(Microsoft PowerPoint - \221\34613\211\361)

Size: px
Start display at page:

Download "(Microsoft PowerPoint - \221\34613\211\361)"

Transcription

1 計算力学 ~ 第 回弾性問題の有限要素解析 (Ⅱ)~ 修士 年後期 ( 選択科目 ) 担当 : 岩佐貴史

2 講義の概要 全 5 講義. 計算力学概論, ガイダンス. 自然現象の数理モデル化. 行列 場とその演算. 数値計算法 (Ⅰ) 5. 数値計算法 (Ⅱ) 6. 初期値 境界値問題 (Ⅰ) 7. 初期値 境界値問題 (Ⅱ) 8. マトリックス変位法による構造解析 9. トラス構造の有限要素解析. 重み付き残差法と古典的近似解法. ガラーキン法による有限要素解析. 弾性問題の有限要素解析 (Ⅰ). 弾性問題の有限要素解析 (Ⅱ). 弾性問題の有限要素解析 (Ⅲ) 5. 弾性問題の有限要素解析 (Ⅳ)

3 講義内容 前回の復習 自然現象 定常問題の有限要素法 弾性問題の有限要素解析 支配方程式とその弱形式 数理モデル化離散化 空間の離散化と形状関数 要素剛性方程式 離散化方程式の組み立て 変位境界条件の付加と球解 後処理 ポスト プロセス 諸注意 各種解析法による解析代数方程式 ( 連立一次方程式 ) 解析結果の評価

4 前回の復習 弾性問題の有限要素解析 (Ⅰ) 定常問題の有限要素法の定式化 ( 弾性体の変形問題 ) 楕円型微分方程式に基づく支配方程式とその弱形式支配方程式と境界条件 平衡方程式 ( 応力の釣り合い ) ひずみ 変位関係式 弱形式の導出と特徴 応力 ひずみ関係式 変位法有限要素法の特徴 境界条件 空間の離散化と形状関数有限要素 定ひずみ三角形要素 形状関数 要素内の変位式の導出 要素内のひずみ式の導出

5 弾性問題の有限要素解析 今回の講義 前回の講義で導出した式 要素内の支配方程式の弱形式 要素内の変位式 要素内のひずみ式 有限要素法による解析 要素剛性方程式の導出 離散化方程式の組み立て ( 要素剛性方程式のアセンブリ ) 変位境界条件の付加と球解 後処理 ポストプロセス 諸注意 自然現象数理モデル化離散化各種解析法による解析代数方程式 ( 連立一次方程式 ) 解析結果の評価 5

6 弾性問題の有限要素解析 支配方程式の弱形式と離散化 要素内の支配方程式の弱形式 T ( ) D ( ) Ω * T h da + Ω h da * T t h ds 定ひずみ三角形要素による要素分割 Γ D {, } T D sm. { t, } T t {, }T D D t D D D T Ω 計算力学 ( 計算工学会編, 竹内他, 森北出版 ) より一部抜粋 6

7 弾性問題の有限要素解析 定ひずみ三角形要素 要素内の変位式 d 要素内のひずみ式 α, aα + α+ α α,, ε B d d { } T 仮想変位式 ( ) ( ) * * d 仮想ひずみ式 * ε * Bd ε B { ε, ε, γ } T A 7

8 弾性問題の有限要素解析 要素剛性方程式 要素内の変位式, ひずみ式を弱形式へ代入 Ω T * ( ) D ( ) hda T hda+ Ω Γ * T th ds d * * d ε B d * ε * Bd d * T Ω B T DB 要素剛性行列 hda d d * T Ω T hda + d * T Γ T thds d の任意性より * 要素節点荷重ベクトル F d F ( 要素剛性方程式 ) 8

9 要素剛性方程式 要素剛性方程式 要素剛性方程式 要素剛性方程式弾性問題の有限要素解析弾性問題の有限要素解析弾性問題の有限要素解析弾性問題の有限要素解析 要素剛性行列要素剛性行列要素剛性行列要素剛性行列 Ω h da DB B T Ω da h D sm D D D D D A. 9

10 要素剛性方程式 要素剛性方程式 要素剛性方程式 要素剛性方程式弾性問題の有限要素解析弾性問題の有限要素解析弾性問題の有限要素解析弾性問題の有限要素解析 要素節点荷重ベクトル要素節点荷重ベクトル要素節点荷重ベクトル要素節点荷重ベクトル Γ Ω + + ds h da h t F F F T T σ Γ Ω + ds h t t da h

11 要素剛性方程式 要素剛性方程式 要素剛性方程式 要素剛性方程式弾性問題の有限要素解析弾性問題の有限要素解析弾性問題の有限要素解析弾性問題の有限要素解析 定ひずみ三角形要素の要素剛性行列の式展開定ひずみ三角形要素の要素剛性行列の式展開定ひずみ三角形要素の要素剛性行列の式展開定ひずみ三角形要素の要素剛性行列の式展開 積分後の要素剛性行列積分後の要素剛性行列積分後の要素剛性行列積分後の要素剛性行列 B マトリクスが定数 B マトリクスが定数 B マトリクスが定数 B マトリクスが定数 A B Ω. D sm D D D D D A h Ah da h DB B DB B T T 積分後の要素剛性行列積分後の要素剛性行列積分後の要素剛性行列積分後の要素剛性行列

12 弾性問題の有限要素解析 要素剛性方程式 定ひずみ三角形要素の要素剛性行列 特徴以下の条件を満たせば, 行列の乗算だけで要素剛性行列を計算可能. 要素内で材料が均質. 要素内で厚さが一定 四角形要素等の要素剛性行列 B マトリクスが定数でない 要素剛性行列の積分に数値積分法を適用一般的なものとしてはガウス積分等

13 弾性問題の有限要素解析 要素剛性方程式 定ひずみ三角形要素の要素節点荷重ベクトルの式展開 形状関数以外の被積分関数が定数である場合 例えば,. 要素内で物体力が一定 L []. 辺上で一定の表面力 積分後の要素節点荷重ベクトル F σ F Ah [] L h t が負荷 {,,,,, } T { t, t,,, t, t } T 計算力学 ( 計算工学会編, 竹内他, 森北出版 ) より一部抜粋 要素辺上に生じる内力項は, アセンブリした際に要素間には現れない

14 弾性問題の有限要素解析 平板の引張問題 目的 単純な解析対象を例にとり, 要素剛性方程式を求め, 全体剛性行列, 荷重ベクトルの組み立てる過程を理解 解析条件 E ν ヤング率 : ポアソン比 : / h 厚さ : (,) (,) 平面応力を想定物体力は作用せず (,) (,) モデル化と要素分割 計算力学 ( 計算工学会編, 竹内他, 森北出版 ) より一部抜粋

15 平板の引張問題 平板の引張問題 平板の引張問題 平板の引張問題弾性問題の有限要素解析弾性問題の有限要素解析弾性問題の有限要素解析弾性問題の有限要素解析 要素 : 節点要素 : 節点要素 : 節点要素 : 節点 -- 要素内節点要素内節点要素内節点要素内節点 -- 要素内の変位式要素内の変位式要素内の変位式要素内の変位式 ( ), i i d i d ( ) ( ) ( ) A A A a ( ) ( ) ( ) A A A a ( ) ( ) ( ) A A A a ( ) ( ),,, + + α α α α α a 5

16 弾性問題の有限要素解析 平板の引張問題 要素 : 節点 -- 要素内節点 -- 各節点の座標と面積 a α (, ) (, ) (, ) (, ) (, ) (,) (, ) (, ) (,) A,, α / α ( α,,) (,) (,) (,) (,) 計算力学 ( 計算工学会編, 竹内他, 森北出版 ) より一部抜粋 a a a 6

17 平板の引張問題 平板の引張問題 平板の引張問題 平板の引張問題弾性問題の有限要素解析弾性問題の有限要素解析弾性問題の有限要素解析弾性問題の有限要素解析 要素内の変位式要素内の変位式要素内の変位式要素内の変位式 d 要素 : 節点要素 : 節点要素 : 節点要素 : 節点 -- 要素内節点要素内節点要素内節点要素内節点 -- T ( ) ( ),,, + + α α α α α a { } T,,,,, d + + 要素内のひずみ式要素内のひずみ式要素内のひずみ式要素内のひずみ式 d B d ε A B 7

18 弾性問題の有限要素解析 平板の引張問題 要素 : 節点 -- 要素内節点 -- 平面応力における弾性係数行列均一な要素を仮定しているため, 要素, ともに同じ D D D E ν 75 sm. sm. ν ν ( / ) sm. / / 8

19 平板の引張問題 平板の引張問題 平板の引張問題 平板の引張問題弾性問題の有限要素解析弾性問題の有限要素解析弾性問題の有限要素解析弾性問題の有限要素解析 要素剛性行列要素剛性行列要素剛性行列要素剛性行列 要素 : 節点要素 : 節点要素 : 節点要素 : 節点 -- 要素内節点要素内節点要素内節点要素内節点 -- B D B T h A T B D B 9

20 平板の引張問題 平板の引張問題 平板の引張問題 平板の引張問題弾性問題の有限要素解析弾性問題の有限要素解析弾性問題の有限要素解析弾性問題の有限要素解析 要素 : 節点要素 : 節点要素 : 節点要素 : 節点 -- 要素内節点要素内節点要素内節点要素内節点 -- 要素内の変位式要素内の変位式要素内の変位式要素内の変位式 ( ), i i d i d ( ) ( ) ( ) A A A a ( ) ( ) ( ) A A A a ( ) ( ) ( ) A A A a ( ) ( ),,, + + α α α α α a

21 弾性問題の有限要素解析 平板の引張問題 要素 : 節点 -- 要素内節点 -- 各節点の座標と面積 a α (, ) (, ) (, ) (, ) (, ) (, ) (, ) (, ) (, ) A,, α / α ( α,,) (,) (,) (,) (,) 計算力学 ( 計算工学会編, 竹内他, 森北出版 ) より一部抜粋 a a a

22 平板の引張問題 平板の引張問題 平板の引張問題 平板の引張問題弾性問題の有限要素解析弾性問題の有限要素解析弾性問題の有限要素解析弾性問題の有限要素解析 要素内の変位式要素内の変位式要素内の変位式要素内の変位式 ( ) ( ),,, + + α α α α α a 要素 : 節点要素 : 節点要素 : 節点要素 : 節点 -- 要素内節点要素内節点要素内節点要素内節点 -- d T 要素内のひずみ式要素内のひずみ式要素内のひずみ式要素内のひずみ式 d B d ε { } T,,,,, d A B

