3章 問題・略解
|
|
|
- よしお ありたけ
- 8 years ago
- Views:
Transcription
1 S S W R S O( l) O( ) c Jg g J Jg S R J 7. K.9 JK S W S R S JK S S R J 7. K.9JK 4 (a) -Tice 7.K T ice T N 77 K S R.9 JK 4. JK T T ice N.6JK S W S R S JK S S.6JK R (b) S R JK S.6 JK T T ice N 6
2 O( c) O( ) l 68J S c l 68J 7. K. JK g O( l) O( ) 488J -8 S l g 488 J 7. K 9.6 JK 7T 7.K q (J) w(j) ql (J) TL 7.K q T L S q T L q L T T q. 7q ( L ) (a) q J q ( T T ) q 7 J (b) w q q (c) ( w q ) 6. 8 L L L 68J (d) q L q TL T T C P C P /T 台形の面積 Entropy 6
3 .6 エントロピーの計算 CP/T T(K) S - 9.JK - C O N( c ) C O N ( c) O( ) 4 8 l ( ) kj S ( JK ) S 89.9 JK.JK JK.87 JK ( 746.kJ ) ( 8.4 kj ) ( 7.kJ ) 4.6kJ S熱環境 46 J 4.9JK 98. K S 世界 S S 熱環境 9.4 JK 6
4 4 C O() l II kj C () O l C () l ( g) O ( g) C O( l) II 74.8 kj S 6.4 JK.9 JK.69 JK..JK 44.6JK S 44.6JK 98. K T S kj ( 44.6 kjk ) 74.kJ II 4.atm ( ) (.atm) I G 7.9 kj ( ) G atm 8.6 kj ( ) ( atm) (.atm) 8.9kJ G G. 64
5 dg V VdP dp 8cc / 9atm 8 6 m VdP 8 6 m 4.6 Nm 9atm Nm.kJ atm ( atm ) G ( ) VdP G 7.9kJ.kJ 7.6kJ atm atm III 6 (.atm ) G () RTlnP P.atm G RTlnP 8.4JK 98.K kj/j ln(.) 8.94kJ 8.6kJ RT.479kJ 7 O (.atm O ) G (O ) RTlnP G G ( ) P.atm RTlnP.479kJ ln(.).87kj 8 CO m CO G (CO (g)) G (CO (aq) ) CO (aq) (CO (aq) ) G (CO (aq)) RTln G RTln G (CO (g)) G (CO (aq)) 6
6 94.8kJ ( 86. kj ) 8.6kJ ln 8.6 kj /.479kJ.96 ep( m.64 CO /.7/g.64 / CO 44 / 9 (O (aq)) G (O (aq)) RTln G (O (aq)) G (O (aq)) RTlnRTlnγ γ G RTlnγ RTlnγ.479kJ ln..6kj CaF (c) Ca (aq) F (aq) G (CaF (c)) G (Ca (aq)) G (F (aq)) (CaF (c)) G (CaF (c)) G (Ca (aq)) G (Ca (aq)) RTln[Ca G (F (aq)) G (F (aq)) RTln[F G G (CaF (c)) 6.9 G (Ca (aq)).4 G (F (aq)) kj RTln[Ca [F G (CaF (c)) G (Ca (aq)) G (F (aq)) ln[ca [F K SP [Ca [F.9kJ.9kJ.479 kj.. e.6 m SP: Solubility Product 66
7 N (g) N (aq) (a) m P.764 atm (b) G (N (g).764 atm) G (N (g)) RTln.764 (c) 6.64kJ.479kJ (4.8) 6.6kJ G (N (aq)m) G (N (aq)) G (N (g).764 atm) 6.6kJ I 6.7kJ N (Ca (aq)) G (Ca (aq)) RTlnγ Ca [Ca G.4kJ.479kJ ln(.8.9) 67.8kJ (CO (aq)) G (CO (aq)) RTlnγ CO [CO G 8.kJ.479kJ ln(..4 ) 8.4kJ Ca CO ( Ca CO ) G (Ca CO ) G (Ca (aq)) G (CO (aq)) 6.8kJ Ca CO (c) G (Ca CO (c)) 8.76kJ Ca (aq) CO (aq) Ca CO (c) 67
