<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>
|
|
|
- とき のたけ
- 9 years ago
- Views:
Transcription
1
2 誤 り 訂 正 技 術 の 基 礎 サンプルページ この 本 の 定 価 判 型 などは, 以 下 の URL からご 覧 いただけます このサンプルページの 内 容 は, 第 1 版 発 行 時 のものです
3 e mail editor@morikitacojp FAX e mail info@jcopyorjp
4 i CD CD 10 1 CD DVD 1
5 ii DVB-S2 LDPC 2 2 sum-product sum-product sum-product LDPC
6 iii,
7 iv
8 v 6 F q I II BCH sum-product sum-product 132
9 vi MAP MAP (FB) FB MAP LDPC I LDPC LDPC LDPC II sum-product sum-product
10 vii I[condition] [a, b] condition 1 0 a b = := A A A, A A A B A B A B A B A\B A B a A a A B A B A O(g(n)) n f(n) C g(n) C f(n) =O(g(n)) d h (a, b) a, b w h (a) a ln(x) F 2 F q R tanh A t Z (n,w) Prob[event] arg max x D f(x) arg min x D f(x) x A mod B 2 q q A n w 2 event f(x) x D f(x) x D x A B A, B A b A A\{b} A\b 2 2 +, 1+1=2 1+1=0 0
11
12 X 2 X = {0, 1} n X code X n C X C n C codeword n C code length 1 X = {0, 1} X 3 = {000, 001, 010, 011, 100, 101, 110, 111} C = {000, 011, 101, 110} C C = {000, 111} X = {0, 1} 2 q q 2
13 code rate C R R = log 2 C log 2 X n (21) C =2 k k X = {0, 1} 2 log 2 2=1 21 R R = log 2 C log 2 X n = log 2 2k log 2 2 n = k n (22) 2 n R n C minimum distance C C d =min{d h (a, b) :a, b C, a b} (23) 3 C = {000, 011, 101, 110} 2 3 {000, 111} d =3 C X n 1 7 F q k =1 n =3 1/3
14 C = {000, 011, 101, 110} 4 {0, 1, 2, 3} 0 000, 1 011, 2 101, encoder M L M =[1,L] C L bijection φ : M C φ φ m 1 m 2 (m 1,m 2 M) φ(m 1 ) φ(m 2 ) c C φ(m) =c m M φ 3 φ 1 φ 1 m M m = φ 1 (φ(m)) ˆX ˆM 3 φ(m) = 000, m =0 (24) 111, m =1 3 φ M C φ M C f : X Y y Y, x X, f(x) =y a, b X(a b),f(a) f(b) f
15 16 2 m m = M = {0, 1} k {0, 1} n 2 2 n 2 k C φ(m) Y Y n Y Y ˆX ˆX ˆM = φ 1 ( ˆX) 231 Y ˆX M C {c 1, c 2,,c M } 4
16 23 17 R(c i )(i [1,M]) R(c i ) Y n R(c i )(i [1,M]) R(c i ) decoding rule 1 Y R(c i ) i j [1,M] Y / R(c j ) ˆX = c i 2 Y R(c i ) ˆX = 3 Y Y R(c j1 ),Y R(c j2 ),,Y R(c js ) c j1, c j2,,c js 5 R(c i ) c i R(c i ) c i 1 3 D1 R(000) = {000, 001, 010, 100}, R(111) = {111, 110, 101, 011} ψ : Y n C { } ψ Y ˆX = ψ(y ) 22 5
17 ψ(y ) ˆX = X 2 ˆX X 3 ˆX = c i Y R(c i ) R(c j ) P c P e P d P c + P e + P d = n C 2 n 1 > 2 >
18 23 19 minimum distance decoding rule C = {c 1, c 2,,c M } c i C c i R(c i ) R(c i ) = {y {0, 1} n : c C\{c i } d h (y, c i ) d h (y, c)} (25) i [1,M] C\{c i } C {c i } 23(a) ˆX Y ˆX =argmin d h(y,x) (26) X C arg min X C Y 23
19 r r 2 4 bounded distance decoding rule C = {c 1, c 2,,c M } R(c i ) = {y {0, 1} n : d h (c i, y) r}, i [1,M] (27) r d 1 r 2 d C x x 23(b) r (d 1)/2 d 1 2r 2 2 d 1 = d 1 (28) 2 2 d r( (d 1)/2 ) 235
20 24 21 n = C 7 R = 800/1000 = 4/ n R 2 O(n2 n ) 8 n n O(n) O(n 2 ) HDD CD DVD LDPC f(n) C g(n) f(n) C g(n) n f(n) =O(g(n)) [10]
21 22 2 HDD CD DVD LDPC 13 LDPC sum-product CD DVD product code
22 C = {0000, 1010, 0101, 1111} 1 C 2 C 22 2 C = {00000, 11100, 00111, 11011} C C = {00000, 11111} C r =1 1 C 2 p 2 P c P d P e 3 P c + P d + P e = (a, b)(a, b {0, 1}) (a, b) (ā, b) ā, b a, b C = {00, 01} (a, b) =(0, 0) (a, b) =(0, 1)
23
24 71 7 I F q Reed-Solomon code MDS CD DVD F q q n = q 1 ( ) α 0 α 1 α 2 α q 2 H = (α 0 ) 2 (α 1 ) 2 (α 2 ) 2 (α q 2 ) 2 ( ) 1 α α 2 α n 1 = 1 α 2 α 4 α 2(n 1) (71) F q C = {x F n q : Hx t = 0} (72) α F q C n = q 1
