Carter Wegman[8] [1] error-correctiong code[9] [6] [14]( ) Impagliazzo,Levin,Luby [17] leftover hash lemma ( leftover hash lemma Impagliazzo Zu

Size: px
Start display at page:

Download "1 1979 Carter Wegman[8] [1] error-correctiong code[9] [6] [14]( ) Impagliazzo,Levin,Luby [17] leftover hash lemma ( leftover hash lemma Impagliazzo Zu"

Transcription

1 Leftover Hash Lemma M1 Universal hash families and the leftover hash lemma, and applications to cryptography and computing D.R.Stinson Department of Combinatorics and Optimization University of Waterloo Waterloo Ontario, NL 3G1, Canada January 15, 00 1

2 Carter Wegman[8] [1] error-correctiong code[9] [6] [14]( ) Impagliazzo,Levin,Luby [17] leftover hash lemma ( leftover hash lemma Impagliazzo Zuckerman [16]) smoothing entropy theorem extractor δ- leftover hash lemma leftover hash lemma 8 BPP extractor 9 10 (D; N, M) X = N Y = M f F f : X Y D F

3 (D; N, M)- F δ-universal x 1, x X f(x 1 ) = f(x ) f F δd δ collision probability δuniversal δ-u (D; N, M)- F strongly universal x 1, x X y 1, y Y ( ) {f F : f(x i ) = y i, i = 1, } = D M. strongly universal SU (D; N, M)- F F X M D N f x f(x) f F x X A(F) F array representation F δ -U(D; N, M) A(F) A(F) δd Y q (n, K, d, q)code C d Y n K codewords C linear q Y = F q C (F q ) n k = log q K dimension [n, k, d, q]code Bierbrauer,Johansson,Kabatianskii,Smeets [7].1. (n, K, d, q)code 1 d -U(n; K, q) n δ-u(d; N, M) (D, N, D(1 δ), M)code.1 F cordwords A(F) U(3; 9, 3) {f i : i Z 3 } (3, 9,, 3)code (0, 0) (0, 1) (0, ) (1, 0) (1, 1) (1, ) (, 0) (, 1) (, ) f 0 : f 1 : f : orthogonal array OA λ (N, M) λ M N λm F SU(D; N, M)- λ = D/M A(F) OA λ (N, M) ([5]) 3

4 .. SU(D; N, M)-λ = D/M OA λ (N, M).. SU(9; 3, 3)- {f i,j : i, j Z 3 } OA 1 (3, 3) 0 1 f 0,0 : f 0,1 : 1 f 0, : 0 0 f 1,0 : f 1,1 : 1 f 1, : 0 0 f,0 : f,1 : 1 f, : orthogonal arrays 1947 Rao [4] 3.1. l q X (F q ) l F q r (F q ) l f r:x Fq f r ( x) = r x. F(q, l, X) = f r : r (F q ) l. F(q, l, X) SU(q l ; X, q)-. (q l ; X, q)- SU x 1, x (F q ) l ( x 1 x ) y 1, y F q r x 1 = y 1 r x = y. r (F q ) l x 1 x F q r = (r 1,, r l ) r 1,, r l l F q r q l SU 4

5 q 3.1. q a, b F q f a,b : F q F q f a,b (x) = ax + b. {f a,b : a, b F q } SU(q ; q, q)-. l = X = F q {1} [18] 3.. l q X = {0, 1} l \ {(0,, 0)} r (F q ) l f r : X F q f r ( x) = r x. {f r : r (F q ) l } SU(q l ; l 1, q)- SU [10] 3.. q a, b F q f a,b : F q f a,b (x) = (x + a) + b. {f a,b : a, b F q } SU(q ; q, q)-. (q ; q, q)- SU x 1, x (F q ) l ( x 1 x ) y 1, y F q (x 1 + a) + b = y 1 (x + a) + b = y. (a, b) (F q ) a a = y 1 y (x 1 x ) x 1 + x a b 3. q. SU(9; 3, 3) 3..1 δ-u [7] 5

6 3.3. q a 1 k q 1 a F q f a : (F q ) k F q k 1 f a (x 0,, x k 1 ) = x 0 + x i a i. {f a F q } k 1-U(q; q qk, q). (q; q k, q) k 1 -U q (x 0,, x k 1 ), (x 0,, x k 1) (F q ) k k 1 k 1 x i a i = x ia i a F q i=0 i=0 k 1 (x i x i)a i = 0 i=0 i=1 F q k 1 k 1 a k 1 k 1-U q [6] Bose Bush[15] q a s t s, t ϕ : F q s (F q ) t q- x, y F q s ϕ(x + y) = ϕ(x) + ϕ(y) a F q, x F q s ϕ(ax) = aϕ(x) a F q s f a : F q s (F q ) t f a (x) = ϕ(ax) {f a : a F q s} 1 q t -U(q s ; q s, q t ). (q s ; q s, q t ) 1 q t -U x 1, x F q s, x 1 x ϕ(ax 1 ) = ϕ(ax ) a F q ϕ ϕ(a(x 1 x )) = 0 ϕ ker(ϕ) = q s t x 1 x 0 a(x 1 x) ker(ϕ) a q s t 1 q t -U 6

7 [0] δ -U δ 1 -U (δ 1 + δ )-U concatenated coce 3.5. F 1 X Y 1 δ 1 -U(D 1 ; N, M 1 ) F Y 1 Y δ -U(D ; M 1, M ) f 1 F 1,f F f 1 f : X Y f 1 f (x) = f (f 1 (x)) {f 1 f : f 1 F 1, f F } (δ 1 + δ )-U(D 1 D ; N, M ). x, x X f (f 1 (x)) = f (f 1 (x )) (f 1, f ) G = {f 1 F 1 : f 1 (x) = f 1 (x )}. G δ 1 D 1 f 1 G f F f (f 1 (x)) = f (f 1 (x )) f 1 F 1 \ G f 1 (x) f 1 (x ) f 1 F 1 \ G f (f 1 (x)) = f (f 1 (x )) f F δ D f (f 1 (x)) = f (f 1 (x )) (f 1, f ) G D + (D 1 G )δ D G D + D 1 δ D δ 1 D 1 D + D 1 δ D = (δ 1 + δ )D 1 D. (δ 1 + δ )-U F X Y SU(D; N, M) f F x X X p x y = f(x) y f F D, N, M p 7

8 BPV ([18]) 3. p X l 1 l r (Z p ) l f r F(p, l, X) x x f r ( x) BPV α p F p y (y, α y ) BPV y x 0, 1 l r = (r 1,, r l ) (F p ) l y = f r ( x) = r x α r 1,, α r l α y = α r i {i:x i =1} l p F p l Bennett,Brassard,Robert([]) Alice Bob x X Eve X p x Alice Bob p p ( 5.5 ) F X Y δ-u(d; N, M) f F Alice Bob Alice Bob y = f(x) Eve y 9 D, N, M p Eve y 5 F X Y SU(D; N, M), f F x X 8

