量をもとに位置を推定する手法が多く検討されている

More information

大気環境シミュレーション

大気環境シミュレーション 第 3 回 (Q) 各自 eelを用いて 次の漸化式 + = の解の初期値依存性を調べよ.は50まで () 0 =.0 () 0 =.5 (3) 0 =.0 締切 04 年 月 6 日 ( 月 ) 夕方まで 提出先 347 室 オーバーフロー失敗ゴメンなさい (Q) 各自 eelを用いて 次の漸化式 + = の解の初期値依存性を調べよ.は50まで () 0 =.330 () 0 =.33 (3) 0

More information

第6章 実験モード解析

第6章 実験モード解析 第 6 章実験モード解析 6. 実験モード解析とは 6. 有限自由度系の実験モード解析 6.3 連続体の実験モード解析 6. 実験モード解析とは 実験モード解析とは加振実験によって測定された外力と応答を用いてモードパラメータ ( 固有振動数, モード減衰比, 正規固有モードなど ) を求める ( 同定する ) 方法である. 力計 試験体 変位計 / 加速度計 実験モード解析の概念 時間領域データを利用する方法

More information

Autodesk Inventor Skill Builders Autodesk Inventor 2010 構造解析の精度改良 メッシュリファインメントによる収束計算 予想作業時間:15 分 対象のバージョン:Inventor 2010 もしくはそれ以降のバージョン シミュレーションを設定する際

Autodesk Inventor Skill Builders Autodesk Inventor 2010 構造解析の精度改良 メッシュリファインメントによる収束計算 予想作業時間:15 分 対象のバージョン:Inventor 2010 もしくはそれ以降のバージョン シミュレーションを設定する際 Autodesk Inventor Skill Builders Autodesk Inventor 2010 構造解析の精度改良 メッシュリファインメントによる収束計算 予想作業時間:15 分 対象のバージョン:Inventor 2010 もしくはそれ以降のバージョン シミュレーションを設定する際に 収束判定に関するデフォルトの設定をそのまま使うか 修正をします 応力解析ソルバーでは計算の終了を判断するときにこの設定を使います

More information

路線別特性評価とに基づくバス路線網再編計画手法の提案*

路線別特性評価とに基づくバス路線網再編計画手法の提案* An Epcal Stuy on the Applcaton of SCGE Moel ung Mult-egonal SAM n the Phlppne * ** *** **** Ctela Goe-Dakla ***** Shoh MIZOKAMI, Ryu KAKIMOTO, Motok ITOSE an Ctela Goe-Dakla NCR Natonal Captal Regon ROPRet

More information

Microsoft PowerPoint - 発表II-3原稿r02.ppt [互換モード]

Microsoft PowerPoint - 発表II-3原稿r02.ppt [互換モード] 地震時の原子力発電所燃料プールからの溢水量解析プログラム 地球工学研究所田中伸和豊田幸宏 Central Research Institute of Electric Power Industry 1 1. はじめに ( その 1) 2003 年十勝沖地震では 震源から離れた苫小牧地区の石油タンクに スロッシング ( 液面揺動 ) による火災被害が生じた 2007 年中越沖地震では 原子力発電所内の燃料プールからの溢水があり

More information

Microsoft Word doc

Microsoft Word doc . 正規線形モデルのベイズ推定翠川 大竹距離減衰式 (PGA(Midorikawa, S., and Ohtake, Y. (, Attenuation relationships of peak ground acceleration and velocity considering attenuation characteristics for shallow and deeper earthquakes,

More information

技術資料 JARI Research Journal OpenFOAM を用いた沿道大気質モデルの開発 Development of a Roadside Air Quality Model with OpenFOAM 木村真 *1 Shin KIMURA 伊藤晃佳 *2 Akiy

技術資料 JARI Research Journal OpenFOAM を用いた沿道大気質モデルの開発 Development of a Roadside Air Quality Model with OpenFOAM 木村真 *1 Shin KIMURA 伊藤晃佳 *2 Akiy 技術資料 176 OpenFOAM を用いた沿道大気質モデルの開発 Development of a Roadside Air Quality Model with OpenFOAM 木村真 *1 Shin KIMURA 伊藤晃佳 *2 Akiyoshi ITO 1. はじめに自動車排出ガスの環境影響は, 道路沿道で大きく, 建物など構造物が複雑な気流を形成するため, 沿道大気中の自動車排出ガス濃度分布も複雑になる.

More information

領域シンポ発表

領域シンポ発表 1 次元の減衰運動の中の強制振動 ) ( f d d d d d e f e ce ) ( si ) ( 1 ) ( cos ω =ω -γ とおくと 一般解は 外力 f()=f siω の場合 f d d d d si f ce f ce si ) cos( cos si ) cos( この一般解は 1 φ は外力と変位との間の位相差で a 時間が経つと 第 1 項は無視できる この場合の振幅を

More information

スライド 1

スライド 1 大規模連立一次方程式に対する 高並列前処理技術について 今倉暁筑波大学計算科学研究センター 共同研究者櫻井鉄也 ( 筑波大学 ), 住吉光介 ( 沼津高専 ), 松古栄夫 (KEK) 1 /49 本日のトピック 大規模連立一次方程式 のための ( 前処理付き )Krylov 部分空間法の概略について紹介する. 高並列性を考慮した前処理として, 反復法を用いた重み付き定常反復型前処理を導入し, そのパラメータを最適化手法を提案

More information

Microsoft PowerPoint - H17-5時限(パターン認識).ppt

Microsoft PowerPoint - H17-5時限(パターン認識).ppt パターン認識早稲田大学講義 平成 7 年度 独 産業技術総合研究所栗田多喜夫 赤穂昭太郎 統計的特徴抽出 パターン認識過程 特徴抽出 認識対象から何らかの特徴量を計測 抽出 する必要がある 認識に有効な情報 特徴 を抽出し 次元を縮小した効率の良い空間を構成する過程 文字認識 : スキャナ等で取り込んだ画像から文字の識別に必要な本質的な特徴のみを抽出 例 文字線の傾き 曲率 面積など 識別 与えられた未知の対象を