23 弾性問題の有限要素解析 平板の引張問題 要素 : 節点 -- 要素内節点 -- 平面応力における弾性係数行列均一な要素を仮定しているため, 要素, ともに同じ D D D E ν 75 sm. sm. ν ν ( / ) sm. / /

24 平板の引張問題 平板の引張問題 平板の引張問題 平板の引張問題弾性問題の有限要素解析弾性問題の有限要素解析弾性問題の有限要素解析弾性問題の有限要素解析 要素剛性行列要素剛性行列要素剛性行列要素剛性行列 B D B T h A 要素 : 節点要素 : 節点要素 : 節点要素 : 節点 -- 要素内節点要素内節点要素内節点要素内節点 T B D B

25 弾性問題の有限要素解析 平板の引張問題 要素 : 節点 -- 要素内節点 -- 要素節点荷重ベクトル { t, t } T {, } T [] L, h, t σ F L [] h { t, t,,, t, t } T { /,,,, /, } T (,) (,) (,) (,) 計算力学 ( 計算工学会編, 竹内他, 森北出版 ) より一部抜粋 5

26 弾性問題の有限要素解析 平板の引張問題 離散化方程式の組み立て (,) (,) 要素 と要素 の剛性行列 要素 の要素節点荷重ベクトルアセンブリング 全体の剛性行列と節点荷重ベクトル 準備 構造全体の節点数 : 節点 各節点の自由度数 : 自由度 (,) (,) 剛性行列の大きさ :88 節点荷重ベクトルの大きさ :8 計算力学 ( 計算工学会編, 竹内他, 森北出版 ) より一部抜粋 6

27 平板の引張問題 平板の引張問題 平板の引張問題 平板の引張問題弾性問題の有限要素解析弾性問題の有限要素解析弾性問題の有限要素解析弾性問題の有限要素解析 離散化方程式の組み立て離散化方程式の組み立て離散化方程式の組み立て離散化方程式の組み立て 節点変位ベクトル節点変位ベクトル節点変位ベクトル節点変位ベクトル { } T,,,,,,, d 全体の剛性方程式全体の剛性方程式全体の剛性方程式全体の剛性方程式 全体の剛性方程式全体の剛性方程式全体の剛性方程式全体の剛性方程式 df F F F F F F F F 7

28 弾性問題の有限要素解析 平板の引張問題 離散化方程式の組み立て 要素 の剛性行列を全体の剛性行列へ代入 d F 75 F F F F F F F F F F F F 全体剛性行列の場合 8

29 平板の引張問題 平板の引張問題 平板の引張問題 平板の引張問題弾性問題の有限要素解析弾性問題の有限要素解析弾性問題の有限要素解析弾性問題の有限要素解析 離散化方程式の組み立て離散化方程式の組み立て離散化方程式の組み立て離散化方程式の組み立て 要素 の剛性行列を全体の剛性行列へ代入要素 の剛性行列を全体の剛性行列へ代入要素 の剛性行列を全体の剛性行列へ代入要素 の剛性行列を全体の剛性行列へ代入 () () () () () () () () () () () () () () () () () () () () () () () () () () () () 75 9

30 弾性問題の有限要素解析 平板の引張問題 離散化方程式の組み立て 要素 の剛性行列を全体の剛性行列へ代入 d F 75 F F F F F F F F F F F F 全体剛性行列の場合

31 平板の引張問題 平板の引張問題 平板の引張問題 平板の引張問題弾性問題の有限要素解析弾性問題の有限要素解析弾性問題の有限要素解析弾性問題の有限要素解析 離散化方程式の組み立て離散化方程式の組み立て離散化方程式の組み立て離散化方程式の組み立て 要素 の剛性行列を全体の剛性行列へ代入要素 の剛性行列を全体の剛性行列へ代入要素 の剛性行列を全体の剛性行列へ代入要素 の剛性行列を全体の剛性行列へ代入 () () () () () () () () () () () () () () () () () () () () () () () () () () () () 75

32 弾性問題の有限要素解析 平板の引張問題 離散化方程式の組み立て 全体の剛性行列を計算 + 75 () () () () () () () () 連結していない節点に対応する剛性行列の成分は零有限要素法における剛性行列の多くの成分は零 疎 ( スパース ) 行列

33 弾性問題の有限要素解析 平板の引張問題 離散化方程式の組み立て 全体の節点荷重ベクトルの計算 要素 の要素節点荷重ベクトル σ F T / / F F F F F F F F F F F F F / / 節点の反力に対応

34 平板の引張問題 平板の引張問題 平板の引張問題 平板の引張問題弾性問題の有限要素解析弾性問題の有限要素解析弾性問題の有限要素解析弾性問題の有限要素解析 離散化方程式の組み立て離散化方程式の組み立て離散化方程式の組み立て離散化方程式の組み立て 全体の剛性方程式全体の剛性方程式全体の剛性方程式全体の剛性方程式 df / / () () () () () () () () 75

35 弾性問題の有限要素解析 平板の引張問題 変位境界条件の付加と球解 変位の境界条件 ( 拘束条件 ) 節点 :, 節点 : 節点 : (,) (,) 剛性方程式へ代入 (,) (,) 計算力学 ( 計算工学会編, 竹内他, 森北出版 ) より一部抜粋 5

36 平板の引張問題 平板の引張問題 平板の引張問題 平板の引張問題弾性問題の有限要素解析弾性問題の有限要素解析弾性問題の有限要素解析弾性問題の有限要素解析 変位境界条件を考慮した剛性方程式変位境界条件を考慮した剛性方程式変位境界条件を考慮した剛性方程式変位境界条件を考慮した剛性方程式 変位境界条件の付加と球解変位境界条件の付加と球解変位境界条件の付加と球解変位境界条件の付加と球解変位境界条件を代入変位境界条件を代入変位境界条件を代入変位境界条件を代入 / / () () () () () () () () 75 6

37 平板の引張問題 平板の引張問題 平板の引張問題 平板の引張問題弾性問題の有限要素解析弾性問題の有限要素解析弾性問題の有限要素解析弾性問題の有限要素解析 成分の並び替え成分の並び替え成分の並び替え成分の並び替え / 変位境界条件の付加と球解変位境界条件の付加と球解変位境界条件の付加と球解変位境界条件の付加と球解 / 75 7

38 平板の引張問題 平板の引張問題 平板の引張問題 平板の引張問題弾性問題の有限要素解析弾性問題の有限要素解析弾性問題の有限要素解析弾性問題の有限要素解析 剛性方程式剛性方程式剛性方程式剛性方程式 変位境界条件の付加と球解変位境界条件の付加と球解変位境界条件の付加と球解変位境界条件の付加と球解 / d F / 75 T d F 8

39 平板の引張問題 平板の引張問題 平板の引張問題 平板の引張問題弾性問題の有限要素解析弾性問題の有限要素解析弾性問題の有限要素解析弾性問題の有限要素解析 剛性方程式剛性方程式剛性方程式剛性方程式 変位境界条件の付加と球解変位境界条件の付加と球解変位境界条件の付加と球解変位境界条件の付加と球解 F F d d d 未知節点変位ベクトル未知節点変位ベクトル未知節点変位ベクトル未知節点変位ベクトル F d 未知節点反力ベクトル未知節点反力ベクトル未知節点反力ベクトル未知節点反力ベクトル既知節点変位ベクトル既知節点変位ベクトル既知節点変位ベクトル既知節点変位ベクトル既知節点荷重ベクトル既知節点荷重ベクトル既知節点荷重ベクトル既知節点荷重ベクトル d / / F F 9

40 平板の引張問題 平板の引張問題 平板の引張問題 平板の引張問題弾性問題の有限要素解析弾性問題の有限要素解析弾性問題の有限要素解析弾性問題の有限要素解析 未知節点変位ベクトルのみの方程式未知節点変位ベクトルのみの方程式未知節点変位ベクトルのみの方程式未知節点変位ベクトルのみの方程式 変位境界条件の付加と球解変位境界条件の付加と球解変位境界条件の付加と球解変位境界条件の付加と球解 F F d d d F d d d F d F d F d 未知節点反力ベクトル未知節点反力ベクトル未知節点反力ベクトル未知節点反力ベクトル既知節点荷重ベクトル既知節点荷重ベクトル既知節点荷重ベクトル既知節点荷重ベクトル / / 75

41 平板の引張問題 平板の引張問題 平板の引張問題 平板の引張問題弾性問題の有限要素解析弾性問題の有限要素解析弾性問題の有限要素解析弾性問題の有限要素解析 未知節点変位ベクトルの球解未知節点変位ベクトルの球解未知節点変位ベクトルの球解未知節点変位ベクトルの球解 変位境界条件の付加と球解変位境界条件の付加と球解変位境界条件の付加と球解変位境界条件の付加と球解 / 75 F d / F d ( ) F d ν ν / / E d

42 平板の引張問題 平板の引張問題 平板の引張問題 平板の引張問題弾性問題の有限要素解析弾性問題の有限要素解析弾性問題の有限要素解析弾性問題の有限要素解析 後処理 - ポストプロセス後処理 - ポストプロセス後処理 - ポストプロセス後処理 - ポストプロセス 未知節点反力ベクトルの球解未知節点反力ベクトルの球解未知節点反力ベクトルの球解未知節点反力ベクトルの球解 d F 75 / / F / / 節点変位ベクトルの解節点変位ベクトルの解節点変位ベクトルの解節点変位ベクトルの解

43 平板の引張問題 平板の引張問題 平板の引張問題 平板の引張問題弾性問題の有限要素解析弾性問題の有限要素解析弾性問題の有限要素解析弾性問題の有限要素解析 後処理 - ポストプロセス後処理 - ポストプロセス後処理 - ポストプロセス後処理 - ポストプロセス / 要素 要素 要素 要素 要素内のひずみ要素内のひずみ要素内のひずみ要素内のひずみ / / / d B ε

44 平板の引張問題 平板の引張問題 平板の引張問題 平板の引張問題弾性問題の有限要素解析弾性問題の有限要素解析弾性問題の有限要素解析弾性問題の有限要素解析 後処理 - ポストプロセス後処理 - ポストプロセス後処理 - ポストプロセス後処理 - ポストプロセス 要素内のひずみ要素内のひずみ要素内のひずみ要素内のひずみ / / 要素 要素 要素 要素 / / d B ε 要素 と要素 のひずみは同一要素 と要素 のひずみは同一要素 と要素 のひずみは同一要素 と要素 のひずみは同一