9 f(x) 5.1 Y p Y (Y, p) Y u Y y Y 1/ Y (Y, p) Y : Y R Y E(Y) E(Y) = y Y p(y)y(y) Y var(y) var(y) = E(Y ) (E(Y)) = E((Y E(Y)) ). p E p (Y) var p (Y) 5.1. ( ) Y Pr[ Y(y) E(Y) ϵ] var(y) ϵ. 5.. ( ) I R Y I f : I R I E(f(Y)) f(e(y)). f(x) = x I = R 5.3. Y (E(Y)) E(Y ). f(x) = log x I = (0, ) 5.4. Y log E(Y) E(log Y). 9

10 5. p, q Y p, q d(p, q) d(p, q) = 1 p(y) q(y). y Y p, q 0 d(p, q) p, q Y max{p(y), q(y)} = d(p, q) + 1 y Y. Y p = {y Y : p(y) q(y)} d(p, q) = 1 (p(y) q(y)) + 1 (q(y) p(y)) y Y p y Y \Y p = 1 p(y) 1 p(y) 1 q(y) + 1 q(y) y Y p y Y \Y p y Y p y Y \Y p ( = 1 p(y) 1 1 ) ( p(y) 1 q(y) ) q(y) y Y p y Y p y Y p y Y p = y Y p p(y) y Y p q(y) max{p(y), q(y)} = p(y) + y Y p y Y q(y) y Y \Y p = p(y) + 1 q(y) (5.1) y Y p y Y p max{p(y), q(y)} = d(p, q) + 1 y Y Y p Y 0 Y p(y 0 ) = y Y 0 p(y). 10

11 5.. p, q Y d(p, q) = max{ p(y 0 ) q(y 0 ) : Y 0 Y } Y p p(y p ) q(y p ) = (p(y) q(y)). y Y p 5.1 y Y p (p(y) q(y)) = d(p, q) p(y p ) q(y p ) = d(p, q) q(y \ Y p ) p(y \ Y p ) = d(p, q) Y 0 Y p(y p ) q(y p ) p(y 0 ) q(y 0 ) Y 0 Y Y 1 = Y 0 Y p Y = Y 0 (Y \ Y p ) p(y 1 ) q(y 1 ) > 0 p(y ) q(y ) < 0 p(y 0 ) q(y 0 ) = p(y 1 ) q(y 1 ) + (p(y ) q(y )) p(y 1 ) q(y 1 ) p(y p ) q(y p ) sincey 1 Y p = p(y p ) q(y p ). q(y 0 ) p(y 0 ) = q(y ) p(y ) + (q(y 1 ) p(y 1 )) q(y ) p(y ) q(y \ Y p ) p(y \ Y p ) sincey Y \ Y p = p(y p ) q(y p ). p(y 0 ) q(y 0 ) p(y p ) q(y p ) {y 1, y, y 3, y 4 } p, q p(y i ) q(y i ) y 1 1/3 1/4 y 1/3 1/4 y 3 1/6 1/4 y 4 1/6 1/4 11

12 3 d(p,q) d(p, q) = = d(p, q) = = 1 6. d(p, q) = p({y 1, y ) q({y 1, y }) = 3 1 = p 0, p 1 Y q Y i 0, 1 y Y p i (y) q(y) = p 0 + p 1 (y) f : Y 0, 1 y Y q i = 0 i = 1 corr(f) f y i f y Y p f(y) (y) p 0 (y) + p 1 (y) corr(f) = y Y p 0 (y) + p 1 (y) p f ( y)(y) p 0 (y) + p 1 (y) = y Y p f( y)(y). y Y i p i (y) y 1 i (y) f f (y) = { 0 ifp 1 < p 0 (y) 1 ifp 1 p 0 (y) 1

13 f corr(f ) = y Y max{p 0 (y), p 1 (y)} = d(p 0, p 1 ) (Y, p 0 ) (Y, p 1 ) f f f, f p 0, p p 0, p 1 Y f : Y 0, 1 E(f p1 ) E(f p0 ) E(f p 1 ) E(f p 1 ) = d(p 0, p 1 ). E(f p 1 ) E(f p 0 ) = d(p 0, p 1 ) E(f p 1 ) = y Y = E(f p 0 ) = f (y)p 1 (y) {y Y :p 1 (y) p 1 (y)} {y Y :p 1 (y) p 0 (y)} 5.1 E(f p 1 ) E(f p 0 ) = d(p 0, p 1 ) E(f p1 ) E(f p0 ) d(p 0, p 1 ) 5. E(f p1 ) E(f p0 ) p 1 (f 1 (1)) p 0 (f 1 (1)) = d(p 0, p 1 ) (Y, p) Y 0 Y ϵ > 0 p Y 0 ϵ p(y 0) Y 0 Y ϵ. p ϵ Y 0 Y p(y 0) Y 0 Y ϵ. u Y (Y 0 ) = Y 0 / Y u Y Y Y p ϵ d(p, u Y ) ϵ 13

14 5.5 (Y, p) p p = y Y (p(y)). p = u Y p 1/ Y Impagliazzo Zuckerman[16] 5.4. (Y, p) p p Y 1/. Y = M p = (p(y)) ( p(y) 1 M y Y ) = p 1 M (Y, u Y ) Y Y(y) = p(y) (1/M) ( ) E(Y) = 1 p 1 = pm 1. M M M 5.3 E(Y) E(Y) = p M 1. M d(p, u Y ) = 1 p(y) 1 M = M E(Y) y Y p M Shannon,Renyi,Min (Y, p) (Y, p) Renyi entropy h Ren (p) h Ren (p) = log p. (Y, p) min entropy h min (p) h min (p) = min{ log p(y) : y Y } = log (max{p(y) : y Y }). 14

15 (Y, p) Shannon entropy h(p) h(p) = y Y p(y) log p(y). u Y h(u Y ) = h Ren (u Y ) = h min (u Y ) = log Y 5.5. (Y, p) h Ren (p)/ h min (p) h Ren (p) h(p). (max{p(y) : y Y }) (p(y)). h Ren (p)/ h min (p) (p(y)) (p(y) max{p(y) : y Y }) = max{p(y) : y Y }. h min (p) h Ren (p) (Y, p) Y Y(y) = p(y) E(Y) = (p(y)) E(log Y) = p(y) log p(y) 5.4 ( log (p(y)) ) p(y) log p(y). h Ren (p) h(p) 4 min entropy Renyi entropy 6 SU SU [5] [13] (X, p) F X Y SU(D; N, M) f F Y q f y Y q f (y) = p(x) x f 1 (y) 15