8 4 µ [.( ).8( ).46( ).( ).( ). 68 Cl SO 4 Na Mg Ca
9 A G ( A ) ( A ) ( A ) ( A ) G p G ( O l) G( O g p) G( O l) G ( O l) G( O g p) G ( O g) RT ln p RT p G ( O l) G ( O g) ( O l) ( O g) ln RT 8.4 JK 98.K.479 kj I ( O l) ( O g) 7.9 kj 8.6 kj 8.9 kj ln p.46 p e.46 p.7 atm 76mmgatm.7 atm.76mmg G ( AgCl c) G( Ag aq) G( Cl aq) G( Ag aq) G ( Ag aq) RT ln[ag G( Cl aq) G ( Cl aq) RT ln[cl RT ln[ Ag [Cl G ( Ag aq) G ( Cl aq) G ( AgCl c) ( Ag aq) ( Cl aq) ( AgCl c).64kj Solubility Product 69
10 K SP ep(.64 /.479).788 m glucose lactic acid G L G G aq G G aq RT ln a ( ) ( ) G G L aq G L aq RT ln a ( ) ( ) L a X G ( aq) G( L aq) G G aq ( ) G L aq X 94.4 kj 8.77 kj ( ) II G K ( a ) 8 a L G equilibrium.96 4 (a) CO ( g) O ( g) CO( g) CO (b) CO g P CO g RT ln P ( CO ) ( ) CO O g P O g RT ln P ( O ) ( ) O CO g P CO g RT ln P ( CO ) ( ) CO I ( CO g) 94.8 kj ( O g) G CO g 7.7 kj ( ) G 7
11 O ( g) ( CO g) ( CO g) 4. kj ( g P ) ( CO g P ) ( CO g P ) O O CO CO ln 4. kj.479 kj 7. 4 K P K P P e O P CO PCO equilibrium atm (c) P.atm P.atm P C? atm O C O O P CO K P P P O CO atm P CO atm -- glucose -phosphate -6- glucose 6-phosphate gp g6p g p eqbu gp eqbu RT ln a ( ) ( ) g p g6 p eqbu g6 p eq bu RT ln a 6 ( ) ( ) g p ( gp eqbu ) ( g6 p eqbu ) 6 ag p [ kj ln g p ln. agp [ gp.479kj [ g6 p. e. [ gp 7
12 6 ATP O ADP Pi RT ln K kj K [ADP[P i [ATP equilibrium (a) J ln K. RT 8.4 JK. K K (b).6669 M.7 M kj 8.4 JK 48.8kJ [ADP[P i RT ln [ATP. K kj J 4 ln (c) ATP (b) 48.8kJ ATP ADP Pi.kJ.kJ 7 (d) (b) [ [ [ 7 ln K ln K T R T T RT T 4 kj T. K T 7.7 K K.66 K K 4J. ln K 8.4 JK. K 7. K.78K d( ) VdP V ( P P ) P atm kj V ml P 4atm V P P V cm 6 m cm. 9atm 9atm Nm ( P P ) 79J atm m 7
13 79 J 9 C C(O)COO C 6O( aq) C O ( aq) ( aq) G C O aq G C O aq RT ln ( 6 ) ( 6 ) C6O G C O aq G C O aq RT ln a ( ) ( ) G aq ( ) ( ) G aq RT ln a II C O aq 8.77 kj a CO ( ) ( ) 6 G G C O ( C O aq) G( aq) G( C 6O aq) ( C O aq) G ( aq) G ( C O aq) RT ln a CO RT ln a RT ln a RT ln K C6O aq 6.7 kj 6 K ac a O a C6O equilibrium G ( C O aq) G ( aq) G ( C 6O aq) ( C O aq) ( C O aq).kj 6 K.kJ ep.479kj.7 4 7
