Theories for Dynamical Response of Many-Electron Systems Yasutami Takada I make a review of theoretical frameworks of calculating the dynamical

Size: px
Start display at page:

Download "Theories for Dynamical Response of Many-Electron Systems Yasutami Takada I make a review of theoretical frameworks of calculating the dynamical"

Transcription

1 Theories for Dynamical Response of Many-Electron Systems Yasutami Takada I make a review of theoretical frameworks of calculating the dynamical properties of many-electron systems in solids. Emphasis is put on the accurate first-principles evaluation of spectral functions characterizing elementary excitations in both the Green s-function approach and the time-dependent density functional theory. 1 dynamical response 1) 1

2 DMFT: Dynamical Mean-Field Theory 2) (LDA: Local Density Approximation) (LDA+DMFT) 3) 4) DFT: Density Functional 2

3 Theory 5) n(r) E xc [n(r)] DFT E xc [n(r)] LDA DFT 6) E xc [n(r)] QMC: Quantum Monte Carlo fixed-node approximation 7) DFT QMC 8) 3

4 ) 2 4eV 1 1keV X 4

5 +e 1/2 l 2 4eV ARPES: Angle-Resolved Photo-Emission Spectroscopy 1meV E f Φ hω E i 1: t = r σ t(> ) r σ ψ σ (r) ψ + σ (r ) ψ σ (r, t)ψ + σ (r ) H ψ σ (r, t) e iht ψ σ (r)e iht e βω tr(e βh ) 1) T β 1/T Ω Ω T ln[tr(e βh )] 5

6 ρ(x) (a) e - t = -ε ρ(x) (b) t = -ε e - ρ(x) r' t = x ρ(x) t = r x ρ(x) r' t > e - x ρ(x) e- t > r x r' r x r' r x 2: (a) (b) N N + 1 t = r σ t r σ ψ σ (r, t)ψ + σ (r ) N 1 N ψ + σ (r, t)ψ σ (r) ψ + σ (r, t) ψ + σ (r, t) ψ + σ (r )ψ σ (r, t) ψ σ (r, t)ψ + σ (r ) ψ + σ (r )ψ σ (r, t) G σσ (r, r ; t) iθ(t) {ψ σ (r, t), ψ + σ (r )}. (1) θ(t) i {A, B} A B AB + BA 6

7 2.3 X ω (ev) ( k, ω ) q = k - k1 ω = ω - ω q (cm-1) 1 1 ( k, ω ) 3: ω q ω 1keV k 1keV ω q ω 1 (= ω ω) k 1 (= k q) R(q, ω) e e iq r iωt H (t) H (t) = e iωt V (q) dre iq r ρ(r) (2) V (q) = 4πe 2 /q 2 ρ(r) σ ψ + σ (r)ψ σ (r) ω ω 7

8 R(q, ω) H R(q, ω) = 2πV (q) 2 S(q, ω) (3) S(q, ω) S(q, ω) = dt 2π eiωt dre iq r dr e iq r ρ(r, t)ρ(r ) (4) N N ± 1 N ω 5 1keV X ω q d 2 σ/dωdω X A A A A A (e 2 /mc 2 )ρ(r) m Thomson d 2 σ dωdω = ( e 2 mc 2 ) 2 ( ω 1 ω ) ( ϵ ϵ 1 ) 2 S(q, ω). (5) ϵ ϵ 1 X S(q, ω) V (q) q q( q ) X q 1 Å 1 1eV S(q, ω) (4) 3 (1) (4) 8

9 (Rayleigh-Ritz-Schrödinger) DFT i Ψ(t) = [H + H (t)]ψ(t) H total (t)ψ(t) (6) t H total (t) Ψ(t) (6) (TDDFT: Time- Dependent Density Functional Theory) 11) A t1 t dt Ψ(t) i t H total(t) Ψ(t) (7) (6) δa = TDDFT (RPA: Random-Phase Approximation) H V (r) H total (t) V (r, t) t DFT TDDFT DFT LDA TDLDA H Φ n HΦ n = E n Φ n (8) H (t) Ψ(t) e iht Φ(t) (9) 9

10 Φ(t) (6) i Φ(t) t = e iht H (t)e iht Φ(t) (1) t H (t) Φ(t) Φ n H (t) H (t) Φ(t) Ψ(t) t Φ(t) Φ n i dt e iht H (t )e iht Φ n (11) t Ψ(t) e ient Φ n i dt e ih(t t) H (t )e ih(t t) e ient Φ n [ ] = 1 i dt e iht H (t t )e iht e ient Φ n (12) A H (t) H (t) = e iωt A (13) H (t) B B Ψ(t) B Ψ(t) Φ n B Φ n = i = i dt e iω(t t ) Φ n [B, e iht Ae iht ] Φ n dt e iω(t t ) Φ n [e iht Be iht, A] Φ n (14) [A, B] A B AB BA t Φ n B B = e iωt Q BA (t) dt e iωt Q BA (t ) (15) Q BA (t) iθ(t) [B(t), A] (16) B B(t) = e iht Be iht TDDFT TDLDA 1

11 (16) A B ρ(r) Q ρρ (r, r ; t) iθ(t) [ρ(r, t), ρ(r )]. (17) Q ρρ (r, r ; t) Q ρρ (q, ω) = dte iωt dre iq r dr e iq r Q ρρ (r, r ; t) (18) Q ρρ (q, ω) S(q, ω) S(q, ω) = e βω π Im Q ρρ(q, ω) (19) ω q QMC 4 N 1 U U V N N N ± 1 N 11

12 N TDDFT 12) (Luttinger-Ward) (Baym-Kadanoff) (Hedin) GW (SEROT: Self-Energy Revision Operator Theory) GWΓ 13) TDDFT TDDFT SEROT [1] 1987 [2] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg: Dynamical meanfield theory of strongly correlated fermion systems and the limit of infinite dimensions, Rev. Mod. Phys. 68 (1996) 13. [3] K. held, I. A. Nekrasov, N. Blümer, V. I. Anisimov, and D. Vollhardt: Realistic modeling of strongly correlated electron systems: An introduction to the LDA+DMFT approach, Int. J. Mod. Phys. B 15 (21) [4] 23 (1988) 1. [5] P. Hohenberg and W. Kohn: Inhomogeneous electron gas, Phys. Rev. 136 (1964) B864; W. Kohn and L. J. Sham: Self-consistent equations including exchange and correlation effects, Phys. Rev. 14 (1965) A1133; W. Kohn: 12

13 Nobel lecture: Electronic structure of matter wave functions and density functionals, Rev. Mod. Phys. 71 (1999) [6] Kohn 34 (1999) 148 [7] D. M. Ceperley: Microscopic simulations in physics, Rev. Mod. Phys. 71 (1999) S438. [8] 1999 [9] 29 (1994) 25, 183, 743; 3 (1995) [1] h = k B = 1 [11] E. Runge and E. K. U. Gross: Density-functional theory for time-dependent systems, Phys. Rev. Lett. 52 (1984) 997; E. K. U. Gross, J. F. Dobson, and M. Petersilka: Density functional theory of time-dependent phenomena, R. F. Nalewajski Topics in Current Chemistry: Density Functional Theory II 181 (Springer, Berlin, 1996 ) 81; M.E. Casida Time-dependent density-functional response theory for molecules, D.P. Chong Recent Advances in Density Functional Methods Part I (Singapore, World Scientific, 1995 ) 155 Time-Dependent Density Functional Response Theory of Molecular Systems: Theory, Computational Methods and Functionals, J. M. Seminario Recent Developments and Applications of Modern Density Functional Theory (Elsevier, Amsterdam, 1996 ) 391. [12] D. Pines: Elementary excitations in solids, (Benjamin, 1963 RPA 4 [13] Y. Nambu: Quasiparticles and gauge invariance in the theory of superconductivity, Phys. Rev. 117 (196) 648. J. R. Schrieffer: Theory of superconductivity, Benjamin,

14 Theories for Dynamical Response of Many-Electron Systems Yasutami Takada Based on the formal framework developed from very elementary quantum mechanics and statistical mechanics, the concepts of the self-energy and the polarization function are explained. 1 G σσ (r, r ; t) Q ρρ (r, r ; t) 1