16 q f f y x X p y Y (F, u F ) χ y f F χ y (f) = q f (y) χ y (f) = D M. f F E(χ y ) = 1 M. (6.1) 6.1. (X, p) F X Y SU(D; N, M) y Y F χ y f F (χ y (f)) = D(1 + (M 1) p) M.. y (f)) f F(χ = ( ) p(x) f F x f 1 (y) = p(x 1 )p(x ) + f F x 1 f 1 (y) x f 1 (y),x x 1 f F = D p(x M 1 )p(x ) + D (p(x)) M x 1 X x X,x x 1 x X ( ) ( ) D D = (1 M p ) + p M = D(1 + (M 1) p). M x 1 f 1 (y) (p(x)) 6.1. p X SU(9; 3, 3) χ 0 16

17 p(0) = 1/ p(1) = 1/4 p() = 1/4 χ 0 1 f 0, f 0, f 0, f 1, f 1, f 1, f, f, f, ( )) (χ0 (f a,b )) = (3 1) (( 1 ) + 14 ) + 14 ) 4 = 6.1 E(χ y ) = 1 + (M 1) p M. (6.) (6.1) (6.) var(χ y ) = E(χ y ) (E(χ y )) = (M 1) p M. Chebyshev ( 5.1) 3 Pr[ χ y (f) E(χ y ) ϵ] (M 1) p ϵ M. χ y (f) E(χ y ) = q f(y) 1 M. q f y χ y (f) E(χ y ) ϵ [13] [14] 6.1. (X, p) F X Y SU(D; N, M) y Y f F q f ϵ y (M 1) p ϵ M. Y 0 Y 17

18 6.. (X, p) F X Y SU(D; N, M) Y 0 Y f F q f ϵ Y 0 Y 0 (M Y 0 ) p ϵ M (X, p) F X Y SU(D; N, M) f F q f ϵ p M(M 1) 4ϵ. y Y q f(y) 1 M < ϵ M d(q f, u Y ) ϵ 5.3 q f ϵ f F y Y q f(y) 1 M < ϵ M p (M 1) (ϵ/m) M = p(m 1) 4ϵ y Y M y Y q f (y) 1 M > ϵ/m p M(M 1)/4ϵ 7 Leftover Hash Lemma leftover hash lemma [17] [3][13][16][11] F Y f F p x X f(x) r leftover hash lemma r r r(f, y) = q f(y) D = χ y(f) D. F δ-u

19 7.1. (X, p) F X Y δ-u(d; N, M) y Y f F χ y (f) = q f (y) (χ y (y)) D(δ + (1 δ) p ). y Y f F 7.1. p X 1 -(4; 4, ) χ 0 χ 1 1 i=0 p(0) = 1/ p(1) = 1/6 p() = 1/6 p(3) = 1/6 χ 0 χ 1 1 f f f f ( 4 (χ i (f j )) = 8 3 = j=0 ( 1 1 ) ( ( ) ( ) ( ) ( ) )) F X Y δ-u(d; N, M) X p r F Y r δ + (1 δ) p. D 7.1. F X Y δ-u(d; N, M) X p r F Y d(u F Y, r) M(δ + (1 δ) ) 1. 8 Extractors F X Y δ-u(d; N, M) X p r 7 F Y d(u F Y, r) < ϵ h Ren (p) k F (k, ϵ)-extractor extractor 19

20 8.1. δ-u(d; N, M) (k, ϵ)-extractor M(δ + k ) 1 ϵ. p = k 7.1 M(δ + (1 δ) k ) 1 M(δ + k ) 1 d(u F Y,r ) < ϵ 4. (k, 1/4)-extractor BBP k /N F X Y δ-u(d; N, M) Y BBP A I problem instance x X A(I, f(x)) f F B(I, x) yes no B [1] [1] A.S.Hedayat, N.J.A. Sloane, and J.Stufken. Orthogonal arrays:theory and applications. Springer-Verlag, [] C.H.Bennett and G.Brassard adn J-M.Robert. Privacy amplification by public discussion. SIMA Journal on Computing, No. 17, pp. 10 9, [3] C.H.Bennett, G.Brassard, C.Crepeau, and U.Maurer. Generalized privacy amplification. IEEE Transactions on Information Theory, No. 41, pp , [4] C.R.Rao. Factorial experiments derivable from combinatorial arrangements of arrays. Journal of the Royal Statistical Society, No. 9, pp , [5] D.R.Stinson. Combinatorial techniques for universal hashing. Journal of Computer and System Sciences, No. 48, pp , [6] D.R.Stinson. On the connections between universal hashing, combinatorial designs and error-correcting codes. Congressus Numerantium, No. 114, pp. 7 7, [7] J.Bierbrauer, T.Johansson, G.Kabatianskill, and B.Smeets. On families of hash functions via geometric codes and concatenation. Lecture Notes in Computer Science, No. 773, pp , [8] J.L.Carter and M.N.Wegman. Universal classes of hash functions. Jounal of Computer and System Sciences, No. 18, pp ,

21 [9] F.J. MacWilliams and N.J.A. Sloane. The theory of error-correctiong codes. North- Holland, [10] M.Etzel, S.Patel, and Z.Ramzan. Square hash:fast message authenticaiton via optimized universal hash functions. Lecture Notes in Computer Science, Vol. CRYPTO 99, No. 1666, pp , [11] M.Luby. Pseudorandomness and cryptographic applications. Princeton University Press, [1] N.Nisan and A.Ta-Shma. Extracting randomness:a survey and new constructions. J. Comput. System Sci, No. 58, pp , [13] O.Goldreich. Modern cryptography, probabilistic proofs and pseudorandomness. [14] P.Nguyen and J.Stern. The hardness of the hidden subset sum problem and its cryptographic application. Lecture Notes in Computer Science, Vol. CRYPTO 99, No. 1666, pp , [15] R.C.Bose and K.A.Bush. Orthogonal arrays of strength two and three. Annals Math.Statistics, No. 3, pp , 195. [16] R.Impagliazzo and D.Zuckerman. How to recycle random bits. In 30th IEEE Symposium on Foundations of Computer Science, pp. 1 4, [17] R.Impagliazzo, L.Levin, and M.Luby. Pseudo-random generation from one-way functions. In 1st ACM Symposium on Theory of Computing, pp. 1 4, [18] V.Boyko, M.Peinado, and R.Venkatesan. Speeding up discrete log and factoring based schemes via precomputation. Lecture Notes in Computer Science, Vol. EUROCRYPT 98, No. 1403, pp. 1 35,

特集_03-07.Q3C

特集_03-07.Q3C 3-7 Error Detection and Authentication in Quantum Key Distribution YAMAMURA Akihiro and ISHIZUKA Hirokazu Detecting errors in a raw key and authenticating a private key are crucial for quantum key distribution