14 O( l) ( aq) O ( aq) G ( O l) G ( O l) G( aq) G ( aq) RT ln[ G( O aq) G ( O aq) RT ln[o I ( O l) 7.9 kj ( aq) G ( O aq) 7. kj RT ln[ [O ( O aq) ( O l) 79.89kJ K w 79.89kJ.479kJ 4 [ [O ep. m O( l) O( ) g P RT P ( O g P) ( O l) ln T 98.K P.7 atm K P T ( K) K P (atm) ln K ln K R T T ln K T RT.479kJ ln P (.46) T 4.kJ. 87 T 7.6 K
15 C O N( aq) C O N ( aq) O( l) 4 8 I II 9.8kJ ( O N aq) ( O l) ( C O N aq) C 4 8.9kJ ( O N aq) ( O l) ( C O N aq) C 4 8 K ep RT 9.8kJ ep.479 kj K ln K ln K T 98. K T.K R T T K K K ep RT T T ep O( l) ( aq) O ( aq) I O aq ( ) ( ) O l.9kj ln K ln K T 98. K T.K R T T 7
16 K K K ep RT.98.9 T T ep C COCOO (a) cathode reaction Fe (cyt c)( aq) e Fe (cyt c)( aq) anode reaction C COCOO ( aq) C COCOO ( aq) ( aq) e (b) (c). p 7 cathode reaction anode reaction.4v.9v.4v.9v.444v.44v (d) ε.444 V Fε 9648C (e) [.444 V 8679 J 8.68kJ 7 ( ) ( ) ( ) 7 G aq G aq RT ln [ G 7 ( aq) G ( aq) RT ln (a) G( Fe (cyt c) aq) G ( Fe (cyt c) aq) RT ln[fe (cyt c) G( Fe (cyt c) aq) G ( Fe (cyt c) aq) RT ln[fe (cyt c) G( COCOO aq) G ( C COCOO aq) RT ln[c COCOO C G( COCOO aq) G ( C COCOO aq) RT ln[c COCOO C 76
17 ( ) ( ) ( ) ( ) G Fe (cyt c) aq G C COCOO aq G( G Fe (cyt c) aq G C COCOO aq RT ln K K [Fe (cyt c) aq [C COCOO RT ln 7 4 ( / ) [ aq) [ 7 [Fe (cyt c) aq [C COCOO equilibrium K 8.68kJ ep ep.4 RT.479kJ () K [C COCOO [C COCOO.4 cathode reaction Fe (cyt c)( aq) e Fe (cyt c)( aq) anode reaction C O( aq) C CO( aq) ( aq. ε ( V ) RT ln K Fε ε.44 V ) e.4.8 K Fε 9648C.44 V ep ep 4.7 RT 479CV 4 4 K [Fe (a) (cyt c) aq [C [Fe CO [ (cyt c) aq [C 4 ( / ) O equilibrium 77
18 [Fe (cyt c) aq ( m) [Fe (cyt c) aq. ( m) [C O. ( m) [C CO ( m) 4 ( ) ( ) [.. δ δ : very small δ ( ) ( ) 4δ. 9 δ 4.6 [Fe (cyt c) aq.m [C O.m [C (b) [ 4 [Fe (cyt c) aq 4.6 CO.m 9 m [ ( ) ( ) ( ) ( ) X. X ( X ) ( X ) ( ).86 (.7). 86 (.8) X.7 ε.7 ε.7 ε ε ( ) ( ) ( ).86.87ε.86.87ε 7 7 m ( m) X ε [Fe (cyt c) aq.74 m [Fe (cyt c) aq..6m [C O..6m [C CO.7 m 78
19 6 C6 N ( aq) C6 N ( aq) ( aq).. K a M [.4 4 [O M.4.8 M 4 CO ( aq) CO ( aq) ( aq) acid conjugate base ( aq) O CO ( aq) O ( aq) CO [CO [ K a pk. a [CO [CO [O K b K [CO w [ [O 4 K K K pk pk p K b w a b w a K b pkb C COCOO( aq) C COCOO ( aq) ( aq) M