15 2 G σσ (r, r ; τ) G σσ (r, r ; t) 2.1 H { n } H n = E n n (1) G σσ (r, r ; t) G σσ (r, r ; ω) = nm dte iωt G σσ (r, r ; t) i dte iωt {ψ σ (r, t), ψ + σ (r )} e β(ω E n) (e β(e n E m ) + 1) n ψ+ σ (r ) m m ψ σ (r) n ω + i + + E m E n (2) T β = 1/T Ω T ln(tr e βh ) t t + e +t ω ω + i + ω A σσ (r, r ; ω) A σσ (r, r ; ω) 1 π Im G σσ (r, r ; ω) = e β(ω En) (e βω +1) n ψ + σ (r ) m m ψ σ (r) n δ(ω+e m E n ) (3) nm G σσ (r, r ; ω) G σσ (r, r ; t) G σσ (r, r ; ω) = G σσ (r, r ; t) = iθ(t) de A σσ (r, r ; E) ω + i + E (4) de e iet A σσ (r, r ; E) (5) { n } dea σσ (r, r ; E) = δ σ,σ δ(r r ) (6) (Sum rule) ω lim G σσ (r, ω r ; ω) = δ σ,σ δ(r r ). (7) ω 2

16 ω 2.2 G σσ (r, r ; τ) G σσ (r, r ; τ) T τ ψ σ (r, τ)ψ + σ (r ) θ(τ) ψ σ (r, τ)ψ + σ (r ) + θ( τ) ψ + σ (r )ψ σ (r, τ) (8) ψ σ (r, τ) e Hτ ψ σ (r)e Hτ G σσ (r, r ; τ) = dea σσ (r, r ; E)e Eτ [ θ(τ)f( E) + θ( τ)f(e)] (9) f(e) = (1 + e βe ) 1 G σσ (r, r ; τ + β) = G σσ (r, r ; τ) (1) τ G σσ (r, r ; τ) β G σσ (r, r ; τ) = T ω p e iωpτ G σσ (r, r ; iω p ) (11) ω p p p =, ±1, ±2, ω p = πt (2p + 1) G σσ (r, r ; iω p ) = β dτ e iω pτ G σσ (r, r ; τ) = de A σσ (r, r ; E) iω p E (12) G σσ (r, r ; ω) G σσ (r, r ; iω p ) ω iω p ω + i B ρρ (r, r ; ω) B ρρ (r, r ; ω)= e β(ω En) (e βω 1) n ρ(r ) m m ρ(r) n δ(ω+e m E n ) (13) nm 3

17 Q ρρ (r, r ; t) Q ρρ (r, r ; ω) = dt e iωt Q ρρ (r, r ; t) = de B ρρ(r, r ; E) ω + i + E (14) ω (ω E) 1 ω 1 + Eω 2 ω 1 [ρ(r), ρ(r )] = ω 2 lim Q ρρ(r, r ; ω) = [[ρ(r), H], ρ(r )]. (15) ω ω 2 (15) f Q ρρ (r, r ; τ) Q ρρ (r, r ; τ) T τ ρ(r, τ)ρ(r ) θ(τ) ρ(r, τ)ρ(r ) θ( τ) ρ(r )ρ(r, τ) (16) B ρρ (r, r ; ω) Q ρρ (r, r ; τ) = deb ρρ (r, r ; E)e Eτ [θ(τ)n( E) θ( τ)n(e)] (17) n(e) = (e βe 1) 1 Q ρρ (r, r ; τ) β ω q = 2πT q q =, ±1, ±2, Q ρρ (r, r ; τ) = T ω q e iωqτ Q ρρ (r, r ; iω q ) (18) Q ρρ (r, r ; iω q ) = β dτ e iω qτ Q ρρ (r, r ; τ) = de B ρρ(r, r ; E) iω p E (19) Q ρρ (r, r ; ω) Q ρρ (r, r ; ω) = Q ρρ (r, r ; iω q ) iωq ω+i + (2) Q ρρ (r, r ; iω q ) [1] Q ρρ (r, r ; ω) 3 G σσ (r, r ; τ) H 4

18 H H = σ ( dr ψ σ + (r) 1 σσ ) 2m 2 r + v(r) ψ σ (r) dr dr ψ σ + (r)ψ + σ (r )u(r, r )ψ σ (r )ψ σ (r) (21) v(r) u(r, r ) G σσ (r, r ; τ) σ = σ σ 3.1 (8) G(r, r ; τ) τ G(r, r ; τ) τ = δ(τ) {ψ σ (r), ψ + σ (r )} T τ e Hτ [H, ψ σ (r)]e Hτ ψ + σ (r ) (22) δ(r r ) T τ (8) u(r, x) G(r, r ; τ) τ ( + δ(τ)δ(r r ) + 1 ) 2m 2 r + v(r) G(r, r ; τ) = dx u(r, x) T τ ψ + σ (x, τ)ψ σ (x, τ)ψ σ(r, τ)ψ σ + (r ) σ = = β dx u(r, x) dτ δ(τ τ ) T τ ψ σ (r, τ) ψ + σ (x, τ )ψ σ (x, τ )ψ σ + (r ) σ β dx u(r, x) dτ δ(τ τ ) T τ ψ σ (r, τ)ρ(x, τ )ψ σ + (r ) (23) δ(τ τ ) ρ(x)[ σ ψ+ σ (x)ψ σ (x)] τ τ τ (23) (11) ( iω p + 1 ) 2m 2 r v(r) G(r, r ; iω p ) dx Σ(r, x; iω p )G(x, r ; iω p ) = δ(r r ) (24) (23) Σ(r, x; iω p ) (23) 5

19 (24) δ(τ τ ) Σ(r, x; iω p )G(x, r ; iω p ) β β = u(r, x) dτe iω pτ dτ T e iω q(τ τ ) T τ ψ σ (r, τ)ρ(x, τ )ψ σ + (r ) (25) ω q (25) ω q ω p (= ω p + ω q ) x z Σ(r, z; iω p )G(z, r ; iω p ) = T ω p u(r, z) β β dτe iω p τ dτ e i(ω p ω p )τ T τ ψ σ (r, τ)ρ(z, τ )ψ σ + (r ) (26) G(z, r ; iω p ) G 1 (r, x; iω p ) dr G(z, r ; iω p ) G 1 (r, x; iω p ) = δ(z x) (27) (26) G 1 (r, x; iω p ) r z Σ(r, x; iω p ) = T β β dz dr u(r, z) dτe iω p τ dτ e i(ω p ω p )τ ωp T τ ψ σ (r, τ)ρ(z, τ )ψ + σ (r ) G 1 (r, x; iω p ) (28) dy δ(r y ) = dy dy G(r, y; iω p )G 1 (y, y ; iω p ) (29) Σ(r, x; iω p ) = T ωp dz dy u(r, z)g(r, y; iω p ) Λ (y, z, x; iω p, iω p ) (3) Λ (y, z, x; iω p, iω p ) Λ (y, z, x; iω p, iω p ) = β β dy dx dτe iω p τ dτ e i(ω p ω p )τ G 1 (y, y ; iω p ) T τ ψ σ (y, τ)ρ(z, τ )ψ σ + (x ) G 1 (x, x; iω p ) (31) ψ σ (r, τ) r δ(r y ) y 6

20 3.2 (3) (31) T τ ψ σ (y, τ)ρ(z, τ )ψ + σ (x ) T τ ψ σ (y, τ)ρ(z, τ )ψ + σ (x ) = σ T τ ψ σ (y, τ)ψ + σ (z, τ )ψ σ (z, τ )ψ + σ (x ) T τ ψ σ (y, τ)ψ + σ (x ) ρ(z, τ ) + T τ ψ σ (y, τ)ψ + σ (z, τ ) T τ ψ σ (z, τ )ψ + σ (x ) = G(y, x ; τ) ρ(z) + G(y, z; τ τ )G(z, x ; τ ) (32) ρ(z, τ ) = e Hτ ρ(z)e Hτ = ρ(z) τ (8) τ = + ρ(z) = σ G(z, z; + ) = σ T ω p G(z, z; iω p )e iωp+ (33) G(z, z; iω p ) (32) (31) Λ (y, z, x; iω p, iω p ) (32) Λ H (y, z, x; iω p, iω p ) Λ F (y, z, x; iω p, iω p ) Λ H (y, z, x; iω p, iω p ) = βδ ωp,ω p ρ(z) dy dx G 1 (y, y ; iω p )G(y, x ; iω p )G 1 (x, x; iω p ) = βδ ωp,ω p ρ(z) G 1 (y, x; iω p ) (34) = Λ F (y, z, x; iω p, iω p ) dx dy G 1 (y, y ; iω p )G(y, z; iω p )G(z, x ; iω p )G 1 (x, x; iω p ) = δ(y z)δ(z x) (35) Λ (y, z, x; iω p, iω p ) = Λ H (y, z, x; iω p, iω p )+Λ F (y, z, x; iω p, iω p ) (3) Σ(r, x; iω p ) Σ H (r, x) Σ F (r, x) Σ H (r, x) = dz dy u(r, z)g(r, y; iω p ) ρ(z) G 1 (y, x; iω p ) = δ(r x) dz u(r, z) ρ(z) (36) Σ F (r, x) = T dz dy u(r, z)g(r, y; iω p )δ(y z)δ(z x) ω p = u(r, x)t ω p G(r, x; iω p ) (37) 7