More information

情報理論 第5回 情報量とエントロピー

情報理論  第5回 情報量とエントロピー 5 () ( ) ( ) ( ) p(a) a I(a) p(a) p(a) I(a) p(a) I(a) (2) (self information) p(a) = I(a) = 0 I(a) = 0 I(a) a I(a) = log 2 p(a) = log 2 p(a) bit 2 (log 2 ) (3) I(a) 7 6 5 4 3 2 0 0.5 p(a) p(a) = /2 I(a)

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

Duality in Bayesian prediction and its implication

Duality in Bayesian prediction and its implication $\theta$ 1860 2013 104-119 104 Duality in Bayesian prediction and its implication Toshio Ohnishi and Takemi Yanagimotob) a) Faculty of Economics, Kyushu University b) Department of Industrial and Systems

More information

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α,

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α, [II] Optimization Computation for 3-D Understanding of Images [II]: Ellipse Fitting 1. (1) 2. (2) (edge detection) (edge) (zero-crossing) Canny (Canny operator) (3) 1(a) [I] [II] [III] [IV ] E-mail sugaya@iim.ics.tut.ac.jp

More information

25 11M15133 0.40 0.44 n O(n 2 ) O(n) 0.33 0.52 O(n) 0.36 0.52 O(n) 2 0.48 0.52

25 11M15133 0.40 0.44 n O(n 2 ) O(n) 0.33 0.52 O(n) 0.36 0.52 O(n) 2 0.48 0.52 26 1 11M15133 25 11M15133 0.40 0.44 n O(n 2 ) O(n) 0.33 0.52 O(n) 0.36 0.52 O(n) 2 0.48 0.52 1 2 2 4 2.1.............................. 4 2.2.................................. 5 2.2.1...........................

More information

1 I p2/30

1 I p2/30 I I p1/30 1 I p2/30 1 ( ) I p3/30 1 ( ), y = y() d = f() g(y) ( g(y) = f()d) (1) I p4/30 1 ( ), y = y() d = f() g(y) ( g(y) = f()d) (1) g(y) = f()d I p4/30 1 ( ), y = y() d = f() g(y) ( g(y) = f()d) (1)

More information

ばらつき抑制のための確率最適制御

ばらつき抑制のための確率最適制御 ( ) http://wwwhayanuemnagoya-uacjp/ fujimoto/ 2011 3 9 11 ( ) 2011/03/09-11 1 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 2 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 3 / 46 (1/2) r + Controller - u Plant y

More information

CVaR

CVaR CVaR 20 4 24 3 24 1 31 ,.,.,. Markowitz,., (Value-at-Risk, VaR) (Conditional Value-at-Risk, CVaR). VaR, CVaR VaR. CVaR, CVaR. CVaR,,.,.,,,.,,. 1 5 2 VaR CVaR 6 2.1................................................

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

1 1 3 1.1 (Frequecy Tabulatios)................................ 3 1........................................ 8 1.3.....................................

1 1 3 1.1 (Frequecy Tabulatios)................................ 3 1........................................ 8 1.3..................................... 1 1 3 1.1 (Frequecy Tabulatios)................................ 3 1........................................ 8 1.3........................................... 1 17.1................................................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

2003/9 Vol. J86 D I No. 9 GA GA [8] [10] GA GA GA SGA GA SGA2 SA TS GA C1: C2: C3: 1 C4: C5: 692

2003/9 Vol. J86 D I No. 9 GA GA [8] [10] GA GA GA SGA GA SGA2 SA TS GA C1: C2: C3: 1 C4: C5: 692 Comparisons of Genetic Algorithms for Timetabling Problems Hiroaki UEDA, Daisuke OUCHI, Kenichi TAKAHASHI, and Tetsuhiro MIYAHARA GA GA GA GA GA SGA GA SGA2SA TS 6 SGA2 GA GA SA 1. GA [1] [12] GA Faculty

More information

,,, 2 ( ), $[2, 4]$, $[21, 25]$, $V$,, 31, 2, $V$, $V$ $V$, 2, (b) $-$,,, (1) : (2) : (3) : $r$ $R$ $r/r$, (4) : 3

,,, 2 ( ), $[2, 4]$, $[21, 25]$, $V$,, 31, 2, $V$, $V$ $V$, 2, (b) $-$,,, (1) : (2) : (3) : $r$ $R$ $r/r$, (4) : 3 1084 1999 124-134 124 3 1 (SUGIHARA Kokichi),,,,, 1, [5, 11, 12, 13], (2, 3 ), -,,,, 2 [5], 3,, 3, 2 2, -, 3,, 1,, 3 2,,, 3 $R$ ( ), $R$ $R$ $V$, $V$ $R$,,,, 3 2 125 1 3,,, 2 ( ), $[2, 4]$, $[21, 25]$,

More information

30 2018.4.25 30 1 nuida@mist.i.u-tokyo.ac.jp 2018 4 11 2018 4 25 30 2018.4.25 1 1 2 8 3 21 4 28 5 37 6 43 7 47 8 52 30 2018.4.25 1 1 Z Z 0 Z >0 Q, R, C a, b a b a = bc c 0 a b b a b a a, b, c a b b c a

More information

Kullback-Leibler

Kullback-Leibler Kullback-Leibler 206 6 6 http://www.math.tohoku.ac.jp/~kuroki/latex/206066kullbackleibler.pdf 0 2 Kullback-Leibler 3. q i.......................... 3.2........... 3.3 Kullback-Leibler.............. 4.4

More information

st.dvi

st.dvi 9 3 5................................... 5............................. 5....................................... 5.................................. 7.........................................................................

More information

/ n (M1) M (M2) n Λ A = {ϕ λ : U λ R n } λ Λ M (atlas) A (a) {U λ } λ Λ M (open covering) U λ M λ Λ U λ = M (b) λ Λ ϕ λ : U λ ϕ λ (U λ ) R n ϕ

/ n (M1) M (M2) n Λ A = {ϕ λ : U λ R n } λ Λ M (atlas) A (a) {U λ } λ Λ M (open covering) U λ M λ Λ U λ = M (b) λ Λ ϕ λ : U λ ϕ λ (U λ ) R n ϕ 4 4.1 1 2 1 4 2 1 / 2 4.1.1 n (M1) M (M2) n Λ A = {ϕ λ : U λ R n } λ Λ M (atlas) A (a) {U λ } λ Λ M (open covering) U λ M λ Λ U λ = M (b) λ Λ ϕ λ : U λ ϕ λ (U λ ) R n ϕ λ U λ (local chart, local coordinate)

More information

5 Armitage x 1,, x n y i = 10x i + 3 y i = log x i {x i } {y i } 1.2 n i i x ij i j y ij, z ij i j 2 1 y = a x + b ( cm) x ij (i j )