20 α.9( M ).( M ) ( aq) O N ( aq) O ( aq) N 4 [N 4 [O K b K a.6 6. [N [ 4 N. [N [O M..79 ( K K ).4 M [N 4.4 M.. [N.M w a..m 9 Na CO Na ( aq) ( aq) CO ( aq) O CO ( aq) O ( aq) CO K b 4 [ CO [O K w 4. [CO 4.7 K a [ CO. [CO [O M 8
21 6. p p p log[o K w B aq O B aq O aq B : C NO ( ) ( ) ( ) 7 9 [B [O K b pk b 6. [B B ( aq) K a B( aq) [B[ [B ( aq) p K pk pk 7. 9 a w b [B. [B [O [. p [O.8 ( ) N( aq) O ( C ) N ( aq) O ( aq) C.. ml.m ( ) N( aq) O ( C ) N ( aq) O( aq) C pk b 4 pk a 4.8. K b ( C ) N. [( C ) N [O [ [.6 p
22 p p [( C ) N ( C ) N pka log [ ( C ) N [.M Cl ml ( C ) N [ ( C ) N [( C ) N [ p pka. 8.M Cl ml ml ( C ) N. [( C ) N [ O [ p p log 7 log X ml Y p X Y ( aq) O B ( aq) O ( aq) B [B [O K b pk b 4 or 8 [B B ( aq) K a B( aq) [B[ [B ( aq) 8
23 [B ν [B [B [B [B pk w [ B Ka K w p pkb 4 pkb p [B [ K b[ p K 4 or 8 ν 4 or ν 8 b p p6 ν ( ) ν ( ) 4 8 プロトン化の程度 p 4 4 PO ( aq) PO ( aq) ( aq) pka 7. K a [PO [ 4 PO [ 4 p p [PO 4 log [ PO pk a 4 p Ka 7. p 7 [PO 4 [PO 4. log..6 [ PO [ PO Na PO 4 O Na PO 4 O.6 8
24 7 CO CO K 4. CO CO K 4.7 K [ [CO K [ CO [ [CO [CO [ p p p [ CO K [ CO [ CO K [CO ν [ CO [CO [ CO [CO [CO p7 4. p7 4.. p7. プロトン化の程度 p 6 6.(a) (b) NaB 84
25 B B K B B K [B [ [B [B[ [ B [ B [ B B K [ B [ p K p K i i i [B ν [ [ B B [ [ B B [B [B [B ppk ppk pk () ppk ppkpk ppkpk pk [ B 6.(b) ν [ [ B B [ [ B B [B [B [B ppk ppk pk pk ppk ppkpk ppkpk pk. p K i i (a). p pk pk. p pk pk. p pk pk (b) プロトン化の程度 P 8
26 . プロトン化の程度 p 7 G G6P 6 [G[P i K Σ [G6P [G6P [P i [ [G OPO [G OPO [G OPO 9. [ [ PO 4 [PO 4 [PO (a) K [G[PO [G OPO 4 K Σ (b)[ [ K 4.89K [ (c) (a) [ K Σ 7 7 [ [ K K.77K
27 7 Trouton s rule 7p v T b v 9JK v: vaporization T b G Gg l dgl SldT VldP dgg S g dt V g dp G l Gg dg l dgg ( S S ) dt ( V V )dp g l g l v ( S g Sl ) S v Vg Vl V Vg T dp v v Clausius-Clapeyron dt T V V T g PV RT P RT V dp P dp P dt v v v ln dt RT P RT P R T T P atm T T b 7.8..K T 98.K 9Tb 9 Tb ln P. 4 R T T R T b g g P.4 e.atm 87
28 ln(p/) /T 88
29 P ln 8.4 T P 76 mmg T 7. K b v R 8 v 8R 896 J 9J S v v Tb 69.7 J K.66atm P v ln P R T T P atm T 7. K P.66atm 4.67 kj 76. v 88. g g/8.g/. A B (a) m n A. A. 98 n n. A B P A.8mmg P A APA.6mmg PA. mmg ob PA ob PA PA ob.8..6 mmg. P P P mmg A cal A A 89