25 72 7 I k = n 2 d =3 F 2 8 n = 255,k = 253,d=3 C 1 C 2 α i α j = αi α 2j α j α 2i α 2i α 2j = α i+2j α j+2i = α i+j (α j α i ) (73) i, j [0,q 2] (i j) α i+j 0 α j α i 0 0 (α i,α 2i ) t (α j,α 2j ) t H C C 3 1 C X F n q Y = X + E E n F q i i [1,n] (error magnitude) e F q Y S = HY t X HX t =0 S = HY t = H(X + E) t = HE t HE t S = s 1 = eαi 1 (74) s 2 eα 2(i 1) s 2 /s 1 s 2 = eα2(i 1) s 1 eα i 1 = α i 1 (75) i
26 72 73 s 2 1/s 2 s 2 1 = e2 α 2(i 1) = e (76) s 2 eα 2(i 1) i e E Ê ˆX = Y Ê ˆX C determinant F q n n A = {a ij } (i [1,n],j [1,n]) A = { n i=1 ( 1)i+j a ij A ij, n > 1 a 11, n =1 (77) j [1,n] A ij A i j (n 1) (n 1) 1 F q 2 2 A = a b c d A A = ad bc 1
27 74 7 I 1 F q n n a 1 a 2 a n a i i a 1 a 2 aa i a n = a a 1 a 2 a i a n i [1,n] a F q 2 F q n n a 1 a 2 a n 3 a 1 a 2 a i + a j a n = a 1 a 2 a i a n + a 1 a 2 a j a n F q n n A t = A 4 F q n n AB = A B 5 F q n n a 1 a 2 a n a 1 a 2 a n 0 a 1 a 2 a n 6 b 1,b 2,,b n F q B 0 B = n i=1 b i x 1 x 2 x 3 x n X = x 2 1 x 2 2 x 2 3 x 2 n (78) x n 1 1 x n 1 2 x n 1 3 xn n 1 Vandermonde X x 1 x 2 x 3 x n x 2 1 x 2 2 x 2 3 x 2 n = i x j ) (79) i>j(x x n 1 1 x n 1 2 x n 1 3 x n 1 n
28 i>j i, j [1,n] i, j x i x j X X 73 Reed-Solomon code F q 1 α α 2 α n 1 1 α 2 α 4 α 2(n 1) H = 1 α 3 α 6 α 3(n 1) 1 α 2t α 4t α 2t(n 1) (710) F q C = {c F n q : Hc t = 0} (711) n = q 1 t [1, (q 2)/2 ] (712) H 2t H sub α j 1 α j 2 α j 2t α 2j 1 α 2j 2 α 2j 2t H sub = (713) α 2tj 1 α 2tj 2 α 2tj 2t j i [0,n 1] (i [1, 2t]) j k j l (k, l [1, 2t],k l) H sub 2
29 76 7 I α j 1 α j 2 α j 2t α 2j 1 α 2j 2 α 2j 2t H sub = α 2tj 1 α 2tj 2 α 2tj 2t = α j1 α j α j 1 α j 2 α j 2t 2t α (2t 1)j 1 α (2t 1)j 2 α (2t 1)j 2t (714) 1 H sub 0 H sub 5 H 2t C k k = n 2t H 2t C d d 2t +1 d n k +1=n n +2t +1=2t +1 d =2t +1 F q H F q n = q 1 k = n 2t d = n k +1=2t n O(n 3 ) t 3 WWPeterson 1960 Error-Correcting Codes
30 n = q 1 C X =(X 0,,X n 1 ) C 0 Y =(Y 0,,Y n 1 ) F n q Y = X+E E =(E 0,,E n 1 ) F n q w h (E) =ν 1 ν t Y S =(S 1,S 2,,S 2t ) S = HY t 2 S = HY t = H(X + E) t = HE t i [1, 2t] ( ) S i = 1 α i α 2i α (n 1)i E 0 E 1 (715) E n 1 S E HQ T = S (716) Q F n q 5 E t Berlekamp-Massey-Sakata Euclid Sugiyama-Kasahara-Hirasawa-Namekawa Welch-Berlekamp Feng-Rao Sudan Euclid O(n 2 ) t 5
31 78 7 I E t t S E t 716 E E E E E = {i [0,n 1] : Ei 0} (717) E E = ν t ν E E E E = {j 1,j 2,,j ν } x k = α j k (k [1,ν]) e k = Ejk (k [1,ν]) j / E E E j =0 715 ν S i = e k x i k, i [1, 2t] (718) k=1 S 1 x 1 x 2 x 3 x ν 1 x ν S 2 x 2 1 x 2 2 x 2 3 x 2 ν 1 x 2 ν = S 2t x 2t 1 x 2t 2 x 2t 3 x 2t ν 1 x 2t ν e 2 e 1 e ν (719) x k (k [1,ν]) e k (k [1,ν]) 742 σ(z) E ν {x 1 1,x 1 2,,x 1 ν } ν σ 1,,σ ν ν σ(z) =1+ σ k z k (720) k=1 σ(z) x 1 j ν σ(x 1 j )=1+ k=1 (j [1,ν]) σ k x k j = 0 (721)