21 iω p Σ H (r, x) Σ F (r, x) iω p (37) ω p (33) e iω p + Σ(r, x; iω p ) (24) Σ H (r, x) Σ F (r, x) v(r) V (r) v(r) + dz u(r, z) ρ(z) (38) V (r) u(r, z) = e 2 / r z Σ F (r, x) 3.3 (24) Σ(r, x; iω p ) G(r, r ; iω p ) u(r, x) (3) G(r, r ; iω p ) Σ(r, x; iω p ) δ(r x) iω p Σ(r, x; iω p ) Σ H (r, x) Σ(r, x; iω p ) (31) Λ (y, z, x; iω p, iω p ) Λ H (y, z, x; iω p, iω p ) Λ (y, z, x; iω p, iω p ) 8

22 Λ F (y, z, x; iω p, iω p ) Λ (y, z, x; iω p, iω p ) 3.4 Λ (y, z, x; iω p, iω p ) (31) ρ(z, τ ) j µ (z, τ ) Λ µ (y, z, x; iω p, iω p ) j µ (z) j µ (z) ( 1 ψ σ + (z) [ ] ) ψ σ (z) ψ σ + (z) ψ σ (z), (µ = x, y, z) (39) σ 2mi z µ z µ j µ (z) = Λ µ Λ µ (iω p iω p ) Λ (y, z, x; iω p, iω p ) (31) T τ ψ σ (y, τ)ρ(z, τ )ψ + σ (x ) T τ ψ σ (y, τ)ρ(z, τ )ψ + σ (x ) / τ T τ ψ σ (y, τ)ρ(z, τ )ψ σ + (x ) τ = δ(τ τ )δ(z y )G(z, x ; τ) δ(τ )δ(z x )G(y, z; τ) + T τ ψ σ (y, τ)e Hτ [H, ρ(z)]e Hτ ψ σ + (x ) (4) H ρ(z) [H, ρ(z)] = i µ=x,y,z j µ (z) z µ (41) ( e iht ρ(z)e iht) + ( e iht j µ (z)e iht) = (42) t z µ µ=x,y,z (4) (41) (31) (iω p iω p )Λ (y, z, x; iω p, iω p ) i Λ µ (y, z, x; iω p, iω p ) z µ µ=x,y,z = δ(z x)g 1 (y, z; iω p ) δ(z y)g 1 (z, x; iω p ) (43) Λ (y, z, x; iω p, iω p ) ω p = ω p Λ Λ 9

23 4 4.1 Q ρρ (r, r ; iω q ) β Q ρρ (r, r ; iω q ) = dτ e iωqτ T τ ρ(r, τ)ρ(r ) = σ β dτ e iω qτ T τ ψ σ (r, + )ρ(r, τ )ψ + σ (r ) (44) (31) β dτ e iω qτ T τ ψ σ (r, τ)ρ(z, τ )ψ + σ (r ) = T ω p e iω p τ dx dy G(r, y; iω p ) Λ (y, z, x; iω p, iω p + iω q )G(x, r ; iω p + iω q ) (45) Q ρρ (r, r ; iω q ) = T e iωp+ dx dy G(r, y; iω p ) σ ω p Λ (y, r, x; iω p, iω p + iω q )G(x, r ; iω p + iω q ) (46) Q ρρ (r, r ; ω) ω q > Λ Λ (46) Λ Λ 4.2 r r W (r, r ; iω q ) u(r, r ) u(r, x) x y u(y, r ) u(r, r ) x y Q ρρ (x, y; iω q ) W (r, r ; iω q ) W (r, r ; iω q ) = u(r, r ) + dx dy u(r, x)q ρρ (x, y; iω q )u(y, r ) (47) 1

24 (3) u(r, z) W (r, z; iω p iω p ) Γ (y, z, x; iω p, iω p ) Λ (y, z, x; iω p, iω p ) = Γ (y, z, x; iω p, iω p ) + dz dz Q ρρ (z, z ; iω p iω p ) u(z, z )Γ (y, z, x; iω p, iω p ) (48) (47) (48) dz u(r, z)λ (y, z, x; iω p, iω p ) = dz W (r, z; iω p iω p )Γ (y, z, x; iω p, iω p ) (49) Γ (y, z, x; iω p, iω p ) (46) Λ (y, z, x; iω p, iω p ) Π(r, r ; iω q ) Π(r, r ; iω q ) = T e iω p + dx dy G(r, y; iω p ) σ ω p Γ (y, r, x; iω p, iω p + iω q )G(x, r ; iω p + iω q ) (5) (48) Q ρρ (r, r ; iω q ) = Π(r, r ; iω q ) dz dz Q ρρ (r, z; iω q )u(z, z )Π(z, r ; iω q ) (51) W (r, r ; iω q ) W (r, r ; iω q ) = u(r, r ) dx dy W (r, x; iω q )Π(x, y; iω q )u(y, r ) (52) 4.3 Q ρρ (r, r ; iω q ) Λ (y, z, x; iω p, iω p ) Π(r, r ; iω q ) Γ (y, z, x; iω p, iω p ) Π Γ 11

25 (1) W(r,r';iω ) W = q + u u Λ G G u (2) Γ (y,z,x;iω,ω ) = + Γ p' p Λ = + Λ Γ Γ (3) Π (r,r';iω ) q Λ = Γ + Λ Γ 1: ϕ ext (r, t ) n ind (r, t) n ind (r, t) = dr dt Q ρρ (r, r ; t t )ϕ ext (r, t ) (53) n ind = Q ρρ ϕ ext n ind = Πϕ eff n ind (r, t) = dr dt Π(r, r ; t t )ϕ eff (r, t ) (54) ϕ eff ϕ eff = ϕ ext /(1 + uπ) (51) Q ρρ = Π Q ρρ uπ Q ρρ = Π/(1 + uπ) (54) ϕ ext D E 12

26 E ϕ eff D E Q ρρ (r, r ; iω q ) Π(r, r ; iω q ) (5) Γ (y, z, x; iω p, iω p ) Λ (y, z, x; iω p, iω p ) (2) Γ (y, z, x; iω p, iω p ) Λ (y, z, x; iω p, iω p ) u Γ (y, z, x; iω p, iω p ) Λ (y, z, x; iω p, iω p ) u (43) Λ Λ µ Γ Γ µ 5 G(r, r ; iω p ) Σ(r, x; iω p ) ( iω p + 1 ) 2m 2 r v(r) dz u(r, z) ρ(z) G(r, r ; iω p ) dx Σ(r, x; iω p )G(x, r ; iω p ) = δ(r r ), (55) Σ(r, x; iω p ) = T dy dz G(r, y; iω p )W (r, z; iω p iω p ) ω p Γ (y, z, x; iω p, iω p ) (56) Π(r, r ; iω q ) (5) W (r, r ; iω q ) (52) [2] 13

27 (31) (31) [1] ω Q ρρ (r, r ; ω) ω q > ω Q ρρ (r, r ; iω q ) iω q ω + i [2] L. Hedin: New Method for Calculating the One-Particle Green s Function with Application to the Electron-Gas Problem, Phys. Rev. 139 (1965) A796 Appendix A G. Baym and L. Kadanoff; Conservation Laws and Correlation Functions, Phys. Rev. 124 (1961) 287 S. Engelsberg and J. R. Schrieffer: Coupled Electron-Phonon Systems, Phys. Rev. 131 (1963) 993 Appendic B 14