5 Armitage x 1,, x n y i = 10x i + 3 y i = log x i {x i } {y i } 1.2 n i i x ij i j y ij, z ij i j 2 1 y = a x + b ( cm) x ij (i j ) 5 Armitage. x,, x n y i = 0x i + 3 y i = log x i x i y i.2 n i i x ij i j y ij, z ij i j 2 y = a x + b 2 2. ( cm) x ij (i j ) (i) x, x 2 σ 2 x,, σ 2 x,2 σ x,, σ x,2 t t x * (ii) (i) m y ij = x ij /00 y

More information

waseda2010a-jukaiki1-main.dvi

waseda2010a-jukaiki1-main.dvi November, 2 Contents 6 2 8 3 3 3 32 32 33 5 34 34 6 35 35 7 4 R 2 7 4 4 9 42 42 2 43 44 2 5 : 2 5 5 23 52 52 23 53 53 23 54 24 6 24 6 6 26 62 62 26 63 t 27 7 27 7 7 28 72 72 28 73 36) 29 8 29 8 29 82 3

More information

,.,. NP,., ,.,,.,.,,, (PCA)...,,. Tipping and Bishop (1999) PCA. (PPCA)., (Ilin and Raiko, 2010). PPCA EM., , tatsukaw

,.,. NP,., ,.,,.,.,,, (PCA)...,,. Tipping and Bishop (1999) PCA. (PPCA)., (Ilin and Raiko, 2010). PPCA EM., , tatsukaw ,.,. NP,.,. 1 1.1.,.,,.,.,,,. 2. 1.1.1 (PCA)...,,. Tipping and Bishop (1999) PCA. (PPCA)., (Ilin and Raiko, 2010). PPCA EM., 152-8552 2-12-1, tatsukawa.m.aa@m.titech.ac.jp, 190-8562 10-3, mirai@ism.ac.jp

More information

I , : ~/math/functional-analysis/functional-analysis-1.tex

I , : ~/math/functional-analysis/functional-analysis-1.tex I 1 2004 8 16, 2017 4 30 1 : ~/math/functional-analysis/functional-analysis-1.tex 1 3 1.1................................... 3 1.2................................... 3 1.3.....................................

More information

Twist knot orbifold Chern-Simons

Twist knot orbifold Chern-Simons Twist knot orbifold Chern-Simons 1 3 M π F : F (M) M ω = {ω ij }, Ω = {Ω ij }, cs := 1 4π 2 (ω 12 ω 13 ω 23 + ω 12 Ω 12 + ω 13 Ω 13 + ω 23 Ω 23 ) M Chern-Simons., S. Chern J. Simons, F (M) Pontrjagin 2.,

More information

…K…E…X„^…x…C…W…A…fi…l…b…g…‘†[…N‡Ì“‚¢−w‘K‡Ì‹ê™v’«‡É‡Â‡¢‡Ä

…K…E…X„^…x…C…W…A…fi…l…b…g…‘†[…N‡Ì“‚¢−w‘K‡Ì‹ê™v’«‡É‡Â‡¢‡Ä 2009 8 26 1 2 3 ARMA 4 BN 5 BN 6 (Ω, F, µ) Ω: F Ω σ 1 Ω, ϕ F 2 A, B F = A B, A B, A\B F F µ F 1 µ(ϕ) = 0 2 A F = µ(a) 0 3 A, B F, A B = ϕ = µ(a B) = µ(a) + µ(b) µ(ω) = 1 X : µ X : X x 1,, x n X (Ω) x 1,,

More information

turbo 1993code Berrou 1) 2[dB] SNR 05[dB] 1) interleaver parallel concatenated convolutional code ch

turbo 1993code Berrou 1) 2[dB] SNR 05[dB] 1) interleaver parallel concatenated convolutional code ch 1 -- 2 6 LDPC 2012 3 1993 1960 30 LDPC 2 LDPC LDPC LDPC 6-1 LDPC 6-2 6-3 c 2013 1/(13) 1 -- 2 -- 6 6--1 2012 3 turbo 1993code Berrou 1) 2[dB] SNR 05[dB] 1) 6 1 2 1 1 interleaver 2 2 2 parallel concatenated

More information

(note-02) Rademacher 1/57

(note-02) Rademacher 1/57 (note-02) Rademacher 1/57 (x 1, y 1 ),..., (x n, y n ) X Y f : X Y Y = R f Y = {+1, 1}, {1, 2,..., G} f x y 1. (x 1, y 1 ),..., (x n, y n ) f(x i ) ( ) 2. x f(x) Y 2/57 (x, y) f(x) f(x) y (, loss) l(f(x),

More information

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s 1 1 1, Extraction of Transmitted Light using Parallel High-frequency Illumination Kenichiro Tanaka 1 Yasuhiro Mukaigawa 1 Yasushi Yagi 1 Abstract: We propose a new sharpening method of transmitted scene

More information

, ( ξ/) ξ(x), ( ξ/) x = x 1,. ξ ξ ( ξ, u) = 0. M LS ξ ξ (6) u,, u M LS 3).,.. ξ x ξ = ξ(x),, 1. J = (ξ ξ, V [ξ ] 1 (ξ ξ )) (7) ( ξ, u) = 0, = 1,..., N

, ( ξ/) ξ(x), ( ξ/) x = x 1,. ξ ξ ( ξ, u) = 0. M LS ξ ξ (6) u,, u M LS 3).,.. ξ x ξ = ξ(x),, 1. J = (ξ ξ, V [ξ ] 1 (ξ ξ )) (7) ( ξ, u) = 0, = 1,..., N 1,,.,.. Maximum Likelihood Estimation for Geometric Fitting Yasuyuki Sugaya 1 Geometric fitting, the problem which estimates a geometric model of a scene from extracted image data, is one of the most fundamental

More information

(4) ω t(x) = 1 ω min Ω ( (I C (y))) min 0 < ω < C A C = 1 (5) ω (5) t transmission map tmap 1 4(a) 2. 3 2. 2 t 4(a) t tmap RGB 2 (a) RGB (A), (B), (C)

(4) ω t(x) = 1 ω min Ω ( (I C (y))) min 0 < ω < C A C = 1 (5) ω (5) t transmission map tmap 1 4(a) 2. 3 2. 2 t 4(a) t tmap RGB 2 (a) RGB (A), (B), (C) (MIRU2011) 2011 7 890 0065 1 21 40 105-6691 1 1 1 731 3194 3 4 1 338 8570 255 346 8524 1836 1 E-mail: {fukumoto,kawasaki}@ibe.kagoshima-u.ac.jp, ryo-f@hiroshima-cu.ac.jp, fukuda@cv.ics.saitama-u.ac.jp,