45 平板の引張問題 平板の引張問題 平板の引張問題 平板の引張問題弾性問題の有限要素解析弾性問題の有限要素解析弾性問題の有限要素解析弾性問題の有限要素解析 後処理 - ポストプロセス後処理 - ポストプロセス後処理 - ポストプロセス後処理 - ポストプロセス 要素内の応力要素内の応力要素内の応力要素内の応力 / 75 σ ε D σ 解析結果のまとめ解析結果のまとめ解析結果のまとめ解析結果のまとめ / / / / / γ ε ε τ σ σ 5

46 弾性問題の有限要素解析 平板の引張問題 諸注意 剛性行列の特異性と変位境界条件 要素剛性行列全体の剛性行列 特異行列 ( 正則でない, 逆をもたない ) 例えば, 75 ランク ( 階数 ) rank ( ) 核の次元 dimn [ ( A) ] nrank( A) 6 6

47 弾性問題の有限要素解析 平板の引張問題 諸注意 剛性行列の特異性と変位境界条件 要素剛性行列 全体の剛性行列 変位境界条件を与えない場合 特異行列となる ( 正則でない, 逆をもたない ) 物理的には 剛体モードの運動現象 d F d において, ( ) F が解けない 7

48 弾性問題の有限要素解析 平板の引張問題 諸注意 剛性行列の特異性と変位境界条件例えば 移動 変位境界条件がある場合 変位境界条件がない場合 8

49 弾性問題の有限要素解析 平板の引張問題 諸注意 剛性行列の特異性と変位境界条件今回のケースでは, 75 ( ) rank 核の次元 [ N( )] nrank( ) dim 6 並進, 回転の 自由度の剛体運動 9

50 弾性問題の有限要素解析 平板の引張問題 諸注意 有限要素解の近似特性適用する要素によって近似精度が変わる例えば, 定ひずみ三角形要素の場合 要素内の変位式 α+ α+ α β+ β+ β C 連続 要素内の変位が線形に変化すると仮定ひずみは要素内で一定値 ( 定数 ) 複雑な変形の場合, 解の精度が低下 要素間で変位は連続要素間でひずみは不連続要素分割を多くする高次要素の適用 5

51 弾性問題の有限要素解析 平板の引張問題 諸注意 有限要素解の近似特性適用する要素によって近似精度が変わる例えば, 定ひずみ三角形要素の場合純曲げを受けるはり状構造物 中立軸上の垂直応力は零 有限要素法では, 平均的に零 計算力学 ( 計算工学会編, 竹内他, 森北出版 ) より一部抜粋 5

52 弾性問題の有限要素解析 平板の引張問題 諸注意 有限要素解の厳密解への収束要素数を増やせば増やすほど, 精度が向上し, 厳密解へ収束する 要素数が多いと, 計算コストが高くなるため, 現実には問題に適した要素数を選択する 計算力学 ( 計算工学会編, 竹内他, 森北出版 ) より一部抜粋 5

53 弾性問題の有限要素解析 まとめ 前回の講義で導出した式 要素内の支配方程式の弱形式 要素内の変位式 要素内のひずみ式 有限要素法による解析 要素剛性方程式の導出 離散化方程式の組み立て ( 要素剛性方程式のアセンブリ ) 変位境界条件の付加と球解 後処理 ポストプロセス 諸注意 5

FEM原理講座 (サンプルテキスト)

FEM原理講座 (サンプルテキスト) サンプルテキスト FEM 原理講座 サイバネットシステム株式会社 8 年 月 9 日作成 サンプルテキストについて 各講師が 講義の内容が伝わりやすいページ を選びました テキストのページは必ずしも連続していません 一部を抜粋しています 幾何光学講座については 実物のテキストではなくガイダンスを掲載いたします 対象とする構造系 物理モデル 連続体 固体 弾性体 / 弾塑性体 / 粘弾性体 / 固体

More information

Microsoft PowerPoint - シミュレーション工学-2010-第1回.ppt

Microsoft PowerPoint - シミュレーション工学-2010-第1回.ppt シミュレーション工学 ( 後半 ) 東京大学人工物工学研究センター 鈴木克幸 CA( Compter Aded geerg ) r. Jaso Lemo (SC, 98) 設計者が解析ツールを使いこなすことにより 設計の評価 設計の質の向上を図る geerg の本質の 計算機による支援 (CA CAM などより広い名前 ) 様々な汎用ソフトの登場 工業製品の設計に不可欠のツール 構造解析 流体解析

More information

<4D F736F F F696E74202D20906C8D488AC28BAB90DD8C7689F090CD8D488A D91E F1>

<4D F736F F F696E74202D20906C8D488AC28BAB90DD8C7689F090CD8D488A D91E F1> 人工環境設計解析工学構造力学と有限要素法 ( 第 回 ) 東京大学新領域創成科学研究科 鈴木克幸 固体力学の基礎方程式 変位 - ひずみの関係 適合条件式 ひずみ - 応力の関係 構成方程式 応力 - 外力の関係 平衡方程式 境界条件 変位規定境界 反力規定境界 境界条件 荷重応力ひずみ変形 場の方程式 Γ t Γ t 平衡方程式構成方程式適合条件式 構造力学の基礎式 ひずみ 一軸 荷重応力ひずみ変形

More information

パソコンシミュレータの現状

パソコンシミュレータの現状 第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に

More information

静的弾性問題の有限要素法解析アルゴリズム

静的弾性問題の有限要素法解析アルゴリズム 概要 基礎理論. 応力とひずみおよび平衡方程式. 降伏条件式. 構成式 ( 応力 - ひずみ関係式 ) 有限要素法. 有限要素法の概要. 仮想仕事の原理式と変分原理. 平面ひずみ弾性有限要素法定式化 FEM の基礎方程式平衡方程式. G G G ひずみ - 変位関係式 w w w. kl jkl j D 構成式応力 - ひずみ関係式 ) (. 変位の境界条件力の境界条件境界条件式 t S on V

More information

PowerPoint Presentation

PowerPoint Presentation Non-linea factue mechanics き裂先端付近の塑性変形 塑性域 R 破壊進行領域応カ特異場 Ω R R Hutchinson, Rice and Rosengen 全ひずみ塑性理論に基づいた解析 現段階のひずみは 除荷がないとすると現段階の応力で一義的に決まる 単純引張り時の応カーひずみ関係 ( 構成方程式 ): ( ) ( ) n () y y y ここで α,n 定数, /

More information

Microsoft PowerPoint - elast.ppt [互換モード]

Microsoft PowerPoint - elast.ppt [互換モード] 弾性力学入門 年夏学期 中島研吾 科学技術計算 Ⅰ(48-7) コンピュータ科学特別講義 Ⅰ(48-4) elast 弾性力学 弾性力学の対象 応力 弾性力学の支配方程式 elast 3 弾性力学 連続体力学 (Continuum Mechanics) 固体力学 (Solid Mechanics) の一部 弾性体 (lastic Material) を対象 弾性論 (Theor of lasticit)

More information

スライド 1

スライド 1 CAE 演習 有限要素法のノウハウ ( 基礎編 ) 1. はじめに 有限要素法はポピュラーなツールである一方 解析で苦労している人が多い 高度な利用技術が必要 ( 解析の流れに沿って説明 ) 2. モデル化 要素の選択 3. メッシュ分割の工夫 4. 境界条件の設定 5. 材料物性の入力 6.7. 解析の結果の検証と分析 2. モデル化 要素の選択 モデルを単純化していかに解析を効率的 高精度に行うか?

More information

NAPRA

NAPRA 研究の動機 圧縮応力下の破壊現象 主要な亀裂の破壊に支配される引張応力下の破壊現象と異なり, 亀裂群の破壊パターンが多様 物理亀裂の進展条件 数理多様な破壊パターン 理論解析と数値解析 現状理論解析が主, 数値解析を従 将来 数値解析が主, 理論解析を従 数値解析を前提とした数理問題の設定が必要 背景 解析が困難な破壊現象 亀裂の三次元的進展 圧縮応力下での破壊 破壊問題を解くために FEM に導入される技巧

More information

JSMECM教育認定

JSMECM教育認定 一般社団法人日本機械学会 018/09/6 計算力学技術者 級問題集 ( 固体力学分野 )018 年度版 ( 第 9 版 3 刷 ) P 項目誤正 175 問 -6/ 上 8 行 1 1 sin cos sin cos rs y y xy rs y x xy i 計算力学技術者 級 ( 固体力学分野の有限要素法解析技術者 ) の認定の範囲 認定技術者の技術レベル本認定を取得した技術者は, 基本的な固体力学の問題に対して,

More information

...Y..FEM.pm5

...Y..FEM.pm5 . 剛塑性有限要素法 名古屋大学大学院工学研究科. はじめに. 剛塑性体の構成式.. 降伏条件.. 構成方程式 ([D] マトリックス ). 節点速度 ひずみ速度関係..[B] マトリックス.. 四角形一次要素の [B] マトリックス.4 4 仮想仕事の原理 ( 剛性マトリックス ([K] マトリックス )).5 非線形方程式の解法.5. 直接代入法.5.wto-Raphso 法.6 非圧縮性の拘束と数値積分.7

More information

< B795FB8C6094C28F6F97CD97E12E786477>

< B795FB8C6094C28F6F97CD97E12E786477> 長方形板の計算システム Ver3.0 適用基準 級数解法 ( 理論解析 ) 構造力学公式集( 土木学会発行 /S61.6) 板とシェルの理論( チモシェンコ ヴォアノフスキークリ ガー共著 / 長谷川節訳 ) 有限要素法解析 参考文献 マトリックス構造解析法(J.L. ミーク著, 奥村敏恵, 西野文雄, 西岡隆訳 /S50.8) 薄板構造解析( 川井忠彦, 川島矩郎, 三本木茂夫 / 培風館 S48.6)

More information

Microsoft Word - 1B2011.doc

Microsoft Word - 1B2011.doc 第 14 回モールの定理 ( 単純梁の場合 ) ( モールの定理とは何か?p.11) 例題 下記に示す単純梁の C 点のたわみ角 θ C と, たわみ δ C を求めよ ただし, 部材の曲げ 剛性は材軸に沿って一様で とする C D kn B 1.5m 0.5m 1.0m 解答 1 曲げモーメント図を描く,B 点の反力を求める kn kn 4 kn 曲げモーメント図を描く knm 先に得られた曲げモーメントの値を