28 Theories for Dynamical Response of Many-Electron Systems Yasutami Takada We shall explain the Luttinger-Ward formalism, the Baym-Kadanoff conserving approximation, and the Hedin s GW approximation with emphasis of physical backgrounds and implications rather than mathematical details. 1 G(r, r ; iω p ) Σ(r, r ; iω p ) Q ρρ (r, r ; iω q ) Π(r, r ; iω q ) Γ (y, z, x; iω p,iω p ) Γ e e ( eγ ) 1

29 (1) Φ[G] [1] (2) [2] (3) [3] [4] (7.1) H G(r, r ; iω p ) G(iω p ) Σ(iω p )G(iω p ) (r, r ) ( Σ(iωp )G(iω p ) ) r,r = dx Σ(r, x; iω p )G(x, r ; iω p ) iω p G(iω p ) G Tr G(iω p ) Tr G T ω p H u(r, r ) H U G (iω p ) (9.1) U = ( ) iω p + 1 2m 2 r v(r) G (r, r ; iω p )=δ(r r ) (1) v(r) G (iω p ) U G(iω p ) U 2

30 G(r, r ; τ) τ H H τ U e τh e τh U G(r, r ; τ) G(r, r ; iω p ) β [ ( β G(r, r ; iω p )= dτe iωpτ T τ exp dτ U(τ ) ) ψ σ (r,τ)ψ σ + (r ) ] c (2) H τ c G(r, r ; τ) ψ σ (r,τ) ψ + σ (r ) 2.2 (2) G U G () G G (1) G (1) = G Σ H [G ] G + G Σ F [G ] G (3) Σ H [G ] Σ F [G ] (7.16) (7.17) Σ H Σ F G G 1 (1) First-Order Skeleton Diagrams for the Self-Energy (1a) Σ : Hartree Term (1b) H ΣF : Fock Term (2) Second-Order Skeleton Diagrams for the Self-Energy (2a) Σ2a : Direct Term (2b) Σ2b: Exchange Term 1: 3

31 G (2) 1 Σ 2a [G ] Σ 2b [G ] G (2) = G Σ 2a [G ] G + G Σ 2b [G ] G +G Σ H [G Σ H [G ] G ] G + G Σ H [G Σ F [G ] G ] G +G Σ F [G Σ H [G ] G ] G + G Σ F [G Σ F [G ] G ] G +G Σ H [G ] G Σ H [G ] G + G Σ H [G ] G Σ F [G ] G +G Σ F [G ] G Σ H [G ] G + G Σ F [G ] G Σ F [G ] G (4) (3) Σ 1 [G ] Σ H [G ]+Σ F [G ] (4) G Σ 1 [G (1) ] G + G Σ 1 [G ] G (1) (5) Σ 2 [G ] Σ H [G ] Σ F [G ] n n Σ n [G ] G Σ n [G ] G G Σ n [G] G = G (n) = G + G n= n=1 Σ n [G] G (6) Σ H [G] Σ F [G] Σ H Σ F 2.3 (1) G (9.1) G = G + G (Σ H +Σ)G (7) iω p + 2 r /2m v(r) (6) (7) Σ Σ=Σ F [G]+ Σ n [G] (8) 4 n=2

32 2.4 Φ[G ] Φ[G ] n Φ n [G ] δφ n [G ] δg Σ n [G ] (9) 1 Φ[G ]= Φ n [G ]= n=1 n=1 2n Tr ( G Σ n [G ] ) (1) Φ[G ] 2 Φ[G ] G Φ[G ] Φ[G ] = : Φ[G ] G Σ H [G ] Σ F [G ] Σ 2a [G ] Σ 2b [G ] n 2n G (1) 1/2n Φ n [G ] Σ n [G ] Φ[G ] G G Φ[G] Σ Σ H +Σ= Σ n [G] = n=1 n=1 δφ n [G] δg = δφ[g] δg (11) 5

33 2.5 Φ[G] Φ[G] Ω( T ln[tr e βh ]) Ω { Ω= Tr e iωp+ ln ( G(iω p ) 1) + G(iω p ) ( Σ H +Σ(iω p ) )} +Φ[G] (12) (7) Σ H +Σ=G 1 G 1 G (12) G Ω[G] G δω[g] δg = G δ ( G 1 +Σ H +Σ ) Σ H Σ+ δφ δg δg (13) (7) (11) δω[g]/δg = G Ω[G] U [5] (11) Φ[G] ` ` ` Φ[G] 6

34 Φ[G] Φ[G] Φ[G] Φ[G] =Σ H [G]+Σ F [G] Φ[G] Φ[G] Φ[G] Φ[G] 3.2 Φ[G] G Q ρρ Φ[G] (8) Σ (7.11) Λ Γ 3 Γ Q ρρ Σ Γ (7.23) Σ Γ 7

35 Γ = : Γ Φ[G] Φ[G] Φ[G] G (11) Σ[G] Σ[G] (7) G Σ[G] G Ĩ[G] Ĩ[G] Ĩ[G] = δσ[g] δg ( = δ2 Φ[G] ΦH [G] ) δgδg Φ[G] Φ H [G] Φ[G] Φ H [G] 4 Ĩ[G] G Γ Γ = + I Γ (14) 4: Γ Φ[G] Φ H [G] Φ[G] Λ Γ Q ρρ 5 Φ[G] Φ H [G] 2 Ĩ[G] Ĩ[G] 4 Γ 3 8

36 = I : Ĩ[G] Φ[G] Φ[G] G Q ρρ δσ(r 1 τ 1 ; r 2 τ 2 ;[G]) δg(r 1τ 1; r 2τ 2) = δ 2( Φ[G] Φ H [G] ) δg(r 1 τ 1 ; r 2 τ 2 )δg(r 1τ 1; r 2τ 2) = δσ(r 1τ 1; r 2τ 2;[G]) δg(r 1 τ 1 ; r 2 τ 2 ) ` ` ` ` Φ[G] ` ` ` ` ` ` (15) 3.3 Φ[G] Ω (12) (9) G G Ω[G] Ω[G] G Φ[G] (13) (11) δω[g]/δg = G Ω[G] G G G + δg G Σ H +Σ=G 1 G 1 δ 2 Ω[G] δgδg = δ(g 1 ) δg + δ2 Φ δgδg 9 (16)

37 GG 1 =1 G (δ(g 1 )/δg) G = 1 Λ Λ =1+G (δ 2 Φ[G]/δGδG) G Λ Λ 1 =1 G (δ 2 Φ[G]/δGδG) G G δ2 Ω[G] δgδg G = Λ 1 (17) G 1 (8.3) Q ρρ Tr { δg δ2 Ω[G] δgδg δg} = Tr { δg Q 1 ρρ δg } (18) δg Q ρρ Q ρρ 3.4 [6] Φ[G] = : Φ[G] 6 Φ[G] 1

38 Fluctuation Exchange: FLEX 2 FLEX Φ[G] 7 7: FLEX FLEX FLEX U U U Φ[G] U Ũ Ũ U U U (8.4) (8.9) W Ũ 11

39 r s U r s /(1 + r s ) W 1.9 <r s < <r s /(1 + r s ) < U W Φ[G] G G Σ Π W Γ 8 (9.1) (7) (1) G : = + + Σ (2) Σ : Σ = Γ (3) Π : Π = Γ (4) W : = + Π (5) Γ : δσ Γ = + Γ δg 8: (9.2) (8.7) W (r, r ; iω q ) r r iω q iω q (8.9) 12

40 4 Ĩ (14) G Σ Π W Γ 4.3 Σ G W Σ Π Γ G U G G G G G G U 8 (4) U W G Σ[G, W ] Π[G, W ] Γ [G, W ] 8 (2) (3) (5) W W Γ [G, W ] 8 (5) Γ () [G] =1 8 (3) Π[G, W ] Π () [G] = GG 8 (2) Σ[G, W ] Σ (1) [G, W ]= GW 9 Γ [G, W ] 8 (5) Γ () δσ (1) [G, W ]/δg 9(1) Γ (1) [G, W ] Π (1) [G, W ] Σ (2) [G, W ] 9(2) 13