More information

untitled

untitled 10 log 10 W W 10 L W = 10 log 10 W 10 12 10 log 10 I I 0 I 0 =10 12 I = P2 ρc = ρcv2 L p = 10 log 10 p 2 p 0 2 = 20 log 10 p p = 20 log p 10 0 2 10 5 L 3 = 10 log 10 10 L 1 /10 +10 L 2 ( /10 ) L 1 =10

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1 1, 2 1 1 1 Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1 Nobutaka ONO 1 and Shigeki SAGAYAMA 1 This paper deals with instrument separation

More information

40 6 y mx x, y 0, 0 x 0. x,y 0,0 y x + y x 0 mx x + mx m + m m 7 sin y x, x x sin y x x. x sin y x,y 0,0 x 0. 8 x r cos θ y r sin θ x, y 0, 0, r 0. x,

40 6 y mx x, y 0, 0 x 0. x,y 0,0 y x + y x 0 mx x + mx m + m m 7 sin y x, x x sin y x x. x sin y x,y 0,0 x 0. 8 x r cos θ y r sin θ x, y 0, 0, r 0. x, 9.. x + y + 0. x,y, x,y, x r cos θ y r sin θ xy x y x,y 0,0 4. x, y 0, 0, r 0. xy x + y r 0 r cos θ sin θ r cos θ sin θ θ 4 y mx x, y 0, 0 x 0. x,y 0,0 x x + y x 0 x x + mx + m m x r cos θ 5 x, y 0, 0,

More information

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, PC ( 4 5 )., 5, Milnor Milnor., ( 6 )., (I) Z modulo

More information

通信容量制約を考慮したフィードバック制御 - 電子情報通信学会 情報理論研究会(IT) 若手研究者のための講演会

通信容量制約を考慮したフィードバック制御 -  電子情報通信学会 情報理論研究会(IT)  若手研究者のための講演会 IT 1 2 1 2 27 11 24 15:20 16:05 ( ) 27 11 24 1 / 49 1 1940 Witsenhausen 2 3 ( ) 27 11 24 2 / 49 1940 2 gun director Warren Weaver, NDRC (National Defence Research Committee) Final report D-2 project #2,

More information

3345 チュートリアル 1 HP テンソル代数 テンソル解析 - - 連続体力学の数理的基礎 - 第 4 講テンソル解析 - テンソル場の微積分 - 登坂宣好 第 4 講概要 2, 3 1 筆者紹介 1971 Engineering Science gradient divergence rota

3345 チュートリアル 1 HP テンソル代数 テンソル解析 - - 連続体力学の数理的基礎 - 第 4 講テンソル解析 - テンソル場の微積分 - 登坂宣好 第 4 講概要 2, 3 1 筆者紹介 1971 Engineering Science gradient divergence rota 3345 チュートリアル 1 HP テンソル代数 テンソル解析 - - 連続体力学の数理的基礎 - 第 4 講テンソル解析 - テンソル場の微積分 - 登坂宣好 第 4 講概要 2, 3 1 筆者紹介 1971 Engineering cience gradient divergence rotation nabla 3 1 2 3 4 5 6 ol.20, No.4 2015 27 1 [1,2]

More information

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2 1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac

More information

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL PAL On the Precision of 3D Measurement by Stereo PAL Images Hiroyuki HASE,HirofumiKAWAI,FrankEKPAR, Masaaki YONEDA,andJien KATO PAL 3 PAL Panoramic Annular Lens 1985 Greguss PAL 1 PAL PAL 2 3 2 PAL DP

More information

( 9 1 ) 1 2 1.1................................... 2 1.2................................................. 3 1.3............................................... 4 1.4...........................................

More information

ii-03.dvi

ii-03.dvi 2005 II 3 I 18, 19 1. A, B AB BA 0 1 0 0 0 0 (1) A = 0 0 1,B= 1 0 0 0 0 0 0 1 0 (2) A = 3 1 1 2 6 4 1 2 5,B= 12 11 12 22 46 46 12 23 34 5 25 2. 3 A AB = BA 3 B 2 0 1 A = 0 3 0 1 0 2 3. 2 A (1) A 2 = O,

More information

4b_12.dvi

4b_12.dvi Analysis of Answering Method with Probability Conversion for Internet Research Atsushi TAGAMI, Chikara SASAKI, Teruyuki HASEGAWA, Shigehiro ANO, and Yoichi TOMIURA /. [] IPTV Securecy Anonymity 2 SSL KDDI

More information

untitled

untitled 17 5 13 1 2 1.1... 2 1.2... 2 1.3... 3 2 3 2.1... 3 2.2... 5 3 6 3.1... 6 3.2... 7 3.3 t... 7 3.4 BC a... 9 3.5... 10 4 11 1 1 θ n ˆθ. ˆθ, ˆθ, ˆθ.,, ˆθ.,.,,,. 1.1 ˆθ σ 2 = E(ˆθ E ˆθ) 2 b = E(ˆθ θ). Y 1,,Y

More information

I: 2 : 3 +

I: 2 : 3 + I: 1 I: 2008 I: 2 : 3 + I: 3, 3700. (ISBN4-00-010352-0) H.P.Barendregt, The lambda calculus: its syntax and semantics, Studies in logic and the foundations of mathematics, v.103, North-Holland, 1984. (ISBN

More information

guideline_1_0.dvi

guideline_1_0.dvi Version 1.0 ( 22 5 ) cflkanta Matsuura Laboratory 2010, all rights reserved. I 3 1 3 2 3 3 4 II 8 4 8 5 9 5.1......................... 9 5.2......................... 10 5.3......................... 10

More information

セアラの暗号

セアラの暗号 1 Cayley-Purser 1 Sarah Flannery 16 1 [1] [1] [1]314 www.cayley-purser.ie http://cryptome.org/flannery-cp.htm [2] Cryptography: An Investigation of a New Algorithm vs. the RSA(1999 RSA 1999 9 11 2 (17

More information

2. Eades 1) Kamada-Kawai 7) Fruchterman 2) 6) ACE 8) HDE 9) Kruskal MDS 13) 11) Kruskal AGI Active Graph Interface 3) Kruskal 5) Kruskal 4) 3. Kruskal

2. Eades 1) Kamada-Kawai 7) Fruchterman 2) 6) ACE 8) HDE 9) Kruskal MDS 13) 11) Kruskal AGI Active Graph Interface 3) Kruskal 5) Kruskal 4) 3. Kruskal 1 2 3 A projection-based method for interactive 3D visualization of complex graphs Masanori Takami, 1 Hiroshi Hosobe 2 and Ken Wakita 3 Proposed is a new interaction technique to manipulate graph layouts

More information

: : : : ) ) 1. d ij f i e i x i v j m a ij m f ij n x i =

: : : : ) ) 1. d ij f i e i x i v j m a ij m f ij n x i = 1 1980 1) 1 2 3 19721960 1965 2) 1999 1 69 1980 1972: 55 1999: 179 2041999: 210 211 1999: 211 3 2003 1987 92 97 3) 1960 1965 1970 1985 1990 1995 4) 1. d ij f i e i x i v j m a ij m f ij n x i = n d ij