More information

技術者のための構造力学 2014/06/11 1. はじめに 資料 2 節点座標系による傾斜支持節点節点の処理 三好崇夫加藤久人 従来, マトリックス変位法に基づく骨組解析を紹介する教科書においては, 全体座標系に対して傾斜 した斜面上の支持条件を考慮する処理方法として, 一旦, 傾斜支持を無視した

技術者のための構造力学 2014/06/11 1. はじめに 資料 2 節点座標系による傾斜支持節点節点の処理 三好崇夫加藤久人 従来, マトリックス変位法に基づく骨組解析を紹介する教科書においては, 全体座標系に対して傾斜 した斜面上の支持条件を考慮する処理方法として, 一旦, 傾斜支持を無視した . はじめに 資料 節点座標系による傾斜支持節点節点の処理 三好崇夫加藤久人 従来, マトリックス変位法に基づく骨組解析を紹介する教科書においては, 全体座標系に対して傾斜 した斜面上の支持条件を考慮する処理方法として, 一旦, 傾斜支持を無視した全体座標系に関する構造 全体の剛性マトリックスを組み立てた後に, 傾斜支持する節点に関して対応する剛性成分を座標変換に よって傾斜方向に回転処理し, その後は通常の全体座標系に対して傾斜していない支持点に対するのと

More information

Microsoft PowerPoint - 2_FrontISTRと利用可能なソフトウェア.pptx

Microsoft PowerPoint - 2_FrontISTRと利用可能なソフトウェア.pptx 東京大学本郷キャンパス 工学部8号館2階222中会議室 13:30-14:00 FrontISTRと利用可能なソフトウェア 2017年4月28日 第35回FrontISTR研究会 FrontISTRの並列計算ハンズオン 精度検証から並列性能評価まで 観測された物理現象 物理モデル ( 支配方程式 ) 連続体の運動を支配する偏微分方程式 離散化手法 ( 有限要素法, 差分法など ) 代数的な数理モデル

More information

Microsoft PowerPoint - zairiki_3

Microsoft PowerPoint - zairiki_3 材料力学講義 (3) 応力と変形 Ⅲ ( 曲げモーメント, 垂直応力度, 曲率 ) 今回は, 曲げモーメントに関する, 断面力 - 応力度 - 変形 - 変位の関係について学びます 1 曲げモーメント 曲げモーメント M 静定力学で求めた曲げモーメントも, 仮想的に断面を切ることによって現れる内力です 軸方向力は断面に働く力 曲げモーメント M は断面力 曲げモーメントも, 一つのモーメントとして表しますが,

More information

構造力学Ⅰ第12回

構造力学Ⅰ第12回 第 回材の座屈 (0 章 ) p.5~ ( 復習 ) モールの定理 ( 手順 ) 座屈とは 荷重により梁に生じた曲げモーメントをで除して仮想荷重と考える 座屈荷重 偏心荷重 ( 曲げと軸力 ) 断面の核 この仮想荷重に対するある点でのせん断力 たわみ角に相当する曲げモーメント たわみに相当する ( 例 ) 単純梁の支点のたわみ角 : は 図 を仮想荷重と考えたときの 点の支点反力 B は 図 を仮想荷重と考えたときのB

More information

Microsoft PowerPoint - H22制御工学I-2回.ppt

Microsoft PowerPoint - H22制御工学I-2回.ppt 制御工学 I 第二回ラプラス変換 平成 年 4 月 9 日 /4/9 授業の予定 制御工学概論 ( 回 ) 制御技術は現在様々な工学分野において重要な基本技術となっている 工学における制御工学の位置づけと歴史について説明する さらに 制御システムの基本構成と種類を紹介する ラプラス変換 ( 回 ) 制御工学 特に古典制御ではラプラス変換が重要な役割を果たしている ラプラス変換と逆ラプラス変換の定義を紹介し

More information

応用数学Ⅱ 偏微分方程式(2) 波動方程式(12/13)

応用数学Ⅱ 偏微分方程式(2) 波動方程式(12/13) 偏微分方程式. 偏微分方程式の形 偏微分 偏導関数 つの独立変数 をもつ関数 があるとき 変数 が一定値をとって だけが変化したとす ると は だけの関数となる このとき を について微分して得られる関数を 関数 の に関する 偏微分係数 略して偏微分 あるいは偏導関数 pil deiie といい 次のように表される についても同様な偏微分を定義できる あるいは あるいは - あるいは あるいは -

More information

Microsoft PowerPoint - 講義PPT2019.ppt [互換モード]

Microsoft PowerPoint - 講義PPT2019.ppt [互換モード] . CA 演習 :as σ lite による応力解析 目標 : 機械工学実験 はりの曲げと応力集中 の有限要素法による応力解析を行う CAD: Computer Aided Design CA: Computer Aided ngineering コンピュータシミュレーション CAM: Computer Aided Manufacturing スケジュール. 有限要素法の基礎と応用例. as σの使い方の説明.

More information

有限要素法入門 中島研吾 東京大学情報基盤センター

有限要素法入門 中島研吾 東京大学情報基盤センター 有限要素法入門 中島研吾 東京大学情報基盤センター EM-ntro 有限要素法入門 偏微分方程式の数値解法 重み付き残差法 偏微分方程式の数値解法 変分法 EM-ntro 差分法と有限要素法 偏微分方程式の近似解法 全領域を小領域 メッシュ 要素 に分割する 差分法 微分係数を直接近似 Tylor 展開 nte fference Method M Tylor Seres Epnson -!!!! nd

More information

PowerPoint Presentation

PowerPoint Presentation CAE 演習 :Eas-σ lite に よる応力解析 目標 : 機械工学実験 はりの曲げと応力集中 の有限要素法による応力解析を行う 用語 CAD: Computer Aided Design CAE: Computer Aided Engineering コンピュータシミュレーション CAM: Computer Aided Manufacturing スケジュール. 有限要素法の基礎と応用例 2.

More information

スライド 1

スライド 1 H25 創造設計演習 ~ 振動設計演習 1~ 1 ゆれない片持ち梁の設計 振動設計演習全体 HP(2011 年度まで使用 今は閲覧のみ ): http://hockey.t.u-tokyo.ac.jp/shindousekkei/index.html M4 取付ネジ 2 Xin 加振器 50mm 幅 30mm 材料 :A2017または ABS 樹脂 計測点 :Xout 2mm? Hz CAD 所望の特性になるまで繰り返す?

More information

NS NS Scalar turbulence 5 6 FEM NS Mesh (A )

NS NS Scalar turbulence 5 6 FEM NS Mesh (A ) 22 3 2 1 2 2 2 3 3 4 NS 4 4.1 NS............ 5 5 Scalar turbulence 5 6 FEM 5 6.1 NS.................................... 6 6.2 Mes A )................................... 6 6.3.....................................

More information

<4D F736F F F696E74202D E94D58B9393AE82F AC82B782E982BD82DF82CC8AEE E707074>

<4D F736F F F696E74202D E94D58B9393AE82F AC82B782E982BD82DF82CC8AEE E707074> 地盤数値解析学特論 防災環境地盤工学研究室村上哲 Mrakam, Satoh. 地盤挙動を把握するための基礎. 変位とひずみ. 力と応力. 地盤の変形と応力. 変位とひずみ 変形勾配テンソルひずみテンソル ひずみテンソル : 材料線素の長さの 乗の変化量の尺度 Green-Lagrange のひずみテンソルと Alman のひずみテンソル 微小変形状態でのひずみテンソル ひずみテンソルの物理的な意味

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

破壊の予測

破壊の予測 本日の講義内容 前提 : 微分積分 線形代数が何をしているかはうろ覚え 材料力学は勉強したけど ちょっと 弾性および塑性学は勉強したことが無い ー > ですので 解らないときは質問してください モールの応力円を理解するとともに 応力を 3 次元的に考える FM( 有限要素法 の概略 内部では何を計算しているのか? 3 物が壊れる条件を考える 特に 変形 ( 塑性変形 が発生する条件としてのミーゼス応力とはどのような応力か?

More information

耳桁の剛性の考慮分配係数の計算条件は 主桁本数 n 格子剛度 zです 通常の並列鋼桁橋では 主桁はすべて同じ断面を使います しかし 分配の効率を上げる場合 耳桁 ( 幅員端側の桁 ) の断面を大きくすることがあります 最近の桁橋では 上下線を別橋梁とすることがあり また 防音壁などの敷設が片側に有る

耳桁の剛性の考慮分配係数の計算条件は 主桁本数 n 格子剛度 zです 通常の並列鋼桁橋では 主桁はすべて同じ断面を使います しかし 分配の効率を上げる場合 耳桁 ( 幅員端側の桁 ) の断面を大きくすることがあります 最近の桁橋では 上下線を別橋梁とすることがあり また 防音壁などの敷設が片側に有る 格子桁の分配係数の計算 ( デモ版 ) 理論と解析の背景主桁を並列した鋼単純桁の設計では 幅員方向の横桁の剛性を考えて 複数の主桁が協力して活荷重を分担する効果を計算します これを 単純な (1,0) 分配に対して格子分配と言います レオンハルト (F.Leonhardt,1909-1999) が 1950 年初頭に発表した論文が元になっていて 理論仮定 記号などの使い方は その論文を踏襲して設計に応用しています

More information

OpenFOAM(R) ソースコード入門 pt1 熱伝導方程式の解法から有限体積法の実装について考える 前編 : 有限体積法の基礎確認 2013/11/17 オープンCAE 富山富山県立大学中川慎二

OpenFOAM(R) ソースコード入門 pt1 熱伝導方程式の解法から有限体積法の実装について考える 前編 : 有限体積法の基礎確認 2013/11/17 オープンCAE 富山富山県立大学中川慎二 OpenFOAM(R) ソースコード入門 pt1 熱伝導方程式の解法から有限体積法の実装について考える 前編 : 有限体積法の基礎確認 2013/11/17 オープンCAE 勉強会 @ 富山富山県立大学中川慎二 * OpenFOAM のソースコードでは, 基礎式を偏微分方程式の形で記述する.OpenFOAM 内部では, 有限体積法を使ってこの微分方程式を解いている. どのようにして, 有限体積法に基づく離散化が実現されているのか,