32 74 79 ν j=1 e jx i+ν j σ(x 1 j )(i [1,ν]) ( ) ν ν ν e j x i+ν j σ(x 1 j )= e j x i+ν j 1+ σ k x k j (722) j=1 = j=1 ν j=1 = S ν+i + e j x i+ν j + ν k=1 ν σ k k=1 j=1 e j x ν+i k j (723) ν σ k S ν+i k (724) k=1 = 0 (725) σ(x 1 j )= 0(j [1,ν]) ν S ν+i = σ k S ν+i k, i [1,ν] (726) k=1 S 1 S 2 S 3 S ν 1 S ν S 2 S 3 S 4 S ν S ν+1 S 3 S 4 S 5 S ν+1 S ν+2 S 4 S 5 S 6 S ν+2 S ν+3 S ν 1 S ν S ν+1 S 2ν 3 S 2ν 2 σ ν σ ν 1 σ ν 2 σ ν 3 σ 2 = S ν+1 S ν+2 S ν+3 S ν+4 S 2ν 1 S ν S ν+1 S ν+2 S 2ν 2 S 2ν 1 σ 1 S 2ν (727) Berlekamp-Massey Sugiyama ν ν ν Y S i (i [1, 2t]) ν t 727 S 1,S 2,,S 2ν (σ 1,σ 2,,σ ν )
33 80 7 I σ 1,σ 2,,σ ν σ(z) σ(z) 0 F q Chien search 721 x 1,x 2,,x ν 743 x 1,x 2,,x ν e 1,e 2,,e ν 718 S 1 x 1 x 2 x 3 x ν 1 x ν e 1 S 2 x 2 1 x 2 2 x 2 3 x 2 ν 1 x 2 ν e 2 = (728) S ν x ν 1 x ν 2 x ν 3 x ν ν 1 x ν ν e ν x 1 x 2 x ν x 2 1 x 2 2 x 2 ν x 1 x 2 x ν = x 1 x 2 x ν x ν 1 x ν 2 x ν ν x ν 1 1 x ν 1 2 x ν 1 ν 0 (729) e 1,e 2,,e ν 744 ν ν ν 1 τ t
34 74 81 D τ = S 1 S 2 S τ S 2 S 3 S τ+1 S τ S τ+1 S 2τ 1 (730) τ = ν D τ 0 τ >ν D τ =0 k [ν +1,t] e k =0,x k = e 1 x T = x 1 x 2 x τ, Q 0 e 2 x 2 0 = x τ 1 1 x τ 1 2 x τ 1 τ 0 0 e τ x τ D τ D τ = TQT t = T Q T t (731) 75 τ>ν Q 0 Q = D τ =0 τ = ν Q 6 x 1,x 2,,x τ F q T 0 D τ 0 ν τ = t τ D τ D τ 0 τ = ν 745 Peterson algorithm Y ˆX Y S 1,S 2,,S 2t τ := t
35 82 7 I 2 D τ 730 D τ = 0 τ := τ 1 3 ν := τ 727 σ 1,σ 2,,σ ν 4 σ(z) x 1,x 2,,x ν Ê =(e 1,e 2,,e ν ) 6 Ê Y ˆX = Y Ê ν t t 746 F α α 2 α 3 α 4 α 5 α 6 H = 1 α 2 α 4 α 6 α 8 α 10 α 12 1 α 3 α 6 α 9 α 12 α 15 α 18 1 α 4 α 8 α 12 α 16 α 20 α 24 C α 7 =1 1 α α 2 α 3 α 4 α 5 α 6 1 α 2 α 4 α 6 α 1 α 3 α 5 H = 1 α 3 α 6 α 2 α 5 α α 4 1 α 4 α α 5 α 2 α 6 α 3 (732) (733) C 2 E =(0, 0, 0,α 5, 0,α 2, 0) X C Y = X + E HY t = H(X + Y ) t = HE t
36 83 S 1 S 2 S 3 S 4 = α 5 α 3 α 6 α 2 α 5 + α 2 α 5 α 3 α α 6 = α 3 1 α 1 (734) S 1 S 2 S 2 S 3 = S 1S 3 S 2 S 2 = α (735) ν =2 727 S 1 S 2 σ 2 = S 3 (736) S 2 S 3 σ 1 S 4 α3 1 σ 2 = α (737) 1 α σ 1 1 σ 1 = α 2,σ 2 = α σ(z) = 1+σ 1 z + σ 2 z 2 =1+α 2 z + αz 2 σ(z) F 2 3 σ(z) σ(α 4 )=0 σ(α 2 )=0 α 4 = α 3 α 2 = α 5 6 x 1 = α 3,x 2 = α α3 α 5 e 1 = α3 (738) α 6 α 3 e 2 1 e 1 = α 5,e 2 = α 2 71 F 2 3 F 2 z 3 + z +1 α 53 ( ) 1 α α 2 α 3 α 4 α 5 α 6 H = 1 α 2 α 4 α 6 α 8 α 10 α 12 6 x F q x y =1 y x y x 1 α 3 α 4 =1 α 3 = α 4 5
37 84 7 I E =(0,α 2, 0, 0, 0, 0, 0) 1 Y = X + E 2 Ê 72 F ta b 73 tc d, a + x b c + y d, a c b d a b c d F 2 3 F 2 z 3 + z +1 α α α 2 α 4 α 2 α 4 α 75 ν =2,τ =2 D τ = TQT t = T Q T t E =(0,α 2,α,0, 0, 0, 0)
38 LDPC I low-density parity check LDPC LDPC sum-product LDPC LDPC LDPC LDPC LDPC F q F 2 2 LDPC LDPC 2 2 m n H (0 <m<n) 2 C C = {x F n 2 : Hxt = 0} H 1 C LDPC 1 Robert G Gallager LDPC 60 Information Theory and Reliable Communication 2 LSI LDPC LDPC 90 DMacKay LDPC LDPC
39 LDPC I C n m C R R 1 m/n LDPC m = 5000,n = H 1 w r =6 1 w c =3 C LDPC LDPC {H 1,H 2,,H n,} H n (n =1, 2,) n αn α 0 α 1 n H n 05n n n 3 H n 1 3n 1 n 1 n n 2 LDPC LDPC sum-product
40 131 LDPC 161 LDPC sum-product sum-product 3 sum-product 1 4 LDPC O(n) 1 O(n) LDPC Tanner graph 2 m n H i j h ij 2 5 G(H) =(V,E) V = V 1 V 2 V 1 = {v1,v 2,,v n }, V 2 = {c1,c 2,,c m } (131) V 1 V 2 h ij =1(i [1,m],j [1,n]) (i, j) v i c j e ij E h ij =0(i [1,m],j [1,n]) v i c j 2 G(H) H i c i j v j h ij =1 c i v j H LDPC 4 n 5 2 V V 1,V 2 V 1 V 2