More information

04.™ƒ”R/’Ô”�/’Xfl©

04.™ƒ”R/’Ô”�/’Xfl© Digicashecash PC IC AI LicenseCoin License Pk A L Pk A W Rc C Coin License Okamoto and Ohta Okamoto and Ohta IC Digicashecash TTP Trusted Third Party TTP TTP TTP TTP: Trusted Third Party TTPTTP TTP TTP

More information

2 A id A : A A A A id A def = {(a, a) A A a A} 1 { } 1 1 id 1 = α: A B β : B C α β αβ : A C αβ def = {(a, c) A C b B.((a, b) α (b, c) β)} 2.3 α

2 A id A : A A A A id A def = {(a, a) A A a A} 1 { } 1 1 id 1 = α: A B β : B C α β αβ : A C αβ def = {(a, c) A C b B.((a, b) α (b, c) β)} 2.3 α 20 6 18 1 2 2.1 A B α A B α: A B A B Rel(A, B) A B (A B) A B 0 AB A B AB α, β : A B α β α β def (a, b) A B.((a, b) α (a, b) β) 0 AB AB Rel(A, B) 1 2 A id A : A A A A id A def = {(a, a) A A a A} 1 { } 1

More information

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law I (Radom Walks ad Percolatios) 3 4 7 ( -2 ) (Preface),.,,,...,,.,,,,.,.,,.,,. (,.) (Basic of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

/ ( ) 1 1.1 323 206 23 ( 23 529 529 323 206 ) 23 1.2 33 1.3 323 61 61 3721 3721 323 168 168 323 23 61 61 23 1403 323 111 111 168 206 323 47 111 323 47 2 23 2 2.1 34 2 2.2 2 a, b N a b N a b (mod N) mod

More information

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 ( 1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +

More information

syuu_2_10_3.dvi

syuu_2_10_3.dvi [1] [1, 2, 3] [1, 4, 5] 6 7 3 (0.66) (0.65) 1 [6] 0 1 1 2 3 2.1................................ 3 2.1.1.................................. 3 2.1.2.................................. 3 2.2...........................

More information

21 Key Exchange method for portable terminal with direct input by user

21 Key Exchange method for portable terminal with direct input by user 21 Key Exchange method for portable terminal with direct input by user 1110251 2011 3 17 Diffie-Hellman,..,,,,.,, 2.,.,..,,.,, Diffie-Hellman, i Abstract Key Exchange method for portable terminal with

More information

1 4 2 4 3 5 4? 7 5 9 6 10 7 11 8 13 9 16 10 17 11 19 12 20 13 21 2

1 4 2 4 3 5 4? 7 5 9 6 10 7 11 8 13 9 16 10 17 11 19 12 20 13 21 2 78-2 (2002) p.172-193 1 1 4 2 4 3 5 4? 7 5 9 6 10 7 11 8 13 9 16 10 17 11 19 12 20 13 21 2 ( ) ( )? 3 1 N i p i log p i i p i log p i i N i q i N i p i log q i N i p i { ( log q i ) ( log p i ) } = N i

More information

項 目

項 目 1 1 2 3 11 4 6 5 7,000 2 120 1.3 4,000 04 450 < > 5 3 6 7 8 9 4 10 11 5 12 45 6 13 E. 7 B. C. 14 15 16 17 18 19 20 21 22 23 8 24 25 9 27 2 26 6 27 3 1 3 3 28 29 30 9 31 32 33 500 1 4000 0 2~3 10 10 34

More information

(4) P θ P 3 P O O = θ OP = a n P n OP n = a n {a n } a = θ, a n = a n (n ) {a n } θ a n = ( ) n θ P n O = a a + a 3 + ( ) n a n a a + a 3 + ( ) n a n

(4) P θ P 3 P O O = θ OP = a n P n OP n = a n {a n } a = θ, a n = a n (n ) {a n } θ a n = ( ) n θ P n O = a a + a 3 + ( ) n a n a a + a 3 + ( ) n a n 3 () 3,,C = a, C = a, C = b, C = θ(0 < θ < π) cos θ = a + (a) b (a) = 5a b 4a b = 5a 4a cos θ b = a 5 4 cos θ a ( b > 0) C C l = a + a + a 5 4 cos θ = a(3 + 5 4 cos θ) C a l = 3 + 5 4 cos θ < cos θ < 4

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

3 m = [n, n1, n 2,..., n r, 2n] p q = [n, n 1, n 2,..., n r ] p 2 mq 2 = ±1 1 1 6 1.1................................. 6 1.2......................... 8 1.3......................... 13 2 15 2.1.............................

More information

3. ( 1 ) Linear Congruential Generator:LCG 6) (Mersenne Twister:MT ), L 1 ( 2 ) 4 4 G (i,j) < G > < G 2 > < G > 2 g (ij) i= L j= N

3. ( 1 ) Linear Congruential Generator:LCG 6) (Mersenne Twister:MT ), L 1 ( 2 ) 4 4 G (i,j) < G > < G 2 > < G > 2 g (ij) i= L j= N RMT 1 1 1 N L Q=L/N (RMT), RMT,,,., Box-Muller, 3.,. Testing Randomness by Means of RMT Formula Xin Yang, 1 Ryota Itoi 1 and Mieko Tanaka-Yamawaki 1 Random matrix theory derives, at the limit of both dimension

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 確率的手法による構造安全性の解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/55271 このサンプルページの内容は, 初版 1 刷発行当時のものです. i 25 7 ii Benjamin &Cornell Ang & Tang Schuëller 1973 1974 Ang Mathematica

More information

Title 疑似乱数生成器の安全性とモンテカルロ法 ( 確率数値解析に於ける諸問題,VI) Author(s) 杉田, 洋 Citation 数理解析研究所講究録 (2004), 1351: Issue Date URL

Title 疑似乱数生成器の安全性とモンテカルロ法 ( 確率数値解析に於ける諸問題,VI) Author(s) 杉田, 洋 Citation 数理解析研究所講究録 (2004), 1351: Issue Date URL Title 疑似乱数生成器の安全性とモンテカルロ法 ( 確率数値解析に於ける諸問題,VI) Author(s) 杉田, 洋 Citation 数理解析研究所講究録 (2004), 1351: 33-40 Issue Date 2004-01 URL http://hdlhandlenet/2433/64973 Right Type Departmental Bulletin Paper Textversion

More information

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a 9 203 6 7 WWW http://www.math.meiji.ac.jp/~mk/lectue/tahensuu-203/ 2 8 8 7. 7 7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa,