More information

第 5 章 構造振動学 棒の振動を縦振動, 捩り振動, 曲げ振動に分けて考える. 5.1 棒の縦振動と捩り振動 まっすぐな棒の縦振動の固有振動数 f[ Hz] f = l 2pL である. ただし, L [ 単位 m] は棒の長さ, [ 2 N / m ] 3 r[ 単位 Kg / m ] E r

第 5 章 構造振動学 棒の振動を縦振動, 捩り振動, 曲げ振動に分けて考える. 5.1 棒の縦振動と捩り振動 まっすぐな棒の縦振動の固有振動数 f[ Hz] f = l 2pL である. ただし, L [ 単位 m] は棒の長さ, [ 2 N / m ] 3 r[ 単位 Kg / m ] E r 第 5 章 構造振動学 棒の振動を縦振動, 捩り振動, 曲げ振動に分けて考える 5 棒の縦振動と捩り振動 まっすぐな棒の縦振動の固有振動数 f[ Hz] f l pl である ただし, L [ 単位 m] は棒の長さ, [ N / m ] [ 単位 Kg / m ] E は (5) E 単位は棒の材料の縦弾性係数 ( ヤング率 ) は棒の材料の単位体積当りの質量である l は境界条件と振動モードによって決まる無

More information

5-仮想仕事式と種々の応力.ppt

5-仮想仕事式と種々の応力.ppt 1 以上, 運動の変数についての話を終える. 次は再び力の変数に戻る. その前に, まず次の話が唐突と思われないように 以下は前置き. 先に, 力の変数と運動の変数には対応関係があって, 適当な内積演算によって仕事量を表す ことを述べた. 実は,Cauchy 応力と速度勾配テンソル ( あるいは変位勾配テンソル ) を用いると, それらの内積は内部仮想仕事を表していて, そして, それは外力がなす仮想仕事に等しいという

More information

を入れて,,, について解けば ( ) ( ) 得る. よって となるが ( / ( ) ( ) と無次元化している ), これを { N ( ) } { d} と表現して内部変位 と節点変位 { d} とを結びつける { } { ( ) ( ) } (.) (.) 節点での F と M は図. の

を入れて,,, について解けば ( ) ( ) 得る. よって となるが ( / ( ) ( ) と無次元化している ), これを { N ( ) } { d} と表現して内部変位 と節点変位 { d} とを結びつける { } { ( ) ( ) } (.) (.) 節点での F と M は図. の 第 章有限要素法 ( その ). 梁要素 有限要素法においては外力も境界条件も節点で考える. もちろん分布荷重は考慮でき るが, 要素上の分布荷重は適当に節点への等価は集中荷重として置き換える. こう考える と梁の曲げの方程式 (.8) において分布荷重無し (p()) の d d (.) である. この一般解は先に解いたように (.) となる. 梁の有限要素の長さを とすると, その両端, にて境界条件を導入して解い

More information

位相最適化?

位相最適化? 均質化設計法 藤井大地 ( 東京大学 ) 位相最適化? 従来の考え方 境界形状を変化させて最適な形状 位相を求める Γ t Ω b Γ D 境界形状を変化させる問題点 解析が進むにつれて, 有限要素メッシュが異形になり, 再メッシュが必要になる 位相が変化する問題への適応が難しい Γ Γ t t Ω b Ω b Γ D Γ D 領域の拡張と特性関数の導入 χ Ω ( x) = f 0 f x Ω x

More information

Microsoft PowerPoint - 知財報告会H20kobayakawa.ppt [互換モード]

Microsoft PowerPoint - 知財報告会H20kobayakawa.ppt [互換モード] 亀裂の変形特性を考慮した数値解析による岩盤物性評価法 地球工学研究所地圏科学領域小早川博亮 1 岩盤構造物の安定性評価 ( 斜面の例 ) 代表要素 代表要素の応力ひずみ関係 変形: 弾性体の場合 :E,ν 強度: モールクーロン破壊規準 :c,φ Rock Mech. Rock Engng. (2007) 40 (4), 363 382 原位置試験 せん断試験, 平板載荷試験 原位置三軸試験 室内試験

More information

材料強度試験 ( 曲げ試験 ) [1] 概要 実験 実習 Ⅰ の引張り試験に引続き, 曲げ試験による機械特性評価法を実施する. 材料力学で学ぶ梁 の曲げおよびたわみの基礎式の理解, 材料への理解を深めることが目的である. [2] 材料の変形抵抗変形抵抗は, 外力が付与された時の変形に対する各材料固有

材料強度試験 ( 曲げ試験 ) [1] 概要 実験 実習 Ⅰ の引張り試験に引続き, 曲げ試験による機械特性評価法を実施する. 材料力学で学ぶ梁 の曲げおよびたわみの基礎式の理解, 材料への理解を深めることが目的である. [2] 材料の変形抵抗変形抵抗は, 外力が付与された時の変形に対する各材料固有 材料強度試験 ( 曲げ試験 [] 概要 実験 実習 Ⅰ の引張り試験に引続き, 曲げ試験による機械特性評価法を実施する. 材料力学で学ぶ梁 の曲げおよびたわみの基礎式の理解, 材料への理解を深めることが目的である. [] 材料の変形抵抗変形抵抗は, 外力が付与された時の変形に対する各材料固有の抵抗値のことであり, 一般に素材の真応力 - 真塑性ひずみ曲線で表される. 多くの金属材料は加工硬化するため,

More information

Autodesk Inventor Skill Builders Autodesk Inventor 2010 構造解析の精度改良 メッシュリファインメントによる収束計算 予想作業時間:15 分 対象のバージョン:Inventor 2010 もしくはそれ以降のバージョン シミュレーションを設定する際

Autodesk Inventor Skill Builders Autodesk Inventor 2010 構造解析の精度改良 メッシュリファインメントによる収束計算 予想作業時間:15 分 対象のバージョン:Inventor 2010 もしくはそれ以降のバージョン シミュレーションを設定する際 Autodesk Inventor Skill Builders Autodesk Inventor 2010 構造解析の精度改良 メッシュリファインメントによる収束計算 予想作業時間:15 分 対象のバージョン:Inventor 2010 もしくはそれ以降のバージョン シミュレーションを設定する際に 収束判定に関するデフォルトの設定をそのまま使うか 修正をします 応力解析ソルバーでは計算の終了を判断するときにこの設定を使います

More information

第6章 実験モード解析

第6章 実験モード解析 第 6 章実験モード解析 6. 実験モード解析とは 6. 有限自由度系の実験モード解析 6.3 連続体の実験モード解析 6. 実験モード解析とは 実験モード解析とは加振実験によって測定された外力と応答を用いてモードパラメータ ( 固有振動数, モード減衰比, 正規固有モードなど ) を求める ( 同定する ) 方法である. 力計 試験体 変位計 / 加速度計 実験モード解析の概念 時間領域データを利用する方法

More information

Microsoft PowerPoint - H21生物計算化学2.ppt

Microsoft PowerPoint - H21生物計算化学2.ppt 演算子の行列表現 > L いま 次元ベクトル空間の基底をケットと書くことにする この基底は完全系を成すとすると 空間内の任意のケットベクトルは > > > これより 一度基底を与えてしまえば 任意のベクトルはその基底についての成分で完全に記述することができる これらの成分を列行列の形に書くと M これをベクトル の基底 { >} による行列表現という ところで 行列 A の共役 dont 行列は A

More information

OpenCAE勉強会 公開用_pptx

OpenCAE勉強会 公開用_pptx OpenCAE 勉強会岐阜 2013/06/15 ABAQUS Student Edition を用い た XFEM き裂進展解析事例報告 OpenCAE 学会員 SH 発表内容 ABAQUS Student Edition とは? ABAQUS Student Edition 入手方法など - 入手方法 / インストール - 解析 Sample ファイルの入手方法 etc. XFEM について -XFEM

More information

Microsoft PowerPoint - 夏の学校(CFD).pptx

Microsoft PowerPoint - 夏の学校(CFD).pptx /9/5 FD( 計算流体力学 ) の基礎理論 性能 運動分野 夏の学校 神戸大学大学院海事科学研究科勝井辰博 流体の質量保存 流体要素内の質量の増加率 [ 単位時間当たりの増加量 ] 単位時間に流体要素に流入する質量 流体要素 Fl lm (orol olm) v ( ) ガウスの定理 v( ) /9/5 = =( ) b=b =(b b b ) b= b = b + b + b アインシュタイン表記

More information

Microsoft PowerPoint - 構造力学Ⅰ第03回.pptx

Microsoft PowerPoint - 構造力学Ⅰ第03回.pptx 分布荷重の合力 ( 効果 ) 前回の復習 ( 第 回 ) p. 分布荷重は平行な力が連続して分布していると考えられる 例 : 三角形分布 l dx P=ql/ q l qx q l 大きさ P dx x 位置 Px 0 x x 0 l ql 0 : 面積に等しい 0 l l 重心に等しいモーメントの釣合より ( バリノンの定理 ) l qx l qx ql q 3 l ql l xdx x0 xdx

More information

問題-1.indd

問題-1.indd 科目名学科 学年 組学籍番号氏名採点結果 016 年度材料力学 Ⅲ 問題 1 1 3 次元的に外力負荷を受ける物体を考える際にデカルト直交座標 - を採る 物体 内のある点 を取り囲む微小六面体上に働く応力 が v =- 40, = 60 =- 30 v = 0 = 10 v = 60 である 図 1 の 面上にこれらの応力 の作用方向を矢印で記入し その脇にその矢印が示す応力成分を記入しなさい 図

More information

<4D F736F F D2097CD8A7793FC96E582BD82ED82DD8A E6318FCD2E646F63>

<4D F736F F D2097CD8A7793FC96E582BD82ED82DD8A E6318FCD2E646F63> - 第 章たわみ角法の基本式 ポイント : たわみ角法の基本式を理解する たわみ角法の基本式を梁の微分方程式より求める 本章では たわみ角法の基本式を導くことにする 基本式の誘導法は各種あるが ここでは 梁の微分方程式を解いて基本式を求める方法を採用する この本で使用する座標系は 右手 右ネジの法則に従った座標を用いる また ひとつの部材では 図 - に示すように部材の左端の 点を原点とし 軸線を

More information

以下 変数の上のドットは時間に関する微分を表わしている (ex. 2 dx d x x, x 2 dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-1) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( x や x, x などがすべて 1 次で なおかつ