More information

Microsoft Word - thesis.doc

Microsoft Word - thesis.doc 剛体の基礎理論 -. 剛体の基礎理論初めに本論文で大域的に使用する記号を定義する. 使用する記号トルク撃力力角運動量角速度姿勢対角化された慣性テンソル慣性テンソル運動量速度位置質量時間 J W f F P p .. 質点の並進運動 質点は位置 と速度 P を用いる. ニュートンの運動方程式 という状態を持つ. 但し ここでは速度ではなく運動量 F P F.... より質点の運動は既に明らかであり 質点の状態ベクトル

More information

スライド 1

スライド 1 H25 創造設計演習 ~ 振動設計演習 1~ 1 ゆれない片持ち梁の設計 振動設計演習全体 HP(2011 年度まで使用 今は閲覧のみ ): http://hockey.t.u-tokyo.ac.jp/shindousekkei/index.html M4 取付ネジ 2 Xin 加振器 50mm 幅 30mm 材料 :A2017または ABS 樹脂 計測点 :Xout 2mm? Hz CAD 所望の特性になるまで繰り返す?

More information

航空機の運動方程式

航空機の運動方程式 オブザーバ 状態フィードバックにはすべての状態変数の値が必要であった. しかしながら, システムの外部から観測できるのは出力だけであり, すべての状態変数が観測できるとは限らない. そこで, 制御対象システムの状態変数を, システムのモデルに基づいてその入出力信号から推定する方法を考える.. オブザーバとは 次元 m 入力 r 出力線形時不変システム x Ax Bu y Cx () の状態変数ベクトル

More information

<4D F736F F F696E74202D208D E9197BF288CF68A4A B8CDD8AB B83685D>

<4D F736F F F696E74202D208D E9197BF288CF68A4A B8CDD8AB B83685D> 離散化手法とスキームの基礎 と選択法 007//6 宇宙航空研究開発機構情報 計算工学センター嶋英志 本講習の目的 基礎的な計算法の性質を述べ 各手法の持つ長所短所を理解することによって 手法の背景を理解した正しい選択に近づくこと クーラン数 風上差分 等の広い範囲の CFD 技術に共通の概念について その意味とイメージを把握すること 本講習の方針 様々な流体方程式の基礎となる移流方程式を用いて色々な計算法の特徴を計算例を示しながら解説する

More information

EnSightのご紹介

EnSightのご紹介 オープン CAE シンポジウム 2014 汎用ポストプロセッサー EnSight の大規模データ対応 CEI ソフトウェア株式会社代表取締役吉川慈人 http://www.ceisoftware.co.jp/ 内容 大規模データで時間のかかる処理 クライアント サーバー機能 マルチスレッドによる並列処理 サーバーの分散処理 クライアントの分散処理 ( 分散レンダリング ) EnSightのOpenFOAMインターフェース

More information

ボルツマンマシンの高速化

ボルツマンマシンの高速化 1. はじめに ボルツマン学習と平均場近似 山梨大学工学部宗久研究室 G04MK016 鳥居圭太 ボルツマンマシンは学習可能な相互結合型ネットワー クの代表的なものである. ボルツマンマシンには, 学習のための統計平均を取る必要があり, 結果を求めるまでに長い時間がかかってしまうという欠点がある. そこで, 学習の高速化のために, 統計を取る2つのステップについて, 以下のことを行う. まず1つ目のステップでは,

More information

<4D F736F F F696E74202D2090E096BE8E9197BF816991E EF A835B815B A2E >

<4D F736F F F696E74202D2090E096BE8E9197BF816991E EF A835B815B A2E > 第 16 回ビジュアリゼーションカンファレンス 粒子法と GPU で CAE 新時代を切り開く! 粒子法ソフトウェア Particleworks が目指す先 Seminar Material 2010 年 11 月 5 日 プロメテック ソフトウェア株式会社 執行役員川上浩 0 目次 会社案内 事業紹介 粒子法 (MPS 法 ) とは 粒子法の得意分野 Particleworksの並列計算手法 SMP/MPP

More information

81 34 6 5 6 6 5 5 6 1 5 2 6 176 414

81 34 6 5 6 6 5 5 6 1 5 2 6 176 414 5 6 5 6 5 6 5 4 4 6 5 5 5 413 175 81 34 6 5 6 6 5 5 6 1 5 2 6 176 414 1 5 5 12 3 4 5 1 1 2 3 2 1 415 177 81 34 2 3 4 5 3 1 2 4 5 1 1 1 4 178 416 65,000 35,000 6,000 2 4 417 179 81 34 4 10,000 5,000 750

More information

位相最適化?

位相最適化? 均質化設計法 藤井大地 ( 東京大学 ) 位相最適化? 従来の考え方 境界形状を変化させて最適な形状 位相を求める Γ t Ω b Γ D 境界形状を変化させる問題点 解析が進むにつれて, 有限要素メッシュが異形になり, 再メッシュが必要になる 位相が変化する問題への適応が難しい Γ Γ t t Ω b Ω b Γ D Γ D 領域の拡張と特性関数の導入 χ Ω ( x) = f 0 f x Ω x

More information

今週の内容 後半全体のおさらい ラグランジュの運動方程式の導出 リンク機構のラグランジュの運動方程式 慣性行列 リンク機構のエネルギー保存則 エネルギー パワー 速度 力の関係 外力が作用する場合の運動方程式 粘性 粘性によるエネルギーの消散 慣性 粘性 剛性と微分方程式 拘束条件 ラグランジュの未

今週の内容 後半全体のおさらい ラグランジュの運動方程式の導出 リンク機構のラグランジュの運動方程式 慣性行列 リンク機構のエネルギー保存則 エネルギー パワー 速度 力の関係 外力が作用する場合の運動方程式 粘性 粘性によるエネルギーの消散 慣性 粘性 剛性と微分方程式 拘束条件 ラグランジュの未 力学 III GA 工業力学演習 X5 解析力学 5X 5 週目 立命館大学機械システム系 8 年度後期 今週の内容 後半全体のおさらい ラグランジュの運動方程式の導出 リンク機構のラグランジュの運動方程式 慣性行列 リンク機構のエネルギー保存則 エネルギー パワー 速度 力の関係 外力が作用する場合の運動方程式 粘性 粘性によるエネルギーの消散 慣性 粘性 剛性と微分方程式 拘束条件 ラグランジュの未定乗数法