More information

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6 26 11 5 1 ( 2 2 2 3 5 3.1...................................... 5 3.2....................................... 5 3.3....................................... 6 3.4....................................... 7

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980 % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2006.11.20 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

expander graph [IZ89] Nii (NII) Lec. 11 October 22, / 16

expander graph [IZ89] Nii (NII) Lec. 11 October 22, / 16 Lecture 11: PSRGs via Random Walks on Graphs October 22, 2013 Nii (NII) Lec. 11 October 22, 2013 1 / 16 expander graph [IZ89] Nii (NII) Lec. 11 October 22, 2013 2 / 16 Expander Graphs Expander Graph (

More information

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4 20 20.0 ( ) 8 y = ax 2 + bx + c 443 ax 2 + bx + c = 0 20.1 20.1.1 n 8 (n ) a n x n + a n 1 x n 1 + + a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 444 ( a, b, c, d

More information

2 3, 4, 5 6 2. [1] [2] [3]., [4], () [3], [5]. Mel Frequency Cepstral Coefficients (MFCC) [9] Logan [4] MFCC MFCC Flexer [10] Bogdanov2010 [3] [14],,,

2 3, 4, 5 6 2. [1] [2] [3]., [4], () [3], [5]. Mel Frequency Cepstral Coefficients (MFCC) [9] Logan [4] MFCC MFCC Flexer [10] Bogdanov2010 [3] [14],,, DEIM Forum 2016 E1-4 525-8577 1 1-1 E-mail: is0111rs@ed.ritsumei.ac.jp, oku@fc.ritsumei.ac.jp, kawagoe@is.ritsumei.ac.jp 373 1.,, itunes Store 1, Web,., 4,300., [1], [2] [3],,, [4], ( ) [3], [5].,,.,,,,

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

Jorgenson F, L : L: Inada lim F =, lim F L = k L lim F =, lim F L = 2 L F >, F L > 3 F <, F LL < 4 λ >, λf, L = F λ, λl 5 Y = Const a L a < α < CES? C

Jorgenson F, L : L: Inada lim F =, lim F L = k L lim F =, lim F L = 2 L F >, F L > 3 F <, F LL < 4 λ >, λf, L = F λ, λl 5 Y = Const a L a < α < CES? C 27 nabe@ier.hit-u.ac.jp 27 4 3 Jorgenson Tobin q : Hayashi s Theorem Jordan Saddle Path. GDP % GDP 2. 3. 4.. Tobin q 2 2. Jorgenson F, L : L: Inada lim F =, lim F L = k L lim F =, lim F L = 2 L F >, F

More information

II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1

II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1 II 2014 1 1 I 1.1 72 r 2 72 8 72/8 = 9 9 2 a 0 1 a 1 a 1 = a 0 (1+r/100) 2 a 2 a 2 = a 1 (1 + r/100) = a 0 (1 + r/100) 2 n a n = a 0 (1 + r/100) n a n a 0 2 n a 0 (1 + r/100) n = 2a 0 (1 + r/100) n = 2

More information

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46..

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46.. Cotets 6 6 : 6 6 6 6 6 6 7 7 7 Part. 8. 8.. 8.. 9..... 3. 3 3.. 3 3.. 7 3.3. 8 Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3.

More information

a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a

a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a), Tetsuo SAWARAGI, and Yukio HORIGUCHI 1. Johansson

More information

Block cipher

Block cipher 18 12 9 1 2 1.1............................... 2 1.2.................. 2 1.3................................. 4 1.4 Block cipher............................. 4 1.5 Stream cipher............................

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

(MIRU2008) HOG Histograms of Oriented Gradients (HOG)

(MIRU2008) HOG Histograms of Oriented Gradients (HOG) (MIRU2008) 2008 7 HOG - - E-mail: katsu0920@me.cs.scitec.kobe-u.ac.jp, {takigu,ariki}@kobe-u.ac.jp Histograms of Oriented Gradients (HOG) HOG Shape Contexts HOG 5.5 Histograms of Oriented Gradients D Human

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

1 2 1.1............................................ 3 1.2.................................... 7 1.3........................................... 9 1.4..

1 2 1.1............................................ 3 1.2.................................... 7 1.3........................................... 9 1.4.. 2010 8 3 ( ) 1 2 1.1............................................ 3 1.2.................................... 7 1.3........................................... 9 1.4........................................

More information

ε ε x x + ε ε cos(ε) = 1, sin(ε) = ε [6] [5] nonstandard analysis 1974 [4] We shoud add that, to logical positivist, a discussion o

ε ε x x + ε ε cos(ε) = 1, sin(ε) = ε [6] [5] nonstandard analysis 1974 [4] We shoud add that, to logical positivist, a discussion o dif engine 2017/12/08 Math Advent Calendar 2017(https://adventar.org/calendars/2380) 12/8 IST(Internal Set Theory; ) 1 1.1 (nonstandard analysis, NSA) ε ε (a) ε 0. (b) r > 0 ε < r. (a)(b) ε sin(x) d sin(x)

More information

18 2 20 W/C W/C W/C 4-4-1 0.05 1.0 1000 1. 1 1.1 1 1.2 3 2. 4 2.1 4 (1) 4 (2) 4 2.2 5 (1) 5 (2) 5 2.3 7 3. 8 3.1 8 3.2 ( ) 11 3.3 11 (1) 12 (2) 12 4. 14 4.1 14 4.2 14 (1) 15 (2) 16 (3) 17 4.3 17 5. 19

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x >

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x > 5.1 1. x = a f (x) a x h f (a + h) f (a) h (5.1) h 0 f (x) x = a f +(a) f (a + h) f (a) = lim h +0 h (5.2) x h h 0 f (a) f (a + h) f (a) f (a h) f (a) = lim = lim h 0 h h 0 h (5.3) f (x) x = a f (a) =

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

卓球の試合への興味度に関する確率論的分析

卓球の試合への興味度に関する確率論的分析 17 i 1 1 1.1..................................... 1 1.2....................................... 1 1.3..................................... 2 2 5 2.1................................ 5 2.2 (1).........................

More information

福岡大学人文論叢47-3

福岡大学人文論叢47-3 679 pp. 1 680 2 681 pp. 3 682 4 683 5 684 pp. 6 685 7 686 8 687 9 688 pp. b 10 689 11 690 12 691 13 692 pp. 14 693 15 694 a b 16 695 a b 17 696 a 18 697 B 19 698 A B B B A B B A A 20 699 pp. 21 700 pp.

More information

t14.dvi

t14.dvi version 1 1 (Nested Logit IIA(Independence from Irrelevant Alternatives [2004] ( [2004] 2 2 Spence and Owen[1977] X,Y,Z X Y U 2 U(X, Y, Z X Y X Y Spence and Owen Spence and Owen p X, p Y X Y X Y p Y p

More information