41 () O(W ) : () Γ = () (1) Π = ; Σ = 1 (1) O(W ) : (1) Γ = (1) (2) Π = ; Σ = 2 (2) (2) O(W ) : Γ = : Γ [G, W ] Π[G, W ] Σ[G, W ] W Γ (2) [G, W ] Π (2) [G, W ] Σ (3) [G, W ] Γ (3) [G, W ] 4.4 Σ[G, W ]= n=1 Σ (n) [G, W ] W W U Σ[G, W ]=Σ (1) [G, W ]= GW G W GW W Π () [G] W = u/(1 + u Π () [G]) G Σ 9() Σ (1) 1(1b) Σ F GW 14

42 U W (7.23) Π () Q ρρ GW [7] G G Π () Σ (1) G G G v(r) 5 FLEX GW 199 [1] J. M. Luttinger and J. C. Ward, Phys. Rev. 118 (196) [2] G. Baym and L. P. Kadanoff, Phys. Rev. 124 (1961) 287; G. Baym, Phys. Rev. 127 (1961)

43 [3] L. Hedin, Phys. Rev. 139 (1965) A796. [4] (1) (2) Σ H Σ [5] P. Nozières and J. M. Luttinger, Phys. Rev. 127 (1962) 1423; J. M. Luttinger and P. Nozières, Phys. Rev. 127 (1962) [6] N. E. Bickers, D. J. Scalapino, and S. R. White, Phys. Rev. Lett. 62 (1989) 961; N. E. Bickers and S. R. White, Phys. Rev. B (1991). [7] GW F. Aryasetiawan and O. Gunnarsson, Rep. Prog. Phys. 61 (1998) 237; W. G. Aulbur L. Jönsson, and J. W. Wilkins, in Solid State Physics, edited by H. Ehrenreich and F. Spaepen (Academic, New York, 2), Vol. 54, p.1 16

44 Theories for Dynamical Response of Many-Electron Systems Yasutami Takada Basic concepts in constructing the self-energy revision operator theory are explained with emphasis on its close connection with both the Baym-Kadanoff conserving approximation and the Hedin s GW approximation. Based on this exact theoretical framework a practical approximation scheme named the GWΓ method is introduced and its usefulness is illustrated by its application to the homogeneous electron gas. 1 G Q ρρ Σ Π G Q ρρ 1

45 Γ ( Σ GW Φ[G] G W u/(1 + uπ) u Σ Π Φ[G] G Φ input [G] Φ input [G] Φ input [G] Φ[G] Σ Σ 2

46 Φ input[g] δφ input[g] Σ[G] = δg -1-1 G = G Σ[G] 2 δ Φ input[g] I = δg δg Γ = 1 + GIGΓ Π = GGΓ 1: [1] 1 Σ[G] G Σ G Γ 2 (a) Σ G Γ 2 (b) (a) Σ (b) Σ G Γ G Γ 2: (a) Σ 1 G Γ (b)σ G Γ Φ[G] 3

47 Φ[G] Σ δφ[g]/δg Φ[G] 2.2 S {Σ[G]} F S Σ input [G] F [ Σ input [G] ] Σ output [G] S (1) (7.1) H F S Σ input [G] Ĩinput = δσ input [G]/δG Ĩinput Γ input = 1+GĨinputGΓ input Γ input Π input = GGΓ input W input = u/(1 + uπ input ) Σ output [G] = GW input Γ input Σ input [G] Σ output [G] Σ input [G] Σ input [G] ( S Σ input [G] Σ output [G] F 2.3 F [1] (i) Σ input [G] = Σ F [G] m m F Σ output [G] Σ (m) [G] Σ (m) [G] Σ (m+1) [G](= F[Σ (m) [G]]) 4

48 (ii) Σ (m) [G] u (m + 1) (iii) Σ input [G] F F[Σ input [G]] Σ F [G] F m [Σ input [G]] u m Σ input [G] F Σ[G] = lim m F m [Σ input [G]] (2) Σ[G] (i) (iii) Σ[G] Σ input [G] (2) F[Σ[G]] = Σ[G] (3) F S Σ[G] G Σ Γ F Φ[G] F S 2 (a) (b) F Γ Σ Γ F δφ[g]/δg Σ Γ 5

49 3 GW F Σ input [G] Σ[G] (2) (5) (1) F Σ[G] Σ input [G] Σ[G] Σ[G] G W GW W Σ Σ[G] F Σ[G] F F Γ GW Γ GW Σ F δσ input [G]/δG F Σ 6

50 [2] n(r) E xc [n(r)] n(r) E xc [n(r)] δσ input [G]/δG F [3] p iω p σ G σ (p; iω p ) G(p) p T ω p p σ 4.2 F Ĩinput ( input Ĩ(p + q, p; p + q, p ) Γ (p + q, p) Ĩ(p + q, p; p + q, p ) Γ ν (p + q, p) ν = x y z i = ν γ i (p + q, p) [ 1 i = (2p i + q i )/2m i = ν ] m Γ i (p + q, p) = γ i (p + q, p) + p Ĩ(p + q, p; p + q, p )G(p )G(p + q)γ i (p + q, p ) (4) iω q Γ (p + q, p) ν=x,y,z q ν Γ ν (p + q, p) 7

51 = G (p + q) 1 Σ(p + q) G (p) 1 + Σ(p) (5) G (p) ε p = p 2 /2m µ µ 1/(iω p ε p ) (5) Ĩ Σ Σ input Γ input Σ input Γ input Γ input 4.3 (5) Ĩ Γ ν(p + q, p) Γ (p + q, p) R(p + q, p) R(p + q, p) Γ (p + q, p) ν=x,y,z q ν γ ν (p + q, p)/ ν=x,y,z q ν Γ ν (p + q, p) (6) R(p + q, p) (6) (5) Γ (p + q, p) Γ (p + q, p) = G (p + q) 1 Σ(p + q) G (p) 1 + Σ(p) iω q (ε p+q ε p )/R(p + q, p) (7) Γ ν (p + q, p) ν=x,y,z q ν q Γ ν(p + q, p) = 1 G (p + q) 1 Σ(p + q) G (p) 1 + Σ(p) q 1 + R(p + q, p)iω q /(ε p+q ε p ) (8) (7) (8) R(p + q, p) 8

52 4.4 Σ input [G] Σ[G] R(p + q, p) [4] 1 ω p F 2 q lim lim R(p + q, p) p =pf = 1 (9) ω q q lim lim R(p + q, p) p =pf = κ (1) q ω q κ κ κ 4.5 (4) Ĩ(p + q, p; p + q, p ) p p q Ĩ(p + q, p; p + q, p ) Ĩ(q) p Ĩ(q) p p Ĩ(p + q, p; p + q, p )G(p )G(p + q)γ (p + q, p ) p G(p )G(p + q)γ (p + q, p ) (4) i = i = ν Ĩ(p+q, p; p +q, p ) Ĩ(q) p ν=x,y,z (11) Γ (p + q, p) = 1 Ĩ(q) pπ(q) (12) q ν Γ ν (p + q, p) = ε p+q ε p iω q Ĩ(q) pπ(q) (13) ν=x,y,z q ν γ ν (p + q, p) = ε p+q ε p (12) (13) R(p + q, p) R(p + q, p) = 1 Ĩ(q) pπ(q) 1 Ĩ(q) pπ(q)iω q /(ε p+q ε p ) 9 (14)

53 (14) (9) (1) [ lim 1 Ĩ(q) p Π(q) ] p =pf,ωq = κ (15) q κ Ĩ(q) p 4.6 Γ (14) (7) Γ Γ (p + q, p) = [ 1 Ĩ(q) pπ(q) ] G(p + q) 1 G(p) 1 G (p + q) 1 G (p) 1 (16) Γ = Γ (a) Γ (b) Γ (a) 1 Ĩ(q) pπ(q) Γ (b) [G(p + q) 1 G(p) 1 ]/[G (p + q) 1 G (p) 1 ] Γ (12) Γ = Γ (a) Γ = Γ (a) Γ (b) Γ (b) Γ = Γ (b) GISC(Gauge-Invariant Self-Consistent ) [5] Γ (a) Ĩ(q) p p Ĩ(q) (16) Π(q) Π(q) = p G(p + q)g(p)γ (p + q, p) = Π (b) (q) [ 1 Ĩ(q) Π(q)] (17) Π (b) (q) Π (b) (q) p G(p + q)g(p)γ (b) (p + q, p) = Π (q) 2 p [ ] G (p)σ(p)g(p) Re (18) iω q ε p+q + ε p Π (q) [ p G (p + q)g (p)] (17) ϵ(q) u(q) 4πe 2 /q 2 Π (b) (q) ϵ(q) 1 + u(q)π(q) = 1 + u(q) 1 + Ĩ(q) Π(b) (q) (19) 1