More information

Salome-Mecaを使用した メッシュ生成(非構造格子)

Salome-Mecaを使用した メッシュ生成(非構造格子) Salome-Meca を使用した 構造解析入門 秋山善克 1 Salome-Meca とは EDF( フランス電力公社 ) が提供している Linux ベースのオープンソース Code_Aster : 解析ソルバー Salome-Meca : プリポストを中心とした統合プラットフォーム :SALOME Platform に Code_Aster をモジュールとして組み込んだもの Code_Aster

More information

ニュートン重力理論.pptx

ニュートン重力理論.pptx 3 ニュートン重力理論 1. ニュートン重力理論の基本 : 慣性系とガリレイ変換不変性 2. ニュートン重力理論の定式化 3. 等価原理 4. 流体力学方程式とその基礎 3.1 ニュートン重力理論の基本 u ニュートンの第一法則 = 力がかからなければ 等速直線運動を続ける u 等速直線運動に見える系を 慣性系 と呼ぶ ² 直線とはどんな空間の直線か? ニュートン理論では 3 次元ユークリッド空間

More information

Microsoft PowerPoint - 先端GPGPUシミュレーション工学特論(web).pptx

Microsoft PowerPoint - 先端GPGPUシミュレーション工学特論(web).pptx 数値流体力学への応用 ( 支配方程式 CPU プログラム ) 長岡技術科学大学電気電子情報工学専攻出川智啓 今回の内容 支配方程式 Taylor Gree 渦 Cavty 流れ 798 数値流体力学 数値計算を利用して 流体の挙動を計算 Computatoal Flud Dyamcs( 略して CFD) 計算機の性能向上に伴い 必要不可欠な設計ツールとなっている 流体を取り扱う機器の性能評価 流体中を移動する物体が受ける抵抗の評価など

More information

Microsoft Word - EM_EHD_2010.doc

Microsoft Word - EM_EHD_2010.doc H のための電磁気学 機能材料工学科阿部洋 . 電磁気学電磁気学電磁気学電磁気学の基礎基礎基礎基礎 - マクスウェルマクスウェルマクスウェルマクスウェルの応力応力応力応力静電場の条件は e div ρ ( ) ot ( ) である 体積 V で電荷密度 ρ e に働く力はクーロン力から ρ dv F e ( 3) と表せる ( 3) 式に ( ) を代入すると ( ) dv div F ( 4) となる

More information

基底関数ネットワーク

基底関数ネットワーク 6. 基底関数ネットワーク (Bass Functon Network) 6-1 基底関数ネットワーク研究の背景 (1)( 階層型 ) ニューラルネットワークの問題点の回避 設計性の悪さ ローカルミニマム問題 (2) 級数展開の利用 基底関数が周期関数 フーリエ級数 フーリエ級数 フーリエ級数 F1 フーリエ係数 F2 信号 + F3 F4 フーリエ展開で関数を近似した例 フーリエ係数の意味 F1

More information

PowerPoint Presentation

PowerPoint Presentation Embedded CFD 1D-3D 連成によるエンジンコンパートメント熱収支解析手法の提案 June 9, 2017 . アジェンダ Embedded CFD 概要 エンコパ内風流れデモモデル 他用途への適用可能性, まとめ V サイクルにおける,1D-3D シミュレーションの使い分け ( 現状 ) 1D 機能的表現 企画 & 初期設計 詳細 3D 形状情報の無い段階 1D 1D 空気流れ計算精度に限度

More information

計算機シミュレーション

計算機シミュレーション . 運動方程式の数値解法.. ニュートン方程式の近似速度は, 位置座標 の時間微分で, d と定義されます. これを成分で書くと, d d li li とかけます. 本来は が の極限をとらなければいけませんが, 有限の小さな値とすると 秒後の位置座標は速度を用いて, と近似できます. 同様にして, 加速度は, 速度 の時間微分で, d と定義されます. これを成分で書くと, d d li li とかけます.

More information

<4D F736F F F696E74202D E94D58B9393AE82F AC82B782E982BD82DF82CC8AEE E707074>

<4D F736F F F696E74202D E94D58B9393AE82F AC82B782E982BD82DF82CC8AEE E707074> 地盤数値解析学特論 防災環境地盤工学研究室村上哲 Mrakam, Satoh. 地盤挙動を把握するための基礎. 変位とひずみ. 力と応力. 地盤の変形と応力. 変位とひずみ 変形勾配テンソルひずみテンソル ひずみテンソル : 材料線素の長さの 乗の変化量の尺度 Green-Lagrange のひずみテンソルと Alman のひずみテンソル 微小変形状態でのひずみテンソル ひずみテンソルの物理的な意味

More information

3. 重力波と沿岸 赤道ケルビン波 2014 年 9 月 30 日 16:35 見延庄士郎 ( 海洋気候物理学研究室 ) 予習課題 : 以下の you tube のビデオを見ておくこと. 個々のビデオは全部は見ずに, 雰囲気がつかめる程度見ればいい.