41 LDPC I 132 v 1,,v c 1 v 1,v 2,v 3 v 1 + v 2 + v 3 =0 LDPC 2 n O(n) LDPC sum-product 132 v 2,v 3 c 1,c LDPC LDPC LDPC LDPC LDPC LDPC LDPC w c w r LDPC LDPC LDPC LDPC w c,w r LDPC LDPC LDPC LDPC LDPC
42 131 LDPC 163 w c w r LDPC 94 LDPC k 6 L k = {i [1,n]:deg(v i)=k} n (132) deg(v) v k % LDPC sum-product sum-product LDPC 2 w c =2 w r =4 H
43 LDPC I H 1 = (133) H 1 8 H 2 = (134) H 1 H H = (135) , 4 w r 1 0 n h 1 H 1 h 1 s(h 1 ) H 1 = s 2 (h 1 ) s n/wr 1 (h 1 ) (136) s( ) w r 4,2 H 2,,H wc H 1 H 2 H = (137) H wc w c,w r H LDPC LDPC 6 H G G 8 8! 9
44 132 LDPC LDPC LDPC 2 sum-product sum-product 2 2 sumproduct 2 sum-product sum-product {0, 1} 3 {0, 1,e} e 0, 1 1 p p p 2 2 m n H LDPC H G O(n 2 )
45 LDPC I C C x 2 y =(y 1,y 2,,y n ) {0, 1,e} n c A(c) v B(v) sum-product sum-product 1 v N(v) =y i c c e 2 v c B(v) M v c M v c B(v)\c e v N(v) e M v c = e M v c B(v)\c e 3 c v A(c) M c v M c v A(c)\v e M c v = e M c v F M c v = v A(c)\v M v c 134 sum-product 3
46 132 LDPC v e b {0, 1} N(v) =e N(v) =b a LDPC 0, 0, 0, 0, 0, 0, 0, 0 Y =(e, e, e, e, 0, 0, 0, 0) v 1,v 2,,v 8 c 1,,c 4 a N(v) b c 4 c 4 v 6,v 8 (M v6 c 4 = M v8 c 4 =0) v 3 M c4 v 3 = M v6 c 4 + M v8 c 4 =0 0 v 3 N(v 3 )=0 3 c d 3 0 LDPC sum-product
47 LDPC I LDPC 9 sum-product density evolution sum-product sum-product d k 11 p i i e q i 11 d k 15
48 132 LDPC 169 i e sum-product p 2 i +1 e e d 1 e 12 p i+1 = pq d 1 i (138) i e q i k 1 e 13 q i =1 (1 p i ) k 1 (139) p i p i+1 = p(1 (1 p i ) k 1 ) d 1 (1310) p 0 = p 2 sum-product p i+1 = g(p i ) p 0 = p g(x) =p(1 (1 x) k 1 ) d 1 d =3,k =6 p i 136 x y y = x y = g(x) p =04 p i p 1 = g(p 0 ) (p 0,p 1 ) x =04 y = g(x) y = x x = p 1 12 sum-product p sum-product p166
49 LDPC I 136 p i p =04 y = g(x) (p 1,p 2 ) y = g(x) (p i,p i+1 ) 136 p i p i 0 14 p =04 sum-product 0 p =0451 y = x y = g(x) 137 p i p i p = p i 0 0
50 171 p d =3,k = LDPC [5] e, e, 0, 0, 0 sum-product 132 m n H H h 1,,h n T = {t 1,t 2,,t s } [1,n] T H(T ) =(h t1 h t2 h ts ) H(T ) 1 T sum-product H G G girth LDPC LDPC sum-product LDPC
51
52 , 26, 27, 31, 38, , 4,31, 105, 146, 183, 193, , 161 ACS 119, 121 AWGN 106, 120, 183 BCH 94 BCH 42, 92, 93, 187 BCJR 116, 147, 156 LDPC 22, 49, 133, 159, 162 MAP 101, 145, 176 min-sum 183 SN 107 sum-product 132, 135, 138, 160, 174 sum-product 22, 166, 175 u u + v 43 41, 78, 80 78, 82 17, 18, 31, 38, , 78, 80, , 14, 15, 19 11, 13, , 46, , 39, , , 137, , 80, , , , 43, , 157, , , , 99, 131, 140, , , , , , , 26, 27, , , , , 7,17 130, , 21, 28, 103, 122, , 45 29, 30, 40, 67, 68, , , 41 7, 18, , 85 14, 30, 38, 39, 45, 49, 72, 94, 192
53 222 19, 48, 105, , 48, , , 71, 76 49, 102, 103, 105, 110, , 39 26, 38, , 101, 144, 151, , 102, , 10, , 99, 129, , 135, 138, 149, , 156, 173, 182 3, 31 85, 86, 94 29, 42, 76, 86, 95, , , 165, , , 33, 41, 72, 77, 177, , 36, 41 MAP 145, , 43, 62, 68 85, 86, 94 LDPC 162 7, 18 22, , , 29, 31, 61 51, , 87, , , 71, 76, 77, , , 19, , 124, , , , 122, 152, 186, , , , , 27, , , , , , , 115, 126, 152, , , 6 20, 46 5, 20 5, 47 39, 40, , 49, 156, 177 LDPC 162