54 G + (q) Π (q) ϵ(q) = 1 + u(q) 1 G + (q)u(q)π (q) (2) [6] (19) Π (q) Π (b) (q) G + (q)u(q) Ĩ(q) Ĩ(q) Ĩ(q) G +(q)u(q) f xc (q) [7] (16) 4.7 GWΓ (16) Γ input F Σ 3 W = Σ = GWΓ W u 1+uΠ Σ Π Γ Π= GGΓ G 1 = -1 G Σ G -1 ~ Γ = (1 I Π) G G -1 G G : GWΓ Γ = 1 GW GWΓ 11

55 5 GWΓ r s p F = 1/αr s a B α = (4/9π) 1/3.521 a B GWΓ Ĩ(q) f xc(q) f xc (q) [8] G(p) G(p) n(p) = lim η + T ω p G(p)e iω pη (21) n(p) z F 4 (a) n(p) (b) z F r s T E F n(p) 1..5 (a) : EPX : GWΓ p (units of p ) 1. (b).9 GWΓ.8 F z.7.6 : EPX : GW : FHNC rs 4: (a) (b) 12

56 n(p) z F ( EPX Effective Potential Expansion [9] GW [1] FHNC Fermi Hypernetted Chain [11] GWΓ A(p, ω) G(p) ω A(p, ω) = ImG(p, ω)/π Padé 5 r s = 1 µ c (.136Ry) ω = ω ω + iγ ω = γ =.1πT =.1πE F r =1 s 14 Dispersion of a free electron A(p,ω) (units of E ) -1 F p=2.4p F p=2.2p F p=2.p F p=1.8p F p=1.6p F p=1.4p F p=1.2p F p=.4p F p=.2p F p=1.p F p=.8p F p=.6p F p= ω (units of E F) 5: r s = 1 5 A(p, ω) p ω ω = E p ω = ε p E p ε p [12] 13

57 ( ω p p < p F p > p F ω = E p ω p ω = E p + ω p 6 RPA Π (q) GW G W RPA GWΓ 6 (b) GWΓ ω = E p ω p ω p A (p,ω) (units of E ) 3-1 F 2 1 (a) p = p F r s = 4 E F = 3.1eV ω p= 1.9E F : GWΓ : GW : RPA : Noninteracting ω (units of E F) 3 A (p,ω) (units of E ) -1 F 2 1 (b) p = E p ωp ω (units of E F) 6: r s = 4 5 A(p, ω) γ p p F ε p p 1.6p F p 2p F 14

58 p G Π [13] 7 Q ρρ (q, ω) ω = [14] RPA -1 -Q ρρ (q,)/n [units of (27.2eV) ] r = 5 s : Monte Carlo : GWΓ : RPA q (units of p ) 7: Q ρρ (q, ) S(q, ω) 8 RPA r s = 5 S(q, ω) r s S(q, ω) q q c.9p F q RPA Π q q c q b q a 15

59 -1 S(q,ω)/N [units of (27.2eV) ] a a a a b a b a a ω p b b b q=.8p F q=.6p F b q=1.p F b b q=1.4p F q=1.2p F q=2.4p F q=2.2p F q=2.p F q=1.8p F q=1.6p F Electron Gas at r s= 5 : GWΓ : RPA ω (units of E F) 8: S(q, ω) q RPA r s r s = 5.25 r s [15] S(q, ω) [13] 6 Σ Π GW GWΓ Ĩ(q) 16

60 f xc (q) Σ Π GWΓ Ĩ(q) (11) ( (11) Padé Σ G GWΓ [16] [1] Y. Takada, Phys. Rev. B 52 (1995) [2] P. Hohenberg and W. Kohn, Phys. Rev. 136 (1964) 864; W. Kohn and L. J. Sham, Phys. Rev. 14 (1965) A1133. [3] Y. Takada, Phys. Rev. Lett. 87 (21) [4] P. Nozières, Theory of interacting Fermi Systems (Benjamin, New York, 1964), Chap. 6. [5] Y. Takada, J. Phys. Chem. Solids 54 (1993) [6] C. A. Kukkonen and A. W. Overhauser, Phys. Rev. B 2 (1979) 55. [7] E. K. U. Gross, J. F. Dobson, and M. Petersilka, Density Functional Theory II, edited by R. F. Nalewajski (Springer, Berlin, 1996), Chap. 2, p. 81. [8] Y. Takada, Int. J. Mod. Phys. B 15 (21) [9] Y. Takada and H. Yasuhara, Phys. Rev. B 44 (1991) [1] L. Hedin, Phys. Rev. 139 (1965) A796. [11] L. J. Lantto, Phys. Rev. B 22 (198) 138. [12] H. Yasuhara, S. Yoshinaga, and M. Higuchi, Phys. Rev. Lett. 83 (1999) 325. [13] Y. Takada and H. Yasuhara, Phys. Rev. Lett. 89 (22) [14] S. Moroni, D. M. Ceperley, and G. Senatore, Phys. Rev. Lett. 75 (1995) 689. [15] Y. Takada, to appear in J. Superconductivity, 18 (25). [16] F. Bruneval, F. Sottile, V. Olevano, R. Del Sole, and L. Reining, Phys. Rev. Lett. 94 (25)

1: Sheldon L. Glashow (Ouroboros) [1] 1 v(r) u(r, r ) ( e 2 / r r ) H 2 [2] H = ( dr ψ σ + (r) 1 2 ) σ 2m r 2 + v(r) µ ψ σ (r) + 1 dr dr ψ σ + (r)ψ +

1: Sheldon L. Glashow (Ouroboros) [1] 1 v(r) u(r, r ) ( e 2 / r r ) H 2 [2] H = ( dr ψ σ + (r) 1 2 ) σ 2m r 2 + v(r) µ ψ σ (r) + 1 dr dr ψ σ + (r)ψ + 1 1.1 21 11 22 10 33 cm 10 29 cm 60 6 8 10 12 cm 1cm 1 1.2 2 1 1 1: Sheldon L. Glashow (Ouroboros) [1] 1 v(r) u(r, r ) ( e 2 / r r ) H 2 [2] H = ( dr ψ σ + (r) 1 2 ) σ 2m r 2 + v(r) µ ψ σ (r) + 1 dr dr

More information

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K 2 2 T c µ T c 1 1.1 1911 Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 1 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K τ 4.2K σ 58 213 email:takada@issp.u-tokyo.ac.jp 1933 Meissner Ochsenfeld λ = 1 5 cm B = χ B =

More information

1 2 LDA Local Density Approximation 2 LDA 1 LDA LDA N N N H = N [ 2 j + V ion (r j ) ] + 1 e 2 2 r j r k j j k (3) V ion V ion (r) = I Z I e 2 r

1 2 LDA Local Density Approximation 2 LDA 1 LDA LDA N N N H = N [ 2 j + V ion (r j ) ] + 1 e 2 2 r j r k j j k (3) V ion V ion (r) = I Z I e 2 r 11 March 2005 1 [ { } ] 3 1/3 2 + V ion (r) + V H (r) 3α 4π ρ σ(r) ϕ iσ (r) = ε iσ ϕ iσ (r) (1) KS Kohn-Sham [ 2 + V ion (r) + V H (r) + V σ xc(r) ] ϕ iσ (r) = ε iσ ϕ iσ (r) (2) 1 2 1 2 2 1 1 2 LDA Local

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) * * 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *1 2004 1 1 ( ) ( ) 1.1 140 MeV 1.2 ( ) ( ) 1.3 2.6 10 8 s 7.6 10 17 s? Λ 2.5 10 10 s 6 10 24 s 1.4 ( m