3. 重力波と沿岸 赤道ケルビン波 2014 年 9 月 30 日 16:35 見延庄士郎 ( 海洋気候物理学研究室 ) 予習課題 : 以下の you tube のビデオを見ておくこと. 個々のビデオは全部は見ずに, 雰囲気がつかめる程度見ればいい. 3. 重力波と沿岸 赤道ケルビン波 2014 年 9 月 30 日 16:35 見延庄士郎 ( 海洋気候物理学研究室 ) minobe@sci.hokudai.ac.jp 予習課題 : 以下の you ube のビデオを見ておくこと. 個々のビデオは全部は見ずに, 雰囲気がつかめる程度見ればいい. 大気の重力波 : hp://www.youube.com/wach?v=yxnkzecu3be 津波シミュレーション

More information

Microsoft PowerPoint - elast.ppt [互換モード]

Microsoft PowerPoint - elast.ppt [互換モード] 弾性力学入門 年夏学期 中島研吾 科学技術計算 Ⅰ(48-7) コンピュータ科学特別講義 Ⅰ(48-4) elast 弾性力学 弾性力学の対象 応力 弾性力学の支配方程式 elast 3 弾性力学 連続体力学 (Continuum Mechanics) 固体力学 (Solid Mechanics) の一部 弾性体 (lastic Material) を対象 弾性論 (Theor of lasticit)

More information

差分スキーム 物理 化学 生物現象には微分方程式でモデル化される例が多い モデルを使って現実の現象をコンピュータ上で再現することをシミュレーション ( 数値シミュレーション コンピュータシミュレーション ) と呼ぶ そのためには 微分方程式をコンピュータ上で計算できる数値スキームで近似することが必要

差分スキーム 物理 化学 生物現象には微分方程式でモデル化される例が多い モデルを使って現実の現象をコンピュータ上で再現することをシミュレーション ( 数値シミュレーション コンピュータシミュレーション ) と呼ぶ そのためには 微分方程式をコンピュータ上で計算できる数値スキームで近似することが必要 差分スキーム 物理 化学 生物現象には微分方程式でモデル化される例が多い モデルを使って現実の現象をコンピュータ上で再現することをシミュレーション ( 数値シミュレーション コンピュータシミュレーション ) と呼ぶ そのためには 微分方程式をコンピュータ上で計算できる数値スキームで近似することが必要になる その一つの方法が微分方程式を差分方程式におき直すことである 微分方程式の差分化 次の 1 次元境界値問題を考える

More information

データ解析

データ解析 データ解析 ( 前期 ) 最小二乗法 向井厚志 005 年度テキスト 0 データ解析 - 最小二乗法 - 目次 第 回 Σ の計算 第 回ヒストグラム 第 3 回平均と標準偏差 6 第 回誤差の伝播 8 第 5 回正規分布 0 第 6 回最尤性原理 第 7 回正規分布の 分布の幅 第 8 回最小二乗法 6 第 9 回最小二乗法の練習 8 第 0 回最小二乗法の推定誤差 0 第 回推定誤差の計算 第

More information

Q

Q 埼玉工業大学機械工学学習支援セミナー ( 小西克享 ) 剛体の重心と自由運動 -1/8 テーマ 07: 剛体の重心と自由運動 一般的に剛体が自由に運動できる状態 ( 非拘束の状態 ) で運動するとき, 剛体は回転運動を伴った運動をします. たとえば, 棒の端を持って空中に放り投げると, 棒はくるくる回転しながら上昇してやがて地面に落ちてきます. 剛体が拘束されない状態で運動する様子を考察してみましょう.

More information

<4D F736F F F696E74202D F A282BD94BD959C89F A4C E682528D652E707074>

<4D F736F F F696E74202D F A282BD94BD959C89F A4C E682528D652E707074> 発表の流れ SSE を用いた反復解法ライブラリ Lis 4 倍精度版の高速化 小武守恒 (JST 東京大学 ) 藤井昭宏 ( 工学院大学 ) 長谷川秀彦 ( 筑波大学 ) 西田晃 ( 中央大学 JST) はじめに 4 倍精度演算について Lisへの実装 SSEによる高速化 性能評価 スピード 収束 まとめ はじめに クリロフ部分空間法たとえば CG 法は, 理論的には高々 n 回 (n は係数行列の次元数

More information

PowerPoint Presentation

PowerPoint Presentation . カーネル法への招待 正定値カーネルによるデータ解析 - カーネル法の基礎と展開 - 福水健次統計数理研究所 / 総合研究大学院大学 統計数理研究所公開講座 0 年 月 34 日 概要 カーネル法の基本 線形データ解析と非線形データ解析 カーネル法の原理 カーネル法の つの例 カーネル主成分分析 : PCA の非線形拡張 リッジ回帰とそのカーネル化 概要 カーネル法の基本 線形データ解析と非線形データ解析

More information

<4D F736F F F696E74202D208BAB8A458FF08C8F82CC8AEE916282C68C8892E896402E707074>

<4D F736F F F696E74202D208BAB8A458FF08C8F82CC8AEE916282C68C8892E896402E707074> No.07-131 講習会 ( 流体工学部門企画 ) 境界条件の基礎と決定法 千葉科学大学 戸田和之 講演の流れ 数値解析とは何か 境界条件の役割と目的 境界の分類 計算法による 設定の違い 非圧縮流れ解析における境界条件の設定法 乱流解析における境界条件の設定法 圧縮性流れ解析における境界条件の設定法 1 流れの数値解析とは 偏微分型で書かれた基礎方程式を解く作業 連続の式 υ = 0 υ: 速度ベクトル

More information

SICE東北支部研究集会資料(2011年)

SICE東北支部研究集会資料(2011年) 269 (2011.12.12) 269-10 Basic analysis of coaching in sprint motion using three dimensional motion capture data Masahiro Nagayama,Takayuki Takahashi *, ** *Graduate School Fukushima University,**Fukushima

More information

Salome-Mecaを使用した メッシュ生成(非構造格子)

Salome-Mecaを使用した メッシュ生成(非構造格子) Salome-Meca を使用した 構造解析入門 秋山善克 1 Salome-Meca とは EDF( フランス電力公社 ) が提供している Linux ベースのオープンソース Code_Aster : 解析ソルバー Salome-Meca : プリポストを中心とした統合プラットフォーム :SALOME Platform に Code_Aster をモジュールとして組み込んだもの Code_Aster

More information

木村の物理小ネタ ケプラーの第 2 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という) が単位時間に描く面積を 動点 P の定点 O に