以下 変数の上のドットは時間に関する微分を表わしている (ex. 2 dx d x x, x 2 dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-1) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( x や x, x などがすべて 1 次で なおかつ 以下 変数の上のドットは時間に関する微分を表わしている (e. d d, dt dt ) 付録 E 非線形微分方程式の平衡点の安定性解析 E-) 非線形方程式の線形近似特に言及してこなかったが これまでは線形微分方程式 ( や, などがすべて 次で なおかつそれらの係数が定数であるような微分方程式 ) に対して安定性の解析を行ってきた しかしながら 実際には非線形の微分方程式で記述される現象も多く存在する

More information

Microsoft PowerPoint - fuseitei_6

Microsoft PowerPoint - fuseitei_6 不静定力学 Ⅱ 骨組の崩壊荷重の計算 不静定力学 Ⅱ では, 最後の問題となりますが, 骨組の崩壊荷重の計算法について学びます 1 参考書 松本慎也著 よくわかる構造力学の基本, 秀和システム このスライドの説明には, 主にこの参考書の説明を引用しています 2 崩壊荷重 構造物に作用する荷重が徐々に増大すると, 構造物内に発生する応力は増加し, やがて, 構造物は荷重に耐えられなくなる そのときの荷重を崩壊荷重あるいは終局荷重という

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 電磁波工学 第 5 回平面波の媒質への垂直および射入射と透過 柴田幸司 Bounda Plan Rgon ε μ Rgon Mdum ( ガラスなど ε μ z 平面波の反射と透過 垂直入射の場合 左図に示す様に 平面波が境界面に対して垂直に入射する場合を考える この時の入射波を とすると 入射波は境界において 透過波 と とに分解される この時の透過量を 反射量を Γ とおくと 領域 における媒質の誘電率に対して透過量

More information

第3章 ひずみ

第3章 ひずみ 第 4 章 応力とひずみの関係 4. 単軸応力を受ける弾性体の応力とひずみの関係 温度一定の下で, 負荷による変形が徐荷によって完全に回復する場合を広義の弾性というが, 狭義の弾 性では, 負荷過程と徐荷過程で応力 - ひずみ関係が一致しない場合は含めず ( 図 - 参照 ), 与えられたひ ずみ状態に対して応力が一意に定まる, つまり応力がひずみの関数と して表される. このような物体を狭義の弾性体

More information

Microsoft PowerPoint - cm121204mat.ppt

Microsoft PowerPoint - cm121204mat.ppt いまさらいまさら聞けない計算力学の常識常識 講習会 構造解析に入る前に知っておきたい 常識 5 話知ってそうで知らない境界条件処理のいろいろ 7 話固体の非線形解析って何? 9 話固体の非線形解析における 2 つの論点 10 話破壊現象の数値解析の罠 東北大学斉木功 いまさらいまさら聞けない計算力学の常識常識 講習会 5 話知ってそうで知らない境界条件処理のいろいろ 5.1 等分布荷重は均等にした集中荷重と同じでいいの?

More information

<4D F736F F F696E74202D D488A778AEE B4F93B982CC8AEE A2E707074>

<4D F736F F F696E74202D D488A778AEE B4F93B982CC8AEE A2E707074> 宇宙工学基礎 ( 軌道の基礎 松永三郎 機械宇宙学科 機械宇宙システム専攻 ニュートンの法則 第 法則 力が作用作用しないしない限り 質点質点は静止静止ないしはないしは一定速度一定速度で運動するする ( 慣性の法則 慣性空間 慣性座標系慣性座標系の定義第 法則 慣性座標系におけるにおける質点質点の運動 p F ( pɺ t ( F: 全作用力, pmv: 並進運動量 ( 質量と速度速度の積 慣性系を規準規準としてとして時間微分時間微分を行うことにことに注意第

More information

<4D F736F F D208D5C91A297CD8A7793FC96E591E631308FCD2E646F63>

<4D F736F F D208D5C91A297CD8A7793FC96E591E631308FCD2E646F63> 第 1 章モールの定理による静定梁のたわみ 1-1 第 1 章モールの定理による静定梁のたわみ ポイント : モールの定理を用いて 静定梁のたわみを求める 断面力の釣合と梁の微分方程式は良く似ている 前章では 梁の微分方程式を直接積分する方法で 静定梁の断面力と変形状態を求めた 本章では 梁の微分方程式と断面力による力の釣合式が類似していることを利用して 微分方程式を直接解析的に解くのではなく 力の釣合より梁のたわみを求める方法を学ぶ

More information

入門講座 

入門講座  第 8 章弾性歪エネルギー評価法 () () 8- Khhtun の弾性歪エネルギ- 評価ここでも簡単のため A-B 元系における不規則相の整合相分離を考え この相分解組織の弾性歪エネルギーを評価する 手順は ステップ ) まず位置 の関数として与えられる濃度場 () を用いて egen 歪場 ε () を定義する ステップ ) 次に全歪場 ε () を均一全歪 ε とそこからの変動量 δε ()

More information

テンソル ( その ) テンソル ( その ) スカラー ( 階のテンソル ) スカラー ( 階のテンソル ) 階数 ベクトル ( 階のテンソル ) ベクトル ( 階のテンソル ) 行列表現 シンボリック表現 [ ]

テンソル ( その ) テンソル ( その ) スカラー ( 階のテンソル ) スカラー ( 階のテンソル ) 階数 ベクトル ( 階のテンソル ) ベクトル ( 階のテンソル ) 行列表現 シンボリック表現 [ ] Tsor th-ordr tsor by dcl xprsso m m Lm m k m k L mk kk quott rul by symbolc xprsso Lk X thrd-ordr tsor cotrcto j j Copyrght s rsrvd. No prt of ths documt my b rproducd for proft. テンソル ( その ) テンソル ( その

More information

OCW-iダランベールの原理

OCW-iダランベールの原理 講義名連続体力学配布資料 OCW- 第 2 回ダランベールの原理 無機材料工学科准教授安田公一 1 はじめに今回の講義では, まず, 前半でダランベールの原理について説明する これを用いると, 動力学の問題を静力学の問題として解くことができ, さらに, 前回の仮想仕事の原理を適用すると動力学問題も簡単に解くことができるようになる また, 後半では, ダランベールの原理の応用として ラグランジュ方程式の導出を示す

More information

Microsoft PowerPoint - suta.ppt [互換モード]

Microsoft PowerPoint - suta.ppt [互換モード] 弾塑性不飽和土構成モデルの一般化と土 / 水連成解析への適用 研究の背景 不飽和状態にある土構造物の弾塑性挙動 ロックフィルダム 道路盛土 長期的に正確な予測 不飽和土弾塑性構成モデル 水頭変動 雨水の浸潤 乾湿の繰り返し 土構造物の品質変化 不飽和土の特徴的な力学特性 不飽和土の特性 サクション サクション s w C 飽和度が低い状態 飽和度が高い状態 サクションの効果 空気侵入値 B. サクション増加

More information

微分方程式による現象記述と解きかた

微分方程式による現象記述と解きかた 微分方程式による現象記述と解きかた 土木工学 : 公共諸施設 構造物の有用目的にむけた合理的な実現をはかる方法 ( 技術 ) に関する学 橋梁 トンネル ダム 道路 港湾 治水利水施設 安全化 利便化 快適化 合法則的 経済的 自然および人口素材によって作られた 質量保存則 構造物の自然的な性質 作用 ( 外力による応答 ) エネルギー則 の解明 社会的諸現象のうち マスとしての移動 流通 運動量則

More information

Microsoft Word - NumericalComputation.docx

Microsoft Word - NumericalComputation.docx 数値計算入門 武尾英哉. 離散数学と数値計算 数学的解法の中には理論計算では求められないものもある. 例えば, 定積分は, まずは積分 ( 被積分関数の原始関数をみつけること できなければ値を得ることはできない. また, ある関数の所定の値における微分値を得るには, まずその関数の微分ができなければならない. さらに代数方程式の解を得るためには, 解析的に代数方程式を解く必要がある. ところが, これらは必ずしも解析的に導けるとは限らない.

More information

Microsoft PowerPoint - H22制御工学I-10回.ppt

Microsoft PowerPoint - H22制御工学I-10回.ppt 制御工学 I 第 回 安定性 ラウス, フルビッツの安定判別 平成 年 6 月 日 /6/ 授業の予定 制御工学概論 ( 回 ) 制御技術は現在様々な工学分野において重要な基本技術となっている 工学における制御工学の位置づけと歴史について説明する さらに 制御システムの基本構成と種類を紹介する ラプラス変換 ( 回 ) 制御工学 特に古典制御ではラプラス変換が重要な役割を果たしている ラプラス変換と逆ラプラス変換の定義を紹介し

More information

スライド 1

スライド 1 いまさら聞けない計算力学の常識 講習会 in 東京 2012 年 12 月 4 日 有限要素法の 常識 固体 構造編 10:10 ~ 11:50 (100 分 ) 茨城大学車谷麻緒 東北大学寺田賢二郎 2 第 2 話メッシュや要素で答えが変わる 2.1 要素 や メッシュ に依存する有限要素解析 1.1.1 様々なメッシュパターンや要素種類を使って得られる解の比較 1.1.2 要素あるいはメッシュによる精度の変化

More information

Microsoft PowerPoint - 10.pptx

Microsoft PowerPoint - 10.pptx m u. 固有値とその応用 8/7/( 水 ). 固有値とその応用 固有値と固有ベクトル 行列による写像から固有ベクトルへ m m 行列 によって線形写像 f : R R が表せることを見てきた ここでは 次元平面の行列による写像を調べる とし 写像 f : を考える R R まず 単位ベクトルの像 u y y f : R R u u, u この事から 線形写像の性質を用いると 次の格子上の点全ての写像先が求まる

More information

vecrot

vecrot 1. ベクトル ベクトル : 方向を持つ量 ベクトルには 1 方向 2 大きさ ( 長さ ) という 2 つの属性がある ベクトルの例 : 物体の移動速度 移動量電場 磁場の強さ風速力トルクなど 2. ベクトルの表現 2.1 矢印で表現される 矢印の長さ : ベクトルの大きさ 矢印の向き : ベクトルの方向 2.2 2 個の点を用いて表現する 始点 () と終点 () を結ぶ半直線の向き : ベクトルの方向

More information

09.pptx

09.pptx 講義内容 数値解析 第 9 回 5 年 6 月 7 日 水 理学部物理学科情報理学コース. 非線形方程式の数値解法. はじめに. 分法. 補間法.4 ニュートン法.4. 多変数問題への応用.4. ニュートン法の収束性. 連立 次方程式の解法. 序論と行列計算の基礎. ガウスの消去法. 重対角行列の場合の解法項目を変更しました.4 LU 分解法.5 特異値分解法.6 共役勾配法.7 反復法.7. ヤコビ法.7.