30 (b) m A na n n A.96 B.. P A APA.7mmg PA. mmg ob p A A PA ob PA PA ob.8.. mmg. 9 P P P.8.7.mmg A cal A A 9 A 6 O N 4 NO l 98.4g l 98.4 g n - 8.g. Raoult P 76 mmg.8 mmg P 76 mmg. 986 n n n n.7n.9 ( n n )
31 7 lim c Π c 67.4atm ml g (6) RT M 67.4atm ml g RT M 67.4atm ml g 8.6 ml atm K 8. K 67.4atm ml g Π/c(atm ml/g) y c(g/ml) 4g 8 Π Π n RT V T. K 7.6atm n Π 7.6 atm V RT.86l atm K.986 l. l R.86l atm K. K 9 NaCl g NaCl.4 c.8 l Π crt 7.84 atm T. K.8 l R.86l atm K.86l atm K. K kg kg/l kg kg. kg l. 946l 9
32 c Π.9. l.976l crt 7.4 atm. l.86 atml K 98. K (a) M M n n nm nm M M M n n M w nm M nm nm nm M M M M M.667 (b) M M m m m/m m/m M n m M M m M m M m M M M M M M. mm mm M M M w m m amu amu C / 9
36 th IChO : - 3 ( ) , G O O D L U C K final 1
36 th ICh - - 5 - - : - 3 ( ) - 169 - -, - - - - - - - G D L U C K final 1 1 1.01 2 e 4.00 3 Li 6.94 4 Be 9.01 5 B 10.81 6 C 12.01 7 N 14.01 8 16.00 9 F 19.00 10 Ne 20.18 11 Na 22.99 12 Mg 24.31 Periodic
P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2
1 1 2 2 2 1 1 P F ext 1: F ext P F ext (Count Rumford, 1753 1814) 0 100 H 2 O H 2 O 2 F ext F ext N 2 O 2 2 P F S F = P S (1) ( 1 ) F ext x W ext W ext = F ext x (2) F ext P S W ext = P S x (3) S x V V
untitled
1 Physical Chemistry I (Basic Chemical Thermodynamics) [I] [II] [III] [IV] Introduction Energy(The First Law of Thermodynamics) Work Heat Capacity C p and C v Adiabatic Change Exact(=Perfect) Differential
近畿中国四国農業研究センター研究報告 第7号
230 C B A D E 50m 558 0 1km (mg L 1 ) T N NO 2 3 N NH 4 N 2.0 0 (a) 2001 1.5 6 20 21 5 1.0 0.5 0.0 2.0 1.5 1.0 0.5 0.0 14:00 17:00 (b) 2001 7 3 4 20:00 23:00 2:00 (h) 5:00 8:00 11:00 10 0 5 10 15
(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0
1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45
物理化学I-第12回(13).ppt
I- 12-1 11 11.1 2Mg(s) + O 2 (g) 2MgO(s) [Mg 2+ O 2 ] Zn(s) + Cu 2+ (aq) Zn 2+ (aq) + Cu(s) - 2Mg(s) 2Mg 2+ (s) + 4e +) O 2 (g) + 4e 2O 2 (s) 2Mg(s) + O 2 (g) 2MgO(s) Zn(s) Zn 2+ (aq) + 2e +) Cu 2+ (aq)
cm H.11.3 P.13 2 3-106-