木村の物理小ネタ   ケプラーの第 2 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という) が単位時間に描く面積を 動点 P の定点 O に ケプラーの第 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という が単位時間に描く面積を 動点 P の定点 O に関する面積速度の大きさ という 定点 O まわりを回る面積速度の導き方導き方 A ( x( + D, y( + D v ( q r ( A ( x (, y( 動点 P が xy 座標平面上を時刻

More information

<4D F736F F F696E74202D A A814590DA904796E291E882C991CE82B782E946726F6E CC95C097F190FC8C60835C838B836F815B82C982C282A282C42E >

<4D F736F F F696E74202D A A814590DA904796E291E882C991CE82B782E946726F6E CC95C097F190FC8C60835C838B836F815B82C982C282A282C42E > 東京大学本郷キャンパス 工学部8号館 84講義室 (地下1階) アセンブリ 接触問題に対する FrontISTRの並列線形ソルバー について 2016年11月28日 第32回FrontISTR研究会 FrontISTRによる接触解析における機能拡張と計算事例 本研究開発は, 文部科学省ポスト 京 重点課題 8 近未来型ものづくりを先導する革新的設計 製造プロセスの開発 の一環として実施したものです

More information

2009 年 11 月 16 日版 ( 久家 ) 遠地 P 波の変位波形の作成 遠地 P 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに P U () t = S()* t E()* t P() t で近似的に計算できる * は畳み込み積分 (convolution) を表す ( 付録

2009 年 11 月 16 日版 ( 久家 ) 遠地 P 波の変位波形の作成 遠地 P 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに P U () t = S()* t E()* t P() t で近似的に計算できる * は畳み込み積分 (convolution) を表す ( 付録 遠地 波の変位波形の作成 遠地 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに U () t S() t E() t () t で近似的に計算できる は畳み込み積分 (convolution) を表す ( 付録 参照 ) ここで St () は地震の断層運動によって決まる時間関数 1 E() t は地下構造によって生じる種々の波の到着を与える時間関数 ( ここでは 直達 波とともに 震源そばの地表での反射波や変換波を与える時間関数

More information

(速報) Xeon E 系モデル 新プロセッサ性能について

(速報) Xeon E 系モデル 新プロセッサ性能について ( 速報 ) Xeon E5-2600 系モデル新プロセッサ性能について 2012 年 3 月 16 日 富士通株式会社 2012 年 3 月 7 日 インテル社より最新 CPU インテル Xeon E5 ファミリー の発表がありました この最新 CPU について PC クラスタシステムの観点から性能検証を行いましたので 概要を速報いたします プロセッサインテル Xeon プロセッサ E5-2690

More information

コンクリート工学年次論文集 Vol.29

コンクリート工学年次論文集 Vol.29 論文高速衝突を受けるコンクリート板の局部損傷解析に対する粒子法の適用性に関する基礎的研究 別府万寿博 *1 *2 園田佳巨 要旨 : 本研究は, 剛飛翔体の高速衝突を受けるコンクリート板の局部損傷解析に対する粒子法の適用性について検討を行ったものである まず, 剛飛翔体の高速衝突を受けるコンクリート板の局部破壊の特徴について説明した 次に, 粒子法による数値解析の概要について説明するとともに, 重み付き平均の影響範囲やひずみ速度効果をパラメータとして,

More information

Microsoft Word - 中村工大連携教材(最終 ).doc

Microsoft Word - 中村工大連携教材(最終 ).doc 音速について考えてみよう! 金沢工業大学 中村晃 ねらい 私たちの身の回りにはいろいろな種類の波が存在する. 体感できる波もあれば, できない波もある. その中で音は体感できる最も身近な波である. 遠くで雷が光ってから雷鳴が届くまで数秒間時間がかかることにより, 音の方が光より伝わるのに時間がかかることも経験していると思う. 高校の物理の授業で音の伝わる速さ ( 音速 ) は約 m/s で, 詳しく述べると

More information

微分方程式 モデリングとシミュレーション

微分方程式 モデリングとシミュレーション 1 微分方程式モデリングとシミュレーション 2018 年度 2 質点の運動のモデル化 粒子と粒子に働く力 粒子の運動 粒子の位置の時間変化 粒子の位置の変化の割合 速度 速度の変化の割合 加速度 力と加速度の結び付け Newtonの運動方程式 : 微分方程式 解は 時間の関数としての位置 3 Newton の運動方程式 質点の運動は Newton の運動方程式で記述される 加速度は力に比例する 2

More information

物性物理学I_2.pptx

物性物理学I_2.pptx phonon U r U = nαi U ( r nαi + u nαi ) = U ( r nαi ) + () nαi,β j := nαi β j U r nαi r β j > U r nαi r u nαiuβ j + β j β j u β j n α i () nαi,β juβj 調和振動子近似の復習 極 小 値近傍で Tylor展開すると U ( x) = U ( x ) + (

More information

スライド 1

スライド 1 計算科学が拓く世界スーパーコンピュータは何故スーパーか 学術情報メディアセンター中島浩 http://www.para.media.kyoto-u.ac.jp/jp/ username=super password=computer 講義の概要 目的 計算科学に不可欠の道具スーパーコンピュータが どういうものか なぜスーパーなのか どう使うとスーパーなのかについて雰囲気をつかむ 内容 スーパーコンピュータの歴史を概観しつつ

More information

Vol.011-CG-143 No.6 011/6/7 ことで目的の映像を作成しており, 極めて煩雑な作業が必要となっている. このような背景から, 本論文では, 上記の問題を解決するための方法として, あらかじめ流体シミュレーションにより生成した複数のシミュレーション結果を組み合わせることにより,

Vol.011-CG-143 No.6 011/6/7 ことで目的の映像を作成しており, 極めて煩雑な作業が必要となっている. このような背景から, 本論文では, 上記の問題を解決するための方法として, あらかじめ流体シミュレーションにより生成した複数のシミュレーション結果を組み合わせることにより, データベースを用いた水のアニメーション編集 千葉雄太 土橋宜典 山本強 近年, コンピュータグラフィックスの分野において, 数値流体解析を利用して流体の挙動を計算することで, リアルな流体のアニメーションを作成することを目的とした研究が盛んに行われている. それにともない, 流体の所望の動きを実現することを目的とした研究も数多く行われている. しかし, 流体シミュレーションは多くのパラメータに依存しているため,