54 223 76, 81 22, 117, , 132, 135, 147, 161, 172, , 4, 16, 97 3, 16, 101, , 7, 17 6, 7, 17, 19, 49, 111 3, 13 3, 15, 16, 28, 68, 86, 87, 164 3, 15, 87, 156 6, 15, 16, , 27, 63 10, 12, 196, , 14, 62, , 4, 13, 24, 30, 45 85, 93 4, 13, , 28, MAP 101 2, 4, 7, 14, 18, 101, 108, 111, , , , , , 101, , , 136, 141, 175, , , , , , 105 1, 3, 15, 139, , 24, , 102, , , 22, 71, 75, 85, , 44, , 142, 161, 162,
55 c FAX http: wwwmorikitacojp Printed in Japan ISBN
one way two way (talk back) (... ) C.E.Shannon 1948 A Mathematical theory of communication. 1 ( ) 0 ( ) 1
1 1.1 1.2 one way two way (talk back) (... ) 1.3 0 C.E.Shannon 1948 A Mathematical theory of communication. 1 ( ) 0 ( ) 1 ( (coding theory)) 2 2.1 (convolution code) (block code), 3 3.1 Q q Q n Q n 1 Q
II Time-stamp: <05/09/30 17:14:06 waki> ii
II [email protected] 18 1 30 II Time-stamp: ii 1 1 1.1.................................................. 1 1.2................................................... 3 1.3..................................................
「産業上利用することができる発明」の審査の運用指針(案)
1 1.... 2 1.1... 2 2.... 4 2.1... 4 3.... 6 4.... 6 1 1 29 1 29 1 1 1. 2 1 1.1 (1) (2) (3) 1 (4) 2 4 1 2 2 3 4 31 12 5 7 2.2 (5) ( a ) ( b ) 1 3 2 ( c ) (6) 2. 2.1 2.1 (1) 4 ( i ) ( ii ) ( iii ) ( iv)
x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)
x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy
61“ƒ/61G2 P97
σ σ φσ φ φ φ φ φ φ φ φ σ σ σ φσ φ σ φ σ σ σ φ α α α φα α α φ α φ α α α φ α α α σ α α α α α α Σα Σ α α α α α σ σ α α α α α α α α α α α α σ α σ φ σ φ σ α α Σα Σα α σ σ σ σ σ σ σ σ σ σ σ σ Σ σ σ σ σ
r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B
1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n
4 4. A p X A 1 X X A 1 A 4.3 X p X p X S(X) = E ((X p) ) X = X E(X) = E(X) p p 4.3p < p < 1 X X p f(i) = P (X = i) = p(1 p) i 1, i = 1,,... 1 + r + r
4 1 4 4.1 X P (X = 1) =.4, P (X = ) =.3, P (X = 1) =., P (X = ) =.1 E(X) = 1.4 +.3 + 1. +.1 = 4. X Y = X P (X = ) = P (X = 1) = P (X = ) = P (X = 1) = P (X = ) =. Y P (Y = ) = P (X = ) =., P (Y = 1) =
2
1 2 3 4 5 6 7 8 9 10 I II III 11 IV 12 V 13 VI VII 14 VIII. 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 _ 33 _ 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 VII 51 52 53 54 55 56 57 58 59
untitled
i ii iii iv v 43 43 vi 43 vii T+1 T+2 1 viii 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 a) ( ) b) ( ) 51
i
14 i ii iii iv v vi 14 13 86 13 12 28 14 16 14 15 31 (1) 13 12 28 20 (2) (3) 2 (4) (5) 14 14 50 48 3 11 11 22 14 15 10 14 20 21 20 (1) 14 (2) 14 4 (3) (4) (5) 12 12 (6) 14 15 5 6 7 8 9 10 7
II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K
II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 () - 1 - - 2 - - 3 - - 4 - - 5 - 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx
4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan
1 c Koichi Suga, ISBN
c Koichi Suga, 4 4 6 5 ISBN 978-4-64-6445- 4 ( ) x(t) t u(t) t {u(t)} {x(t)} () T, (), (3), (4) max J = {u(t)} V (x, u)dt ẋ = f(x, u) x() = x x(t ) = x T (), x, u, t ẋ x t u u ẋ = f(x, u) x(t ) = x T x(t
<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>
電気電子数学入門 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/073471 このサンプルページの内容は, 初版 1 刷発行当時のものです. i 14 (tool) [ ] IT ( ) PC (EXCEL) HP() 1 1 4 15 3 010 9 ii 1... 1 1.1 1 1.