More information

d (i) (ii) 1 Georges[2] Maier [3] [1] ω = 0 1

d (i) (ii) 1 Georges[2] Maier [3] [1] ω = 0 1 16 5 19 10 d (i) (ii) 1 Georges[2] Maier [3] 2 10 1 [1] ω = 0 1 [4, 5] Dynamical Mean-Field Theory (DMFT) [2] DMFT I CPA [10] CPA CPA Σ(z) z CPA Σ(z) Σ(z) Σ(z) z - CPA Σ(z) DMFT Σ(z) CPA [6] 3 1960 [7]

More information

( ) ) AGD 2) 7) 1

( ) ) AGD 2) 7) 1 ( 9 5 6 ) ) AGD ) 7) S. ψ (r, t) ψ(r, t) (r, t) Ĥ ψ(r, t) = e iĥt/ħ ψ(r, )e iĥt/ħ ˆn(r, t) = ψ (r, t)ψ(r, t) () : ψ(r, t)ψ (r, t) ψ (r, t)ψ(r, t) = δ(r r ) () ψ(r, t)ψ(r, t) ψ(r, t)ψ(r, t) = (3) ψ (r,

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

TQFT_yokota

TQFT_yokota , TY, Naito, Phys. Rev. B 99, 115106 (2019),, 2019 9 2 1 (DFT) (DFT)? HΨ(x 1,, x N ) = EΨ(x 1,, x N ) N DFT! Hohenberg, Kohn, PR (1964) Kohn, Sham, PRA (1965) (EDF) E[ρ] = F[ρ] + dxv(x)ρ(x) δe[ρ] δρ(x)

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

多体問題

多体問題 Many Body Problem 997 4, 00 4, 004 4............................................................................. 7...................................... 7.............................................

More information

Chebyshev Schrödinger Heisenberg H = 1 2m p2 + V (x), m = 1, h = 1 1/36 1 V (x) = { 0 (0 < x < L) (otherwise) ψ n (x) = 2 L sin (n + 1)π x L, n = 0, 1, 2,... Feynman K (a, b; T ) = e i EnT/ h ψ n (a)ψ

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

chap7_v7.dvi

chap7_v7.dvi 1 7 7. 1 7. 1. 1,,,.,, 19,,,,, 2 7,.,,., DFT), LDA) GGA GW, La 2 CuO 4 La 2 CuO 4 LDA 3d. 2eV 7. 2 3. 7. 2,.,, E F,. E F = 2 kf 2 /2m k F 10 9 10 10 m, m 9 10 31 kg, 6.6 10 34 Jsec 10 18 J 10 ev., r s,

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論 email: takahash@sci.u-hyogo.ac.jp May 14, 2009 Outline 1. 2. 3. 4. 5. 6. 2 / 262 Today s Lecture: Mode-mode Coupling Theory 100 / 262 Part I Effects of Non-linear Mode-Mode Coupling Effects of Non-linear

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

4/15 No.

4/15 No. 4/15 No. 1 4/15 No. 4/15 No. 3 Particle of mass m moving in a potential V(r) V(r) m i ψ t = m ψ(r,t)+v(r)ψ(r,t) ψ(r,t) = ϕ(r)e iωt ψ(r,t) Wave function steady state m ϕ(r)+v(r)ϕ(r) = εϕ(r) Eigenvalue problem

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz 2 Rutherford 2. Rutherford N. Bohr Rutherford 859 Kirchhoff Bunsen 86 Maxwell Maxwell 885 Balmer λ Balmer λ = 364.56 n 2 n 2 4 Lyman, Paschen 3 nm, n =3, 4, 5, 4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n

More information

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 (vierbein) QCD QCD 1 1: QCD QCD Γ ρ µν A µ R σ µνρ F µν g µν A µ Lagrangian gr TrFµν F µν No. Yes. Yes. No. No! Yes! [1] Nash & Sen [2] Riemann

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論 email: takahash@sci.u-hyogo.ac.jp April 30, 2009 Outline 1. 2. 3. 4. 5. 6. 2 / 260 Today s Lecture: Itinerant Magnetism 60 / 260 Multiplets of Single Atom System HC HSO : L = i l i, S = i s i, J = L +

More information

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2 hara@math.kyushu-u.ac.jp 1 1 1.1............................................... 2 1.2............................................. 3 2 3 3 5 3.1............................................. 6 3.2...................................

More information

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1) φ 4 Minimal subtraction scheme 2-loop ε 28 University of Tokyo Atsuo Kuniba version 2/Apr/28 Formulas Γ n + ɛ = n n! ɛ + ψn + + Oɛ n =,, 2, ψn + = + 2 + + γ, 2 n ψ = γ =.5772... Euler const, log + ax x

More information

1 2 2 (Dielecrics) Maxwell ( ) D H

1 2 2 (Dielecrics) Maxwell ( ) D H 2003.02.13 1 2 2 (Dielecrics) 4 2.1... 4 2.2... 5 2.3... 6 2.4... 6 3 Maxwell ( ) 9 3.1... 9 3.2 D H... 11 3.3... 13 4 14 4.1... 14 4.2... 14 4.3... 17 4.4... 19 5 22 6 THz 24 6.1... 24 6.2... 25 7 26

More information

遍歴電子磁性とスピン揺らぎ理論 - 京都大学大学院理学研究科 集中講義

遍歴電子磁性とスピン揺らぎ理論 - 京都大学大学院理学研究科 集中講義 email: takahash@sci.u-hyogo.ac.jp August 3, 2009 Title of Lecture: SCR Spin Fluctuation Theory 2 / 179 Part I Introduction Introduction Stoner-Wohlfarth Theory Stoner-Wohlfarth Theory Hatree Fock Approximation

More information

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100 positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

講 座 熱電研究のための第一原理計算入門 第1回 密度汎関数法による第一原理バンド計算 桂 1 はじめに ゆかり 東京大学 2 密度汎関数理論 第一原理 first-principles バンド計算とは 結晶構造 Schrödinger 方程式は 量子力学を司る基本方程式で 以外の経験的パラメータや

講 座 熱電研究のための第一原理計算入門 第1回 密度汎関数法による第一原理バンド計算 桂 1 はじめに ゆかり 東京大学 2 密度汎関数理論 第一原理 first-principles バンド計算とは 結晶構造 Schrödinger 方程式は 量子力学を司る基本方程式で 以外の経験的パラメータや 講 座 熱電研究のための第一原理計算入門 第1回 密度汎関数法による第一原理バンド計算 桂 1 はじめに ゆかり 東京大学 2 密度汎関数理論 第一原理 first-principles バンド計算とは 結晶構造 Schrödinger 方程式は 量子力学を司る基本方程式で 以外の経験的パラメータや任意パラメータを使わず 基 ある 定常状態において電子 i の状態を定義する波動 本的な物理方程式のみを用いて行う電子状態計算であ

More information

和佐田P indd

和佐田P indd 2000 B3LYP/6-31G Gaussian 98 03 B3LYP/6-31G* Gaussian STO-3G RHF Gaussian RHF/STO-3G B3LYP RHF 6-31G* STO-3G Schrödinger Schrödinger s p d Schrödinger Schrödinger Hohenberg-Kohn Kohn-Sham Kohn-Sham [1-3]

More information

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e ( ) Note 3 19 12 13 8 8.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R, µ R, τ R (1a) L ( ) ) * 3) W Z 1/2 ( - )

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising ,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising Model 1 Ising 1 Ising Model N Ising (σ i = ±1) (Free

More information

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji 8 4 2018 6 2018 6 7 1 (Contents) 1. 2 2. (1) 22 3. 31 1. Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji SETO 22 3. Editorial Comments Tadashi

More information

02-量子力学の復習

02-量子力学の復習 4/17 No. 1 4/17 No. 2 4/17 No. 3 Particle of mass m moving in a potential V(r) V(r) m i ψ t = 2 2m 2 ψ(r,t)+v(r)ψ(r,t) ψ(r,t) Wave function ψ(r,t) = ϕ(r)e iωt steady state 2 2m 2 ϕ(r)+v(r)ϕ(r) = εϕ(r)

More information

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef 4 213 5 8 4.1.1 () f A exp( E/k B ) f E = A [ k B exp E ] = f k B k B = f (2 E /3n). 1 k B /2 σ = e 2 τ(e)d(e) 2E 3nf 3m 2 E de = ne2 τ E m (4.1) E E τ E = τe E = / τ(e)e 3/2 f de E 3/2 f de (4.2) f (3.2)