More information

航空機の縦系モデルに対する、非線形制御の適用例

航空機の縦系モデルに対する、非線形制御の適用例 制御システム工学研究グルプ 航空機の縦系モデルに対する非線形最適制御の適用例 菊池芳光 * * 名古屋大学 MBD 中部コンファレンス @2014 年 12 月 18 日 目次 はじめに 先行研究 提案手法 縦系航空機モデル シミュレーション結果 おわりに はじめに PIO(Pilot Induced Oscillation) Category II 速度飽和 位相遅れ PIO 事故 PIOにより墜落するGripen

More information

画像解析論(2) 講義内容

画像解析論(2) 講義内容 画像解析論 画像解析論 東京工業大学長橋宏 主な講義内容 信号処理と画像処理 二次元システムとその表現 二次元システムの特性解析 各種の画像フィルタ 信号処理と画像処理 画像解析論 処理の応答 記憶域 入出力の流れ 信号処理系 実時間性が求められる メモリ容量に対する制限が厳しい オンラインでの対応が厳しく求められる 画像処理系 ある程度の処理時間が許容される 大容量のメモリ使用が容認され易い オフラインでの対応が容認され易い

More information

サブ課題Cの目標 大規模な宇宙論的構造形成シミュレーションの共分散解析による広域銀 河サーベイの統計解析 (吉田 石山) ブラックホール降着円盤の一般相対論的輻射磁気流体シミュレーション及 びグローバルシミュレーション 松元 大須賀 大規模なプラズマ粒子シミュレーションによる磁気再結合と高エネルギー

サブ課題Cの目標 大規模な宇宙論的構造形成シミュレーションの共分散解析による広域銀 河サーベイの統計解析 (吉田 石山) ブラックホール降着円盤の一般相対論的輻射磁気流体シミュレーション及 びグローバルシミュレーション 松元 大須賀 大規模なプラズマ粒子シミュレーションによる磁気再結合と高エネルギー 多次元高精度ブラソフソルバーの開発 素粒子 原子核 宇宙 京からポスト京に向けて シンポジウム 2017年2月17日 筑波大学 東京キャンパス 筑波大学 計算科学研究センター 吉川 耕司 サブ課題Cの目標 大規模な宇宙論的構造形成シミュレーションの共分散解析による広域銀 河サーベイの統計解析 (吉田 石山) ブラックホール降着円盤の一般相対論的輻射磁気流体シミュレーション及 びグローバルシミュレーション

More information

構造力学Ⅰ第12回

構造力学Ⅰ第12回 第 回材の座屈 (0 章 ) p.5~ ( 復習 ) モールの定理 ( 手順 ) 座屈とは 荷重により梁に生じた曲げモーメントをで除して仮想荷重と考える 座屈荷重 偏心荷重 ( 曲げと軸力 ) 断面の核 この仮想荷重に対するある点でのせん断力 たわみ角に相当する曲げモーメント たわみに相当する ( 例 ) 単純梁の支点のたわみ角 : は 図 を仮想荷重と考えたときの 点の支点反力 B は 図 を仮想荷重と考えたときのB

More information

微分方程式による現象記述と解きかた

微分方程式による現象記述と解きかた 微分方程式による現象記述と解きかた 土木工学 : 公共諸施設 構造物の有用目的にむけた合理的な実現をはかる方法 ( 技術 ) に関する学 橋梁 トンネル ダム 道路 港湾 治水利水施設 安全化 利便化 快適化 合法則的 経済的 自然および人口素材によって作られた 質量保存則 構造物の自然的な性質 作用 ( 外力による応答 ) エネルギー則 の解明 社会的諸現象のうち マスとしての移動 流通 運動量則

More information

19年度一次基礎科目計算問題略解

19年度一次基礎科目計算問題略解 9 年度機械科目 ( 計算問題主体 ) 略解 基礎科目の解析の延長としてわかる範囲でトライしてみたものです Coprigh (c) 7 宮田明則技術士事務所 Coprigh (c) 7 宮田明則技術士事務所 Ⅳ- よってから は許容荷重として は直径をロ - プの断面積 Ⅳ- cr E E E I, から Ⅳ- Ⅳ- : q q q q q q q q q で絶対値が最大 で絶対値が最大モーメントはいずれも中央で最大となる

More information

非線形長波モデルと流体粒子法による津波シミュレータの開発 I_ m ρ v p h g a b a 2h b r ab a b Fang W r ab h 5 Wendland 1995 q= r ab /h a d W r ab h

非線形長波モデルと流体粒子法による津波シミュレータの開発 I_ m ρ v p h g a b a 2h b r ab a b Fang W r ab h 5 Wendland 1995 q= r ab /h a d W r ab h 土木学会論文集 B2( 海岸工学 ) Vol. 70, No. 2, 2014, I_016-I_020 非線形長波モデルと流体粒子法による津波シミュレータの開発 Development of a Tsunami Simulator Integrating the Smoothed-Particle Hydrodynamics Method and the Nonlinear Shallow Water

More information

スライド 1

スライド 1 相対論的プラズマにおける PIC シミュレーションに伴う数値チェレンコフ不安定の特性ついて 宇宙物理学研究室 4 年池谷直樹 研究背景と目的 0 年 Ie Cube 国際共同実験において超高エネルギーニュートリノを検出 780Tev-5.6PeV 890TeV-8.5PeV 相互作用が殆んど起こらないため銀河磁場による軌道の湾曲が無く 正確な到来方向の情報 を得られる可能性がある ニュートリノから高エネルギー宇宙線の起源を追う

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 音響解析プログラム WAON 最新開発動向と適用例のご紹介 サイバネットシステム株式会社 メカニカル CAE 事業部 WAON 推進室 アジェンダ 1. 会社紹介 2. WAON とは? 3. なぜ WAON なのか? 4. 各種適用例のご紹介 5. 最新開発動向 2 1. 会社紹介サイバネットシステム ( 株 ) メカニカル CAE 事業部 音響 構造 熱 電磁場 熱流体 衝突 板成形 樹脂流動などの各種解析