n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................
入門ガイド
ii iii iv NEC Corporation 1998 v P A R 1 P A R 2 P A R 3 T T T vi P A R T 4 P A R T 5 P A R T 6 P A R T 7 vii 1P A R T 1 2 2 1 3 1 4 1 1 5 2 3 6 4 1 7 1 2 3 8 1 1 2 3 9 1 2 10 1 1 2 11 3 12 1 2 1 3 4 13
<4D6963726F736F667420506F776572506F696E74202D208376838C835B83938365815B835683878393312E707074205B8CDD8AB78382815B83685D>
i i vi ii iii iv v vi vii viii ix 2 3 4 5 6 7 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
SC-85X2取説
I II III IV V VI .................. VII VIII IX X 1-1 1-2 1-3 1-4 ( ) 1-5 1-6 2-1 2-2 3-1 3-2 3-3 8 3-4 3-5 3-6 3-7 ) ) - - 3-8 3-9 4-1 4-2 4-3 4-4 4-5 4-6 5-1 5-2 5-3 5-4 5-5 5-6 5-7 5-8 5-9 5-10 5-11
X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2
...J......1803.QX
5 7 9 11 13 15 17 19 21 23 45-1111 48-2314 1 I II 100,000 80,000 60,000 40,000 20,000 0 272,437 80,348 82,207 81,393 82,293 83,696 84,028 82,232 248,983 80,411 4,615 4,757 248,434 248,688 76,708 6,299
(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y
(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b
微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.
微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)
H28.4 / 11 28 7 1 28 28 1 27 29 30 4 1 29 5 5 2 2 1 2 2 28 3 1 28 http://www.city.saitama.jp/005/001/018/003/p036471.html 2 28 7 11 28 8 31 3 CD DVD 4 4 5 7 11 8 31 9 1 9 30 10 1 10 31 11 1 11
フリーソフトでつくる音声認識システム ( 第 2 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.
フリーソフトでつくる音声認識システム ( 第 2 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/084712 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2007 10 1 Scilab 2 2017 2 1 2 1 ii 2 web 2007 9 iii
linearal1.dvi
19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352
LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University
LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2002 2 2 2 2 22 2 3 3 3 3 3 4 4 5 5 6 6 7 7 8 8 9 Cramer 9 0 0 E-mail:hsuzuki@icuacjp 0 3x + y + 2z 4 x + y
provider_020524_2.PDF
1 1 1 2 2 3 (1) 3 (2) 4 (3) 6 7 7 (1) 8 (2) 21 26 27 27 27 28 31 32 32 36 1 1 2 2 (1) 3 3 4 45 (2) 6 7 5 (3) 6 7 8 (1) ii iii iv 8 * 9 10 11 9 12 10 13 14 15 11 16 17 12 13 18 19 20 (2) 14 21 22 23 24
7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6
26 11 5 1 ( 2 2 2 3 5 3.1...................................... 5 3.2....................................... 5 3.3....................................... 6 3.4....................................... 7
これわかWord2010_第1部_100710.indd
i 1 1 2 3 6 6 7 8 10 10 11 12 12 12 13 2 15 15 16 17 17 18 19 20 20 21 ii CONTENTS 25 26 26 28 28 29 30 30 31 32 35 35 35 36 37 40 42 44 44 45 46 49 50 50 51 iii 52 52 52 53 55 56 56 57 58 58 60 60 iv
パワポカバー入稿用.indd
i 1 1 2 2 3 3 4 4 4 5 7 8 8 9 9 10 11 13 14 15 16 17 19 ii CONTENTS 2 21 21 22 25 26 32 37 38 39 39 41 41 43 43 43 44 45 46 47 47 49 52 54 56 56 iii 57 59 62 64 64 66 67 68 71 72 72 73 74 74 77 79 81 84
これでわかるAccess2010
i 1 1 1 2 2 2 3 4 4 5 6 7 7 9 10 11 12 13 14 15 17 ii CONTENTS 2 19 19 20 23 24 25 25 26 29 29 31 31 33 35 36 36 39 39 41 44 45 46 48 iii 50 50 52 54 55 57 57 59 61 63 64 66 66 67 70 70 73 74 74 77 77
turbo 1993code Berrou 1) 2[dB] SNR 05[dB] 1) interleaver parallel concatenated convolutional code ch
1 -- 2 6 LDPC 2012 3 1993 1960 30 LDPC 2 LDPC LDPC LDPC 6-1 LDPC 6-2 6-3 c 2013 1/(13) 1 -- 2 -- 6 6--1 2012 3 turbo 1993code Berrou 1) 2[dB] SNR 05[dB] 1) 6 1 2 1 1 interleaver 2 2 2 parallel concatenated
I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%
1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: [email protected], http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n