H11.3 H.11.3 P.4-105- cm H.11.3 P.13 2 3-106- 2 H.11.3 P.47 H.11.3 P.27 i vl1 vl2-107- 3 h vl l1 l2 1 2 0 ii H.11.3 P.49 2 iii i 2 vl1 vl2-108- H.11.3 P.50 ii 2 H.11.3 P.52 cm -109- H.11.3 P.44 S S H.11.3
September 25, ( ) pv = nrt (T = t( )) T: ( : (K)) : : ( ) e.g. ( ) ( ): 1
September 25, 2017 1 1.1 1.2 p = nr = 273.15 + t : : K : 1.3 1.3.1 : e.g. 1.3.2 : 1 intensive variable e.g. extensive variable e.g. 1.3.3 Equation of State e.g. p = nr X = A 2 2.1 2.1.1 Quantity of Heat
Part () () Γ Part ,
Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35
64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k
63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5
n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m
1 1 1 + 1 4 + + 1 n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m a n < ε 1 1. ε = 10 1 N m, n N a m a n < ε = 10 1 N
1320M/161320M
" # $ %! θθ v m g y v θ O v α x! O x y x α x y y " v # v sinα $ & v cosα ' v cosα v sinα ( v cosα % v sinα " g # gsinθ $ g sinθ ' g ( gsinθ ) g sinθ % gcosθ & g cosθ * gcosθ! g cosθ xy y L v g x xy L α
[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s
[ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =
Note.tex 2008/09/19( )
1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................
H21環境地球化学6_雲と雨_ ppt
1 2 3 40 13 (0.001%) 71 24,000 (1.7%) 385 425 111 1,350,000 (97%) 125 (0.009%) 40 10,000 (0.7%) 25 (0.002%) 10 3 km 3 10 3 km 3 /y 4 +1.3 +5.8 (21) () ( ) 5 HNO 3, SO 2 etc 6 7 2009年度 環境地球化学 大河内 10種雲形と発生高度
H22環境地球化学4_化学平衡III_ ppt
1 2 3 2009年度 環境地球化学 大河内 温度上昇による炭酸水の発泡 気泡 温度が高くなると 溶けきれなくなった 二酸化炭素が気泡として出てくる 4 2009年度 環境地球化学 圧力上昇による炭酸水の発泡 栓を開けると 瓶の中の圧力が急激に 小さくなるので 発泡する 大河内 5 CO 2 K H CO 2 H 2 O K H + 1 HCO 3- K 2 H + CO 3 2- (M) [CO
23 3 11 24 21 24 25 4 28 4 2 7 161 2,692 28 12 14 18 18 380 5 3 1 27 21 21 24 10,899 20,472 13,723 33,007 667 400 79,167 8,620 11,694 10,089 25,131 690 215 56,439 13,614 20,897 15,200 32,213 640 416 82,979
1 1.1 Excel Excel Excel log 1, log 2, log 3,, log 10 e = ln 10 log cm 1mm 1 10 =0.1mm = f(x) f(x) = n
1 1.1 Excel Excel Excel log 1, log, log,, log e.7188188 ln log 1. 5cm 1mm 1 0.1mm 0.1 4 4 1 4.1 fx) fx) n0 f n) 0) x n n! n + 1 R n+1 x) fx) f0) + f 0) 1! x + f 0)! x + + f n) 0) x n + R n+1 x) n! 1 .