More information

国土技術政策総合研究所 研究資料

国土技術政策総合研究所 研究資料 3. 解析モデルの作成汎用ソフトFEMAP(Ver.9.0) を用いて, ダムおよび基礎岩盤の有限要素メッシュを8 節点要素により作成した また, 貯水池の基本寸法および分割数を規定し,UNIVERSE 2) により差分メッシュを作成した 3.1 メッシュサイズと時間刻みの設定基準解析結果の精度を確保するために, 堤体 基礎岩盤 貯水池を有限要素でモデル化する際に, 要素メッシュの最大サイズならびに解析時間刻みは,

More information

運動方程式の基本 座標系と変数を導入 (u,v) ニュートンの第一法則 力 = 質量 加速度 大気や海洋に加わる力を, 思いつくだけ挙げてみよう 重力, 圧力傾度力, コリオリ力, 摩擦力 水平方向に働く力に下線をつけよう. したがって水平方向の運動方程式は 質量 水平加速度 = コリオリ力 + 圧

運動方程式の基本 座標系と変数を導入 (u,v) ニュートンの第一法則 力 = 質量 加速度 大気や海洋に加わる力を, 思いつくだけ挙げてみよう 重力, 圧力傾度力, コリオリ力, 摩擦力 水平方向に働く力に下線をつけよう. したがって水平方向の運動方程式は 質量 水平加速度 = コリオリ力 + 圧 2. 潜水方程式系の導出 見延庄士郎 ( 海洋気候物理学研究室 ) minobe@mail.sci.okudai.ac.jp 第 1 回まとめ 1/2 二つの変数の関係の強さを表す統計量は相関であり, 最小値は -1, 最大値は +1, 無相関は である. 過去数十年間の ( 気象庁は 3 年 ) 月ごとの平均値を, 月平均データの平年値または気候値という. 観測値から平年値を引いたものが, 偏差である.

More information

本資料では Flat imlator Vr.5.. の下記改良成果についてご報告します iss iscolastic modl を利用した Film castig simlatio 機能の実装 iss iscolastic modl を利用した Matrial charactrizatio 機能の実

本資料では Flat imlator Vr.5.. の下記改良成果についてご報告します iss iscolastic modl を利用した Film castig simlatio 機能の実装 iss iscolastic modl を利用した Matrial charactrizatio 機能の実 Flat imlatorvr.5.. 改良成果資料 発表用ダイジェスト版 5//5 株式会社 HAL Copright Hpr Adacd imlatio Laborator Co. Ltd. All Rights Rsrd 本資料では Flat imlator Vr.5.. の下記改良成果についてご報告します iss iscolastic modl を利用した Film castig simlatio

More information

<4D F736F F F696E74202D D488A778AEE B4F93B982CC8AEE A2E707074>

<4D F736F F F696E74202D D488A778AEE B4F93B982CC8AEE A2E707074> 宇宙工学基礎 ( 軌道の基礎 松永三郎 機械宇宙学科 機械宇宙システム専攻 ニュートンの法則 第 法則 力が作用作用しないしない限り 質点質点は静止静止ないしはないしは一定速度一定速度で運動するする ( 慣性の法則 慣性空間 慣性座標系慣性座標系の定義第 法則 慣性座標系におけるにおける質点質点の運動 p F ( pɺ t ( F: 全作用力, pmv: 並進運動量 ( 質量と速度速度の積 慣性系を規準規準としてとして時間微分時間微分を行うことにことに注意第

More information

Microsoft PowerPoint - H22制御工学I-2回.ppt

Microsoft PowerPoint - H22制御工学I-2回.ppt 制御工学 I 第二回ラプラス変換 平成 年 4 月 9 日 /4/9 授業の予定 制御工学概論 ( 回 ) 制御技術は現在様々な工学分野において重要な基本技術となっている 工学における制御工学の位置づけと歴史について説明する さらに 制御システムの基本構成と種類を紹介する ラプラス変換 ( 回 ) 制御工学 特に古典制御ではラプラス変換が重要な役割を果たしている ラプラス変換と逆ラプラス変換の定義を紹介し

More information

Microsoft PowerPoint - mp11-06.pptx

Microsoft PowerPoint - mp11-06.pptx 数理計画法第 6 回 塩浦昭義情報科学研究科准教授 shioura@dais.is.tohoku.ac.jp http://www.dais.is.tohoku.ac.jp/~shioura/teaching 第 5 章組合せ計画 5.2 分枝限定法 組合せ計画問題 組合せ計画問題とは : 有限個の もの の組合せの中から, 目的関数を最小または最大にする組合せを見つける問題 例 1: 整数計画問題全般

More information

<4D F736F F D20332E322E332E819C97AC91CC89F090CD82A982E78CA982E9466F E393082CC8D5C91A291CC90AB945C955D89BF5F8D8296D85F F8D F5F E646F63>

<4D F736F F D20332E322E332E819C97AC91CC89F090CD82A982E78CA982E9466F E393082CC8D5C91A291CC90AB945C955D89BF5F8D8296D85F F8D F5F E646F63> 3.2.3. 流体解析から見る Fortran90 の構造体性能評価 宇宙航空研究開発機構 高木亮治 1. はじめに Fortran90 では 構造体 動的配列 ポインターなど様々な便利な機能が追加され ユーザーがプログラムを作成する際に選択の幅が広がりより便利になった 一方で 実際のアプリケーションプログラムを開発する際には 解析対象となる物理現象を記述する数学モデルやそれらを解析するための計算手法が内包する階層構造を反映したプログラムを作成できるかどうかは一つの重要な観点であると考えられる