More information

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X ( 第 週ラプラス変換 教科書 p.34~ 目標ラプラス変換の定義と意味を理解する フーリエ変換や Z 変換と並ぶ 信号解析やシステム設計における重要なツール ラプラス変換は波動現象や電気回路など様々な分野で 微分方程式を解くために利用されてきた ラプラス変換を用いることで微分方程式は代数方程式に変換される また 工学上使われる主要な関数のラプラス変換は簡単な形の関数で表されるので これを ラプラス変換表

More information

FrontISTR による熱応力解析 東京大学新領域創成科学研究科人間環境学専攻橋本学 2014 年 10 月 31 日第 15 回 FrontISTR 研究会 < 機能 例題 定式化 プログラム解説編 熱応力解析 / 弾塑性解析 >

FrontISTR による熱応力解析 東京大学新領域創成科学研究科人間環境学専攻橋本学 2014 年 10 月 31 日第 15 回 FrontISTR 研究会 < 機能 例題 定式化 プログラム解説編 熱応力解析 / 弾塑性解析 > FronISR による熱応力解析 東京大学新領域創成科学研究科人間環境学専攻橋本学 214 年 1 月 31 日第 15 回 FronISR 研究会 < 機能 例題 定式化 プログラム解説編 熱応力解析 / 弾塑性解析 > FronISR に実装されている定式化を十分に理解し, 解きたい問題に対してソースコードを自由にカスタマイズ ( 要素タイプを追加, 材料の種類を追加, ユーザサブルーチンを追加

More information

<4D F736F F D E4F8E9F82C982A882AF82E98D7397F1>

<4D F736F F D E4F8E9F82C982A882AF82E98D7397F1> 3 三次における行列 要旨高校では ほとんど 2 2 の正方行列しか扱ってなく 三次の正方行列について考えてみたかったため 数 C で学んだ定理を三次の正方行列に応用して 自分たちで仮説を立てて求めていったら 空間における回転移動を表す行列 三次のケーリー ハミルトンの定理 三次における逆行列を求めたり 仮説をたてることができた. 目的 数 C で学んだ定理を三次の正方行列に応用する 2. 概要目的の到達点として

More information

Microsoft PowerPoint - FEMintro [互換モード]

Microsoft PowerPoint - FEMintro [互換モード] 有限要素法入門 年夏季集中講義中島研吾 並列計算プログラミング 66-57 先端計算機演習 66-49 EM-ntro 有限要素法入門 偏微分方程式の数値解法 重み付き残差法 ガウス グリーンの定理 偏微分方程式の数値解法 変分法 EM-ntro 差分法と有限要素法 偏微分方程式の近似解法 全領域を小領域 メッシュ 要素 に分割する 差分法 微分係数を直接近似 Tylor 展開 EM-ntro 差分法

More information

第1章 単 位

第1章  単  位 H. Hamano,. 長柱の座屈 - 長柱の座屈 長い柱は圧縮荷重によって折れてしまう場合がある. この現象を座屈といい, 座屈するときの荷重を座屈荷重という.. 換算長 長さ の柱に荷重が作用する場合, その支持方法によって, 柱の理論上の長さ L が異なる. 長柱の計算は, この L を用いて行うと都合がよい. この L を換算長 ( あるいは有効長さという ) という. 座屈荷重は一般に,

More information

線積分.indd

線積分.indd 線積分 線積分 ( n, n, n ) (ξ n, η n, ζ n ) ( n-, n-, n- ) (ξ k, η k, ζ k ) ( k, k, k ) ( k-, k-, k- ) 物体に力 を作用させて位置ベクトル A の点 A から位置ベクトル の点 まで曲線 に沿って物体を移動させたときの仕事 W は 次式で計算された A, A, W : d 6 d+ d+ d@,,, d+ d+

More information

線形弾性体 線形弾性体 応力テンソル とひずみテンソルソル の各成分が線形関係を有する固体. kl 応力テンソル O kl ひずみテンソル

線形弾性体 線形弾性体 応力テンソル とひずみテンソルソル の各成分が線形関係を有する固体. kl 応力テンソル O kl ひずみテンソル Constitutive equation of elasti solid Hooke s law λδ μ kk Lame s onstant λ μ ( )( ) ( ) linear elasti solid kl kl Copyright is reserved. No part of this doument may be reprodued for profit. 線形弾性体 線形弾性体

More information

2011年度 筑波大・理系数学

2011年度 筑波大・理系数学 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ O を原点とするy 平面において, 直線 y= の を満たす部分をC とする () C 上に点 A( t, ) をとるとき, 線分 OA の垂直二等分線の方程式を求めよ () 点 A が C 全体を動くとき, 線分 OA の垂直二等分線が通過する範囲を求め, それ を図示せよ -- 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ

More information

差分スキーム 物理 化学 生物現象には微分方程式でモデル化される例が多い モデルを使って現実の現象をコンピュータ上で再現することをシミュレーション ( 数値シミュレーション コンピュータシミュレーション ) と呼ぶ そのためには 微分方程式をコンピュータ上で計算できる数値スキームで近似することが必要

差分スキーム 物理 化学 生物現象には微分方程式でモデル化される例が多い モデルを使って現実の現象をコンピュータ上で再現することをシミュレーション ( 数値シミュレーション コンピュータシミュレーション ) と呼ぶ そのためには 微分方程式をコンピュータ上で計算できる数値スキームで近似することが必要 差分スキーム 物理 化学 生物現象には微分方程式でモデル化される例が多い モデルを使って現実の現象をコンピュータ上で再現することをシミュレーション ( 数値シミュレーション コンピュータシミュレーション ) と呼ぶ そのためには 微分方程式をコンピュータ上で計算できる数値スキームで近似することが必要になる その一つの方法が微分方程式を差分方程式におき直すことである 微分方程式の差分化 次の 1 次元境界値問題を考える

More information

<4D F736F F D208D5C91A297CD8A7793FC96E591E631318FCD2E646F63>

<4D F736F F D208D5C91A297CD8A7793FC96E591E631318FCD2E646F63> 11-1 第 11 章不静定梁のたわみ ポイント : 基本的な不静定梁のたわみ 梁部材の断面力とたわみ 本章では 不静定構造物として 最も単純でしかも最も大切な両端固定梁の応力解析を行う ここでは 梁の微分方程式を用いて解くわけであるが 前章とは異なり 不静定構造物であるため力の釣合から先に断面力を決定することができない そのため 梁のたわみ曲線と同時に断面力を求めることになる この両端固定梁のたわみ曲線や断面力分布は

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション Digital Engineering 演習第 3 回 振動設計其の 1 前田 波田野 諸山 中根 石川 1 振動設計演習の目的 CAX による ものづくりフローの経験 構造解析による たわみ量解析 振動モード解析 周波数応答解析の習得 構造形状と振動特性の関係を理解 CAX CAD: Computer Aided Design CAE: Computer Aided Engineering CAM:

More information

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように 3 章 Web に Link 解説 連続式 微分表示 の誘導.64 *4. 連続式連続式は ある領域の内部にある流体の質量の収支が その表面からの流入出の合計と等しくなることを定式化したものであり 流体における質量保存則を示したものである 2. 連続式 微分表示 の誘導図のような微小要素 コントロールボリューム の領域内の流体の増減と外部からの流体の流入出を考えることで定式化できる 微小要素 流入

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 電磁波工学 第 6 回境界条件と伝送線路 柴田幸司 伝送線路とは 伝送線路とは光速で進む電磁波を構造体の中に閉じ込めて低損失にて伝送させるための線路であり 伝搬方向 断面方向に電磁波を閉じ込めるためには金属条件や誘電体の境界条件を利用する必要がある 開放型 TM 型 平行 線 誘電体型 誘電体線路 光ファイバ 閉鎖型 TM 型 同軸線路 導波路型 導波管 おのおのの伝送線路の形状に対する管内断面の電磁波の姿体の導出

More information

Slide 1

Slide 1 Release Note Release Date : Jun. 2015 Product Ver. : igen 2015 (v845) DESIGN OF General Structures Integrated Design System for Building and General Structures Enhancements Analysis & Design 3 (1) 64ビットソルバー及び

More information

平板曲げ理論による部材の等分布荷重または節点の集中荷重を受ける薄板のたわみと断面力の計算ソフト 鉄筋コンクリート床版や鋼板などの平板 ( 薄板 ) の等分布や集中荷重による作用曲げモーメント等の算出方法は 下記の平板の曲げ解析法一覧表より [1 平板曲げ理論による解析 ( 理論解 ) による方法 ]

平板曲げ理論による部材の等分布荷重または節点の集中荷重を受ける薄板のたわみと断面力の計算ソフト 鉄筋コンクリート床版や鋼板などの平板 ( 薄板 ) の等分布や集中荷重による作用曲げモーメント等の算出方法は 下記の平板の曲げ解析法一覧表より [1 平板曲げ理論による解析 ( 理論解 ) による方法 ] 平板曲げ理論による部材の等分布荷重または節点の集中荷重を受ける薄板のたわみと断面力の計算ソフト 鉄筋コンクリート床版や鋼板などの平板 ( 薄板 ) の等分布や集中荷重による作用曲げモーメント等の算出方法は 下記の平板の曲げ解析法一覧表より [1 平板曲げ理論による解析 ( 理論解 ) による方法 ] と [2 格子モデルによる微小変位理論 ( 棒部材の簡易格子モデル )] および [3 簡易算出式による方法

More information

Microsoft Word - 第5章.doc

Microsoft Word - 第5章.doc 第 5 章表面ひび割れ幅法 5-1 解析対象 ( 表面ひび割れ幅法 ) 表面ひび割れ幅法は 図 5-1 に示すように コンクリート表面より生じるひび割れを対象とした解析方法である. すなわち コンクリートの弾性係数が断面で一様に変化し 特に方向性を持たない表面にひび割れを解析の対象とする. スラブ状構造物の場合には地盤を拘束体とみなし また壁状構造物の場合にはフーチングを拘束体として それぞれ外部拘束係数を定める.