<4D6963726F736F667420576F7264202D204850835483938376838B8379815B83578B6594BB2D834A836F815B82D082C88C60202E646F63>
例 題 で 学 ぶ Excel 統 計 入 門 第 2 版 サンプルページ この 本 の 定 価 判 型 などは, 以 下 の URL からご 覧 いただけます. http://www.morikita.co.jp/books/mid/084302 このサンプルページの 内 容 は, 第 2 版 発 行 当 時 のものです. i 2 9 2 Web 2 Excel Excel Excel 11 Excel
Chapter9 9 LDPC sum-product LDPC 9.1 ( ) 9.2 c 1, c 2, {0, 1, } SUM, PROD : {0, 1, } {0, 1, } SUM(c 1, c 2,, c n ) := { c1 + + c n (c n0 (1 n
9 LDPC sum-product 9.1 9.2 LDPC 9.1 ( ) 9.2 c 1, c 2, {0, 1, } SUM, PROD : {0, 1, } {0, 1, } SUM(c 1, c 2,, c n ) := { c1 + + c n (c n0 (1 n 0 n)) ( ) 0 (N(0 c) > N(1 c)) PROD(c 1, c 2,, c n ) := 1 (N(0
262014 3 1 1 6 3 2 198810 2/ 198810 2 1 3 4 http://www.pref.hiroshima.lg.jp/site/monjokan/ 1... 1... 1... 2... 2... 4... 5... 9... 9... 10... 10... 10... 10... 13 2... 13 3... 15... 15... 15... 16 4...
( [1]) (1) ( ) 1: ( ) 2 2.1,,, X Y f X Y (a mapping, a map) X ( ) x Y f(x) X Y, f X Y f : X Y, X f Y f : X Y X Y f f 1 : X 1 Y 1 f 2 : X 2 Y 2 2 (X 1
2013 5 11, 2014 11 29 WWW ( ) ( ) (2014/7/6) 1 (a mapping, a map) (function) ( ) ( ) 1.1 ( ) X = {,, }, Y = {, } f( ) =, f( ) =, f( ) = f : X Y 1.1 ( ) (1) ( ) ( 1 ) (2) 1 function 1 ( [1]) (1) ( ) 1:
x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R
V (I) () (4) (II) () (4) V K vector space V vector K scalor K C K R (I) x, y V x + y V () (x + y)+z = x +(y + z) (2) x + y = y + x (3) V x V x + = x (4) x V x + x = x V x x (II) x V, α K αx V () (α + β)x
2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a
44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)
(1) I 44 II 45 III 47 IV 52 44 4 I (1) ( ) 1945 8 9 (10 15 ) ( 17 ) ( 3 1 ) (2) 45 II 1 (3) 511 ( 451 1 ) ( ) 365 1 2 512 1 2 365 1 2 363 2 ( ) 3 ( ) ( 451 2 ( 314 1 ) ( 339 1 4 ) 337 2 3 ) 363 (4) 46
i ii i iii iv 1 3 3 10 14 17 17 18 22 23 28 29 31 36 37 39 40 43 48 59 70 75 75 77 90 95 102 107 109 110 118 125 128 130 132 134 48 43 43 51 52 61 61 64 62 124 70 58 3 10 17 29 78 82 85 102 95 109 iii
178 5 I 1 ( ) ( ) 10 3 13 3 1 8891 8 3023 6317 ( 10 1914 7152 ) 16 5 1 ( ) 6 13 3 13 3 8575 3896 8 1715 779 6 (1) 2 7 4 ( 2 ) 13 11 26 12 21 14 11 21
I 178 II 180 III ( ) 181 IV 183 V 185 VI 186 178 5 I 1 ( ) ( ) 10 3 13 3 1 8891 8 3023 6317 ( 10 1914 7152 ) 16 5 1 ( ) 6 13 3 13 3 8575 3896 8 1715 779 6 (1) 2 7 4 ( 2 ) 13 11 26 12 21 14 11 21 4 10 (
(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y
(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b
平成18年版 男女共同参画白書
i ii iii iv v vi vii viii ix 3 4 5 6 7 8 9 Column 10 11 12 13 14 15 Column 16 17 18 19 20 21 22 23 24 25 26 Column 27 28 29 30 Column 31 32 33 34 35 36 Column 37 Column 38 39 40 Column 41 42 43 44 45
1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1
1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +
1... 1... 1... 3 2... 4... 4... 4... 4... 4... 6... 10... 11... 15... 30
1 2420128 1 6 3 2 199103 189/1 1991031891 3 4 5 JISJIS X 0208, 1997 1 http://www.pref.hiroshima.lg.jp/site/monjokan/ 1... 1... 1... 3 2... 4... 4... 4... 4... 4... 6... 10... 11... 15... 30 1 3 5 7 6 7
() 3 3 2 5 3 6 4 2 5 4 2 (; ) () 8 2 4 0 0 2 ex. 3 n n =, 2,, 20 : 3 2 : 9 3 : 27 4 : 8 5 : 243 6 : 729 7 : 287 8 : 656 9 : 9683 0 : 59049 : 7747 2 : 5344 3 : 594323 4 : 4782969 5 : 4348907 6 : 4304672
Part () () Γ Part ,
Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35
<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63>
信号処理の基礎 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/081051 このサンプルページの内容は, 初版 1 刷発行時のものです. i AI ii z / 2 3 4 5 6 7 7 z 8 8 iii 2013 3 iv 1 1 1.1... 1 1.2... 2 2 4 2.1...