2 A B A B A A B Ea 1 51 Ea 1 A B A B B A B B A Ea 2 A B Ea 1 ( )k 1 Ea 1 Ea 2 Arrhenius 53 Ea R T k 1 = χe 1 Ea RT k 2 = χe 2 Ea RT 53 A B A B
5. A B B A B A B B A A B A B 2 A [A] B [B] 51 v = k[a][b] 51 A B 3 0 273.16 A B A B A B A A [A] 52 v= k[a] 52 A B 55 2 A B A B A A B Ea 1 51 Ea 1 A B A B B A B B A Ea 2 A B Ea 1 ( )k 1 Ea 1 Ea 2 Arrhenius
linearal1.dvi
19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352
1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +
( )5 ( ( ) ) 4 6 7 9 M M 5 + 4 + M + M M + ( + ) () + + M () M () 4 + + M a b y = a + b a > () a b () y V a () V a b V n f() = n k= k k () < f() = log( ) t dt log () n+ (i) dt t (n + ) (ii) < t dt n+ n
熊本県数学問題正解
00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (
高校生の就職への数学II
II O Tped b L A TEX ε . II. 3. 4. 5. http://www.ocn.ne.jp/ oboetene/plan/ 7 9 i .......................................................................................... 3..3...............................
(a) (b) X Ag + + X AgX F < Cl < Br < I Li + + X LiX F > Cl > Br > I (a) (b) (c)
( 13 : 30 16 : 00 ) (a) (b) X Ag + + X AgX F < Cl < Br < I Li + + X LiX F > Cl > Br > I (a) (b) (c) (a) CH 3 -Br (b) (c),2,4- (d) CH 3 O-CH=CH-CH 2 (a) NH 2 CH 3 H 3 C NH 2 H CH 3 CH 3 NH 2 H 3 C CH 3
入試の軌跡
4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf
現代物理化学 1-1(4)16.ppt
(pdf) pdf pdf http://www1.doshisha.ac.jp/~bukka/lecture/index.html http://www.doshisha.ac.jp/ Duet -1-1-1 2-a. 1-1-2 EU E = K E + P E + U ΔE K E = 0P E ΔE = ΔU U U = εn ΔU ΔU = Q + W, du = d 'Q + d 'W
1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg (
1905 1 1.1 0.05 mm 1 µm 2 1 1 2004 21 2004 7 21 2005 web 2 [1, 2] 1 1: 3.3 1/8000 1/30 3 10 10 m 3 500 m/s 4 1 10 19 5 6 7 1.2 3 4 v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt 6 6 10
[Ver. 0.2] 1 2 3 4 5 6 7 1 1.1 1.2 1.3 1.4 1.5 1 1.1 1 1.2 1. (elasticity) 2. (plasticity) 3. (strength) 4. 5. (toughness) 6. 1 1.2 1. (elasticity) } 1 1.2 2. (plasticity), 1 1.2 3. (strength) a < b F
A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6
1 1 1.1 64 A6, 1) B1, 1) 65 C A, 1) B, ) C 66 + 1 = 0 A1, 1) B, 0) P 67 A, ) B1, ) C4, 0) 1) ABC G ) A B C P 64 A 1, 1) B, ) AB AB = 1) + 1) A 1, 1) 1 B, ) 1 65 66 65 C0, k) 66 1 p, p) 1 1 A B AB A 67
untitled
( ) c a sin b c b c a cos a c b c a tan b a b cos sin a c b c a ccos b csin (4) Ma k Mg a (Gal) g(98gal) (Gal) a max (K-E) kh Zck.85.6. 4 Ma g a k a g k D τ f c + σ tanφ σ 3 3 /A τ f3 S S τ A σ /A σ /A
Microsoft Word - 11問題表紙(選択).docx
A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx
// //( ) (Helmholtz, Hermann Ludwig Ferdinand von: ) [ ]< 35, 36 > δq =0 du
2 2.1 1 [ 1 ]< 33, 34 > 1 (the first law of thermodynamics) U du = δw + δq (1) (internal energy)u (work)w δw rev = PdV (2) P (heat)q 1 1. U ( U ) 2. 1 (perpetuum mobile) 3. du 21 // //( ) (Helmholtz, Hermann
Microsoft Word docx
1.1. 1.1.1. 1.1.1.1. m m kg t s I A T K n mol I v cd SISI SI 10 1 SI 1-1-1 molecular weight1 12 C 112 relative molecular mass of a substance g 1 mol dalton 12 C 112 SI 1 1.6605655x10-27 kg Da 1-1-1 SI
S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d
S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....