More information

<4D F736F F F696E74202D AB97CD8A E631318FCD5F AB8D5C90AC8EAE816A2E B8CDD8AB B83685D>

<4D F736F F F696E74202D AB97CD8A E631318FCD5F AB8D5C90AC8EAE816A2E B8CDD8AB B83685D> 弾塑性構成式 弾塑性応力 ひずみ解析における基礎式 応力の平衡方程式 ひずみの適合条件式 構成式 (), 全ひずみ理論 () 硬化則 () 塑性ポテンシャル理論の概要 ひずみ 応力の増分, 速度 弾性丸棒の引張変形を考える ( 簡単のため 公称 で考える ). 時間増分 dt 時刻 t 0 du u 時刻 t t 時刻 t t のひずみ, 応力 u, 微小な時間増分 dt におけるひずみ増分, 応力増分

More information

1

1 半剛節が部材上の任意点にある部材剛性方程式 米子高専 川端康洋 稲田祐二. ピン半剛節を有する部材の解析の歴史 ()940 二見秀雄材の途中にピン接合点を有するラーメン材の算式とその応用建築学会論文集 つのピン節を含む部材の撓角法基本式と荷重項ピン節を含む部材の撓角法基本式と荷重項が求められている 以降 固定モーメント法や異形ラーメンの解法への応用が研究された 戦後には 関連する論文は見当たらない

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 材料実験演習 第 6 回 2015.05.17 スケジュール 回 月 / 日 標題 内容 授業種別 時限 講義 演習 6,7 5 月 17 日 8 5 月 24 日 5 月 31 日 9,10 6 月 7 日 11 6 月 14 日 講義 曲げモーメントを受ける鉄筋コンクリート(RC) 梁の挙動その1 構造力学の基本事項その2 RC 梁の特徴演習 曲げを受ける梁の挙動 実験 鉄筋コンクリート梁の載荷実験レポート

More information

Microsoft PowerPoint - 10.pptx

Microsoft PowerPoint - 10.pptx 0. 固有値とその応用 固有値と固有ベクトル 2 行列による写像から固有ベクトルへ m n A : m n n m 行列によって線形写像 f R R A が表せることを見てきた ここでは 2 次元平面の行列による写像を調べる 2 = 2 A 2 2 とし 写像 まず 単位ベクトルの像を求める u 2 x = v 2 y f : R A R を考える u 2 2 u, 2 2 0 = = v 2 0

More information

memo

memo 数理情報工学特論第一 機械学習とデータマイニング 4 章 : 教師なし学習 3 かしまひさし 鹿島久嗣 ( 数理 6 研 ) kashima@mist.i.~ DEPARTMENT OF MATHEMATICAL INFORMATICS 1 グラフィカルモデルについて学びます グラフィカルモデル グラフィカルラッソ グラフィカルラッソの推定アルゴリズム 2 グラフィカルモデル 3 教師なし学習の主要タスクは

More information

(Microsoft Word - \216\221\227\277\201i\220\333\223\256\201jv2.doc)

(Microsoft Word - \216\221\227\277\201i\220\333\223\256\201jv2.doc) 宇宙工学基礎講義資料摂動 ( 松永担当分 ) ベクトル行列演算 ) 微分演算の定義 [ ] ) 微分公式 ( ベクトル記法と行列記法 ) E E ここで E は単位行列 チルダ演算は外積演算と等価の反対称行列を生成する演算 : ( ) ) 恒等演算式 : 次元列ベクトル ( ) ( ) ( ) ( ) ( ) E E ) ( ( )( ) ( )( ) ( )( ) ( ) ( ) ( ) ( )

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 材料実験演習 第 6 回 2017.05.16 スケジュール 回 月 / 日 標題 内容 授業種別 時限 実験レポート評価 講義 演習 6,7 5 月 16 日 8 5 月 23 日 5 月 30 日 講義 曲げモーメントを受ける鉄筋コンクリート(RC) 梁の挙動その1 構造力学の基本事項その2 RC 梁の特徴演習 曲げを受ける梁の挙動 実験 鉄筋コンクリート梁の載荷実験レポート 鉄筋コンクリート梁実験レポート作成

More information

第1章 単 位

第1章  単  位 H. Hmno 問題解答 問題解答. 力の釣合い [ 問題.] V : sin. H :.cos. 7 V : sin sin H : cos cos cos 上第 式より これと第 式より.. cos V : sin sin H : coscos cos 上第 式より これと第 式より.98. cos [ 問題.] :. V :. : 9 9. V :. : sin V : sin 8.78 H

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 球面波 回折 (. グリーンの定理. キルヒホッフの積分定理 3. ホイヘンスの原理 4. キルヒホッフの回折公式 5. ゾンマーフェルトの放射条件 6. 補足 付録 (90~904 のアプローチ : 回折 (diffaction までの道標. 球面波 (pheical wave のみ対象 : スカラー表示. 虚数単位 i を使用する 3. お詫び : 自己流かつ説明が飛躍する場面があります

More information

Microsoft Word - 量子化学概論v1c.doc

Microsoft Word - 量子化学概論v1c.doc この講義ノートは以下の URL から入手できます http://www.sbchem.kyoto-u.ac.p/matsuda-lab/hase_fles/educaton_jh.html 量子化学概論講義ノート 3 正準 HF(Canoncal HF) 方程式 制限 HF(RHF) 方程式 HF-Roothaan(HFR) 方程式 京都大学工学研究科合成 生物化学専攻長谷川淳也 HF 解の任意性について式

More information

Microsoft Word - elastostatic_analysis_ docx

Microsoft Word - elastostatic_analysis_ docx 静弾性解析 1. 定式化と離散化の概要 1.1 線形弾性体の定式化 Fig.1 に示される線形弾性体の境界値問題を考える. ただし, 微小変形を仮定する.Fig.1 N において,N を次元数とすると, は有界領域であり, はその境界である. ここで, d は変位境界条件が与えられる境界, t は応力境界条件が与えられる境界である. d と t の間には, d および t d の関係が成り立つとする.

More information

<4D F736F F D B F090CD82C982C282A282C42E646F63>

<4D F736F F D B F090CD82C982C282A282C42E646F63> 1/8 温度応力解析についてアサヒコンサルタント 佃建一 1. はじめに解析は有限要素法 (FEM) と言われる数値解析手法で行ないます 一言で表現すれば 微分方程式で記述できるような物理現象 ( 熱現象 構造力学など ) に対して コンピュータを用いて近似解を求める手法です 右図のように解析する領域 ( 構造物 地盤 ) を 3 角形や 4 角形 ( 二次元や三次元 ) に細分割し ( 要素 )

More information

上式を整理すると d df - N = 両辺を で割れば df d - N = (5) となる ところで

上式を整理すると d df - N = 両辺を で割れば df d - N = (5) となる ところで 長柱の座屈 断面寸法に対して非常に長い柱に圧縮荷重を加えると 初期段階においては一様圧縮変形を生ずるが ある荷重に達すると急に横方向にたわむことがある このように長柱が軸圧縮荷重を受けていて突然横方向にたわむ現象を座屈といい この現象を示す荷重を座屈荷重 cr このときの応力を座屈応力 s cr という 図 に示すように一端を鉛直な剛性壁に固定された長柱が自 図 曲げと圧縮を受けるはり + 由端に圧縮力

More information

Microsoft Word - thesis.doc

Microsoft Word - thesis.doc 剛体の基礎理論 -. 剛体の基礎理論初めに本論文で大域的に使用する記号を定義する. 使用する記号トルク撃力力角運動量角速度姿勢対角化された慣性テンソル慣性テンソル運動量速度位置質量時間 J W f F P p .. 質点の並進運動 質点は位置 と速度 P を用いる. ニュートンの運動方程式 という状態を持つ. 但し ここでは速度ではなく運動量 F P F.... より質点の運動は既に明らかであり 質点の状態ベクトル

More information

Microsoft PowerPoint - 9.pptx

Microsoft PowerPoint - 9.pptx 9/7/8( 水 9. 線形写像 ここでは 行列の積によって 写像を定義できることをみていく また 行列の積によって定義される写像の性質を調べていく 拡大とスカラー倍 行列演算と写像 ( 次変換 拡大後 k 倍 k 倍 k 倍拡大の関係は スカラー倍を用いて次のように表現できる p = (, ' = k ' 拡大前 p ' = ( ', ' = ( k, k 拡大 4 拡大と行列の積 拡大後 k 倍

More information

Microsoft PowerPoint - 9.pptx

Microsoft PowerPoint - 9.pptx 9. 線形写像 ここでは 行列の積によって 写像を定義できることをみていく また 行列の積によって定義される写像の性質を調べていく 行列演算と写像 ( 次変換 3 拡大とスカラー倍 p ' = ( ', ' = ( k, kk p = (, k 倍 k 倍 拡大後 k 倍拡大の関係は スカラー倍を用いて次のように表現できる ' = k ' 拡大前 拡大 4 拡大と行列の積 p ' = ( ', '

More information

コンクリート工学年次論文集 Vol.33

コンクリート工学年次論文集 Vol.33 論文鉄筋腐食に伴うコンクリート部材のひび割れ進展に関する解析的研究 三浦幸太 *1 * 冨田充宏 要旨 : 鉄筋腐食によるコンクリート部材のひび割れ形状について, 鉄筋径, かぶり厚を解析パラメータとし, 剛体 -ばねモデルを用いた解析により検討した 鉄筋を1 本配置した場合の解析結果は既往のひび割れ算定式による結果と一致し, 鉄筋径とかぶり厚の関係によってひび割れ形状が異なる現象を精度よく再現できた

More information

Microsoft PowerPoint - 第7章(自然対流熱伝達 )_H27.ppt [互換モード]

Microsoft PowerPoint - 第7章(自然対流熱伝達 )_H27.ppt [互換モード] 第 7 章自然対流熱伝達 伝熱工学の基礎 : 伝熱の基本要素 フーリエの法則 ニュートンの冷却則 次元定常熱伝導 : 熱伝導率 熱通過率 熱伝導方程式 次元定常熱伝導 : ラプラスの方程式 数値解析の基礎 非定常熱伝導 : 非定常熱伝導方程式 ラプラス変換 フーリエ数とビオ数 対流熱伝達の基礎 : 熱伝達率 速度境界層と温度境界層 層流境界層と乱流境界層 境界層厚さ 混合平均温度 強制対流熱伝達 :

More information