More information

平成 23 年度 JAXA 航空プログラム公募型研究報告会資料集 (23 年度採用分 ) 21 計測ひずみによる CFRP 翼構造の荷重 応力同定と損傷モニタリング 東北大学福永久雄 ひずみ応答の計測データ 静的分布荷重同定動的分布荷重同定 ひずみゲージ応力 ひずみ分布の予測 or PZT センサ損

平成 23 年度 JAXA 航空プログラム公募型研究報告会資料集 (23 年度採用分 ) 21 計測ひずみによる CFRP 翼構造の荷重 応力同定と損傷モニタリング 東北大学福永久雄 ひずみ応答の計測データ 静的分布荷重同定動的分布荷重同定 ひずみゲージ応力 ひずみ分布の予測 or PZT センサ損 平成 3 年度 JAXA 航空プログラム公募型研究報告会資料集 (3 年度採用分 1 計測ひずみによる CFRP 翼構造の荷重 応力同定と損傷モニタリング 東北大学福永久雄 ひずみ応答の計測データ 静的分布荷重同定動的分布荷重同定 ひずみゲージ応力 ひずみ分布の予測 or PZT センサ損傷発生位置の推定発表内容 (1 荷重同定 1:11 点衝撃荷重同定 ( 荷重同定 : 分布荷重同定 (3 今後の予定

More information

杭の事前打ち込み解析

杭の事前打ち込み解析 杭の事前打ち込み解析 株式会社シーズエンジニアリング はじめに杭の事前打込み解析 ( : Pile Driving Prediction) は, ハンマー打撃時の杭の挙動と地盤抵抗をシミュレートする解析方法である 打ち込み工法の妥当性を検討する方法で, 杭施工に最適なハンマー, 杭の肉厚 材質等の仕様等を決めることができる < 特徴 > 杭施工に最適なハンマーを選定することができる 杭の肉厚 材質等の仕様を選定することができる

More information

集中理論談話会 #9 Bhat, C.R., Sidharthan, R.: A simulation evaluation of the maximum approximate composite marginal likelihood (MACML) estimator for mixed mu

集中理論談話会 #9 Bhat, C.R., Sidharthan, R.: A simulation evaluation of the maximum approximate composite marginal likelihood (MACML) estimator for mixed mu 集中理論談話会 #9 Bhat, C.R., Sidharthan, R.: A simulation evaluation of the maximum approximate composite marginal likelihood (MACML) estimator for mixed multinomial probit models, Transportation Research Part

More information

アンデン株式会社第 1 技術部 DE 開発藤井成樹 < 業務内容 > アンデンとして CAE 解析を強化するために 10/1 月に DE(Degital Engineering) 開発が 5 名で発足 CAE 開発 活用が目的 解析内容は 構造解析 ( 動解析 非線形含む ) 電場 磁場 音場 熱流

アンデン株式会社第 1 技術部 DE 開発藤井成樹 < 業務内容 > アンデンとして CAE 解析を強化するために 10/1 月に DE(Degital Engineering) 開発が 5 名で発足 CAE 開発 活用が目的 解析内容は 構造解析 ( 動解析 非線形含む ) 電場 磁場 音場 熱流 アンデン株式会社第 1 技術部 DE 開発藤井成樹 < 業務内容 > アンデンとして CAE 解析を強化するために 10/1 月に DE(Degital Engineering) 開発が 5 名で発足 CAE 開発 活用が目的 解析内容は 構造解析 ( 動解析 非線形含む ) 電場 磁場 音場 熱流 流体解析など様々 項目 04 05 06 07 08 09 10 11

More information

2014計算機実験1_1

2014計算機実験1_1 H26 1 1 1 seto@ics.nara-wu.ac.jp 数学モデリングのプロセス 問題点の抽出 定義 仮定 数式化 万有引力の法則 m すべての物体は引き合う r mm F =G 2 r M モデルの検証 モデルによる 説明 将来予測 解釈 F: 万有引力 (kg m s-2) G: 万有引力定数 (m s kg ) 解析 数値計算 M: 地球の質量 (kg) により解を得る m: 落下する物質の質量

More information

伝熱学課題

伝熱学課題 練習問題解答例 < 第 章強制対流熱伝達 >. 式 (.9) を導出せよ (.6) を変換する 最初に の微分値を整理しておく (.A) (.A) これを用いて の微分値を求める (.A) (.A) (.A) (.A6) (.A7) これらの微分値を式 (.6) に代入する (.A8) (.A9) (.A) (.A) (.A) (.9). 薄い平板が温度 で常圧の水の一様な流れの中に平行に置かれている

More information

Microsoft PowerPoint - H21生物計算化学2.ppt

Microsoft PowerPoint - H21生物計算化学2.ppt 演算子の行列表現 > L いま 次元ベクトル空間の基底をケットと書くことにする この基底は完全系を成すとすると 空間内の任意のケットベクトルは > > > これより 一度基底を与えてしまえば 任意のベクトルはその基底についての成分で完全に記述することができる これらの成分を列行列の形に書くと M これをベクトル の基底 { >} による行列表現という ところで 行列 A の共役 dont 行列は A

More information

14 化学実験法 II( 吉村 ( 洋 mmol/l の半分だったから さんの測定値は くんの測定値の 4 倍の重みがあり 推定値 としては 0.68 mmol/l その標準偏差は mmol/l 程度ということになる 測定値を 特徴づけるパラメータ t を推定するこの手

14 化学実験法 II( 吉村 ( 洋 mmol/l の半分だったから さんの測定値は くんの測定値の 4 倍の重みがあり 推定値 としては 0.68 mmol/l その標準偏差は mmol/l 程度ということになる 測定値を 特徴づけるパラメータ t を推定するこの手 14 化学実験法 II( 吉村 ( 洋 014.6.1. 最小 乗法のはなし 014.6.1. 内容 最小 乗法のはなし...1 最小 乗法の考え方...1 最小 乗法によるパラメータの決定... パラメータの信頼区間...3 重みの異なるデータの取扱い...4 相関係数 決定係数 ( 最小 乗法を語るもう一つの立場...5 実験条件の誤差の影響...5 問題...6 最小 乗法の考え方 飲料水中のカルシウム濃度を

More information