A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %
A S- http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r A S- 3.4.5. 9 phone: 9-8-444, e-mail: [email protected], http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office
1... 1 2... 3 3... 5 1... 5 2... 6 4... 7 1... 7 2... 9 3... 9 6... 9 7... 11 8... 11 5... 7
3 2620149 1 3 6 3 2 198829 198829 19/2 19 2 3 4 5 JISJIS X 0208 : 1997 1 http://www.pref.hiroshima.lg.jp/site/monjokan/ 1... 1 2... 3 3... 5 1... 5 2... 6 4... 7 1... 7 2... 9 3... 9 6... 9 7... 11 8...
行列代数2010A
a ij i j 1) i +j i, j) ij ij 1 j a i1 a ij a i a 1 a j a ij 1) i +j 1,j 1,j +1 a i1,1 a i1,j 1 a i1,j +1 a i1, a i +1,1 a i +1.j 1 a i +1,j +1 a i +1, a 1 a,j 1 a,j +1 a, ij i j 1,j 1,j +1 ij 1) i +j a
25 11M15133 0.40 0.44 n O(n 2 ) O(n) 0.33 0.52 O(n) 0.36 0.52 O(n) 2 0.48 0.52
26 1 11M15133 25 11M15133 0.40 0.44 n O(n 2 ) O(n) 0.33 0.52 O(n) 0.36 0.52 O(n) 2 0.48 0.52 1 2 2 4 2.1.............................. 4 2.2.................................. 5 2.2.1...........................
Taro10-名張1審無罪判決.PDF
-------------------------------------------------------------------------------- -------------------------------------------------------------------------------- -1- 39 12 23 36 4 11 36 47 15 5 13 14318-2-
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987
1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x
. P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +
(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n
. 99 () 0 0 0 () 0 00 0 350 300 () 5 0 () 3 {a n } a + a 4 + a 6 + + a 40 30 53 47 77 95 30 83 4 n S n S n = n = S n 303 9 k d 9 45 k =, d = 99 a d n a n d n a n = a + (n )d a n a n S n S n = n(a + a n
数学Ⅱ演習(足助・09夏)
II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w
6. Euler x
...............................................................................3......................................... 4.4................................... 5.5......................................
17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,
17 ( ) 17 5 1 4 II III A B C(1 ) 1,, 6, 7 II A B (1 ), 5, 6 II A B (8 ) 8 1 I II III A B C(8 ) 1 a 1 1 a n+1 a n + n + 1 (n 1,,, ) {a n+1 n } (1) a 4 () a n OA OB AOB 6 OAB AB : 1 P OB Q OP AQ R (1) PQ
エクセルカバー入稿用.indd
i 1 1 2 3 5 5 6 7 7 8 9 9 10 11 11 11 12 2 13 13 14 15 15 16 17 17 ii CONTENTS 18 18 21 22 22 24 25 26 27 27 28 29 30 31 32 36 37 40 40 42 43 44 44 46 47 48 iii 48 50 51 52 54 55 59 61 62 64 65 66 67 68
AHPを用いた大相撲の新しい番付編成
5304050 2008/2/15 1 2008/2/15 2 42 2008/2/15 3 2008/2/15 4 195 2008/2/15 5 2008/2/15 6 i j ij >1 ij ij1/>1 i j i 1 ji 1/ j ij 2008/2/15 7 1 =2.01/=0.5 =1.51/=0.67 2008/2/15 8 1 2008/2/15 9 () u ) i i i
.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc +
.1 n.1 1 A T ra A A a b c d A 2 a b a b c d c d a 2 + bc ab + bd ac + cd bc + d 2 a 2 + bc ba + d ca + d bc + d 2 A a + d b c T ra A T ra A 2 A 2 A A 2 A 2 A n A A n cos 2π sin 2π n n A k sin 2π cos 2π
c 2009 i
I 2009 c 2009 i 0 1 0.0................................... 1 0.1.............................. 3 0.2.............................. 5 1 7 1.1................................. 7 1.2..............................
01_.g.r..
I II III IV V VI VII VIII IX X XI I II III IV V I I I II II II I I YS-1 I YS-2 I YS-3 I YS-4 I YS-5 I YS-6 I YS-7 II II YS-1 II YS-2 II YS-3 II YS-4 II YS-5 II YS-6 II YS-7 III III YS-1 III YS-2
ii iii iv CON T E N T S iii iv v Chapter1 Chapter2 Chapter 1 002 1.1 004 1.2 004 1.2.1 007 1.2.2 009 1.3 009 1.3.1 010 1.3.2 012 1.4 012 1.4.1 014 1.4.2 015 1.5 Chapter3 Chapter4 Chapter5 Chapter6 Chapter7
2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =
熊本県数学問題正解
00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (