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W 003 7 14 Black-Scholes [1] Nelson [] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-Wu Nelson e-mail: takatoshi-tasaki@nifty.com kabutaro@mocha.freemail.ne.jp

More information

3 3.1 R r r + R R r Rr [ ] ˆn(r) = ˆn(r + R) (3.1) R R = r ˆn(r) = ˆn(0) r 0 R = r C nn (r, r ) = C nn (r + R, r + R) = C nn (r r, 0) (3.2) ( 2.2 ) C

3 3.1 R r r + R R r Rr [ ] ˆn(r) = ˆn(r + R) (3.1) R R = r ˆn(r) = ˆn(0) r 0 R = r C nn (r, r ) = C nn (r + R, r + R) = C nn (r r, 0) (3.2) ( 2.2 ) C 3 3.1 R r r + R R r Rr [ ] ˆn(r) = ˆn(r + R) (3.1) R R = r ˆn(r) = ˆn(0) r 0 R = r C nn (r, r ) = C nn (r + R, r + R) = C nn (r r, 0) (3.2) ( 2.2 ) C nn (r r ) = C nn (R(r r )) [2 ] 2 g(r, r ) ˆn(r) ˆn(r

More information

0406_total.pdf

0406_total.pdf 59 7 7.1 σ-ω σ-ω σ ω σ = σ(r), ω µ = δ µ,0 ω(r) (6-4) (iγ µ µ m U(r) γ 0 V (r))ψ(x) = 0 (7-1) U(r) = g σ σ(r), V (r) = g ω ω(r) σ(r) ω(r) (6-3) ( 2 + m 2 σ)σ(r) = g σ ψψ (7-2) ( 2 + m 2 ω)ω(r) = g ω ψγ

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 7 7.1 7.1.1 Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 3 )=(x 0, x )=(ct, x ) (7.3) E/c ct K = E mc 2 (7.4)

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

SFGÇÃÉXÉyÉNÉgÉãå`.pdf SFG 1 SFG SFG I SFG (ω) χ SFG (ω). SFG χ χ SFG (ω) = χ NR e iϕ +. ω ω + iγ SFG φ = ±π/, χ φ = ±π 3 χ SFG χ SFG = χ NR + χ (ω ω ) + Γ + χ NR χ (ω ω ) (ω ω ) + Γ cosϕ χ NR χ Γ (ω ω ) + Γ sinϕ. 3 (θ) 180

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

2007 5 iii 1 1 1.1.................... 1 2 5 2.1 (shear stress) (shear strain)...... 5 2.1.1...................... 6 2.1.2.................... 6 2.2....................... 7 2.2.1........................

More information

総研大恒星進化概要.dvi

総研大恒星進化概要.dvi The Structure and Evolution of Stars I. Basic Equations. M r r =4πr2 ρ () P r = GM rρ. r 2 (2) r: M r : P and ρ: G: M r Lagrange r = M r 4πr 2 rho ( ) P = GM r M r 4πr. 4 (2 ) s(ρ, P ) s(ρ, P ) r L r T

More information

2012専門分科会_new_4.pptx

2012専門分科会_new_4.pptx d dt L L = 0 q i q i d dt L L = 0 r i i r i r r + Δr Δr δl = 0 dl dt = d dt i L L q i q i + q i i q i = q d L L i + q i i dt q i i q i = i L L q i L = 0, H = q q i L = E i q i i d dt L q q i i L = L(q

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

main.dvi

main.dvi SGC - 48 208X Y Z Z 2006 1930 β Z 2006! 1 2 3 Z 1930 SGC -12, 2001 5 6 http://www.saiensu.co.jp/support.htm http://www.shinshu-u.ac.jp/ haru/ xy.z :-P 3 4 2006 3 ii 1 1 1.1... 1 1.2 1930... 1 1.3 1930...

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

QMI_10.dvi

QMI_10.dvi ... black body radiation black body black body radiation Gustav Kirchhoff 859 895 W. Wien O.R. Lummer cavity radiation ν ν +dν f T (ν) f T (ν)dν = 8πν2 c 3 kt dν (Rayleigh Jeans) (.) f T (ν) spectral energy

More information

QMI_09.dvi

QMI_09.dvi 25 3 19 Erwin Schrödinger 1925 3.1 3.1.1 3.1.2 σ τ 2 2 ux, t) = ux, t) 3.1) 2 x2 ux, t) σ τ 2 u/ 2 m p E E = p2 3.2) E ν ω E = hν = hω. 3.3) k p k = p h. 3.4) 26 3 hω = E = p2 = h2 k 2 ψkx ωt) ψ 3.5) h

More information

QMI_10.dvi

QMI_10.dvi 25 3 19 Erwin Schrödinger 1925 3.1 3.1.1 σ τ x u u x t ux, t) u 3.1 t x P ux, t) Q θ P Q Δx x + Δx Q P ux + Δx, t) Q θ P u+δu x u x σ τ P x) Q x+δx) P Q x 3.1: θ P θ Q P Q equation of motion P τ Q τ σδx

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb r 1 r 2 r 1 r 2 2 Coulomb Gauss Coulomb 2.1 Coulomb 1 2 r 1 r 2 1 2 F 12 2 1 F 21 F 12 = F 21 = 1 4πε 0 1 2 r 1 r 2 2 r 1 r 2 r 1 r 2 (2.1) Coulomb ε 0 = 107 4πc 2 =8.854 187 817 10 12 C 2 N 1 m 2 (2.2)

More information

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx x E E E e i ω t + ikx k λ λ π k π/λ k ω/v v n v c/n k nω c c ω/π λ k πn/λ π/(λ/n) κ n n κ N n iκ k Nω c iωt + inωx c iωt + i( n+ iκ ) ωx c κω x c iω ( t nx c) E E e E e E e e κ e ωκx/c e iω(t nx/c) I I

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

Design of highly accurate formulas for numerical integration in weighted Hardy spaces with the aid of potential theory 1 Ken ichiro Tanaka 1 Ω R m F I = F (t) dt (1.1) Ω m m 1 m = 1 1 Newton-Cotes Gauss

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0 5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â = Tr Âe βĥ Tr e βĥ = dγ e βh (p,q) A(p, q) dγ e βh (p,q) (5.2) e βĥ A(p, q) p q Â(t) = Tr Â(t)e βĥ Tr e βĥ = dγ() e βĥ(p(),q())

More information

1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Stru

1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Stru 1. 1-1. 1-. 1-3.. MD -1. -. -3. MD 1 1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Structural relaxation

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

Anderson ( ) Anderson / 14

Anderson ( ) Anderson / 14 Anderson 2008 12 ( ) Anderson 2008 12 1 / 14 Anderson ( ) Anderson 2008 12 2 / 14 Anderson P.W.Anderson 1958 ( ) Anderson 2008 12 3 / 14 Anderson tight binding Anderson tight binding Z d u (x) = V i u

More information

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i 解説 4 matsuo.mamoru jaea.go.jp 4 eizi imr.tohoku.ac.jp 4 maekawa.sadamichi jaea.go.jp i ii iii i Gd Tb Dy g khz Pt ii iii Keywords vierbein 3 dreibein 4 vielbein torsion JST-ERATO 1 017 1. 1..1 a L = Ψ

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ II p = mv p x > h/4π λ = h p m v Ψ 2 Ψ Ψ Ψ 2 0 x P'(x) m d 2 x = mω 2 x = kx = F(x) dt 2 x = cos(ωt + φ) mω 2 = k ω = m k v = dx = -ωsin(ωt + φ) dt = d 2 x dt 2 0 y v θ P(x,y) θ = ωt + φ ν = ω [Hz] 2π

More information

chap03.dvi

chap03.dvi 99 3 (Coriolis) cm m (free surface wave) 3.1 Φ 2.5 (2.25) Φ 100 3 r =(x, y, z) x y z F (x, y, z, t) =0 ( DF ) Dt = t + Φ F =0 onf =0. (3.1) n = F/ F (3.1) F n Φ = Φ n = 1 F F t Vn on F = 0 (3.2) Φ (3.1)

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

Maxwell

Maxwell I 2018 12 13 0 4 1 6 1.1............................ 6 1.2 Maxwell......................... 8 1.3.......................... 9 1.4..................... 11 1.5..................... 12 2 13 2.1...................

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information