Microsoft Word - 目次注意事項2.doc
I II 2009 1. 2. 12 50 3. 1. 2. 3 ( 0.1g, 0.01g, 0.001g ) 3. 4. 1. 2. ()A4 3. 000005 19 5 11 () 19 5 15 () EDTA " # $ 1000 500 =... mol/l Web 1) p.159 2) 1987pp.14-15 3) 1989pp.58-60 4) http://www.chem.zenkyo.h.kyoto-u.ac.jp/operation/
/02/18
3 09/0/8 i III,,,, III,?,,,,,,,,,,,,,,,,,,,,?,?,,,,,,,,,,,,,,!!!,? 3,,,, ii,,,!,,,, OK! :!,,,, :!,,,,,, 3:!,, 4:!,,,, 5:!,,! 7:!,,,,, 8:!,! 9:!,,,,,,,,, ( ),, :, ( ), ( ), 6:!,,, :... : 3 ( )... iii,,
(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n
. 99 () 0 0 0 () 0 00 0 350 300 () 5 0 () 3 {a n } a + a 4 + a 6 + + a 40 30 53 47 77 95 30 83 4 n S n S n = n = S n 303 9 k d 9 45 k =, d = 99 a d n a n d n a n = a + (n )d a n a n S n S n = n(a + a n
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987
V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H
199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)
3/4/8:9 { } { } β β β α β α β β
α β : α β β α β α, [ ] [ ] V, [ ] α α β [ ] β 3/4/8:9 3/4/8:9 { } { } β β β α β α β β [] β [] β β β β α ( ( ( ( ( ( [ ] [ ] [ β ] [ α β β ] [ α ( β β ] [ α] [ ( β β ] [] α [ β β ] ( / α α [ β β ] [ ] 3
1
I II II 1 dw = pd = 0 1 U = Q (4.10) 1K (heat capacity) (mole heat capacity) ( dq / d ) = ( du d C = / ) (4.11) du = C d U = C d (4.1) 1 1 du = dq + dw dw = pd dq = du + pd (4.13) p dq = d( U + p ) p (4.14)
a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552
3 3.0 a n a n ( ) () a m a n = a m+n () (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 55 3. (n ) a n n a n a n 3 4 = 8 8 3 ( 3) 4 = 8 3 8 ( ) ( ) 3 = 8 8 ( ) 3 n n 4 n n
温泉の化学 1
H O 1,003 516 149 124 2,237 1974 90 110 1km 2,400 ( 100 Mg 200 (98 ) 43,665 mg 38,695 mg 19,000 mg 2000 2000 Na-Ca-Cl 806 1970 1989 10 1991 4 ph 1 981 10,000 1993... (^^; (SO_4^{2-}) " " 1973-1987 1970
...J......1803.QX
5 7 9 11 13 15 17 19 21 23 45-1111 48-2314 1 I II 100,000 80,000 60,000 40,000 20,000 0 272,437 80,348 82,207 81,393 82,293 83,696 84,028 82,232 248,983 80,411 4,615 4,757 248,434 248,688 76,708 6,299
The Physics of Atmospheres CAPTER :
The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(
i 18 2H 2 + O 2 2H 2 + ( ) 3K
i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................
H22応用物理化学演習1_濃度.ppt
1 2 4/12 4/19 4/27 5/10 5/17 5/24 5/31 (20 ) (20 ) (10 ) (50 ) 3 (mole fraction) X = (mol) (mol) i n 1, n 2,, n x N i X i = n i = n i n 1 + n 2 + + n x N 4 (molarity, M) 1 dm 3 ( L) (mol) (mol/l) = 1 L
D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j
6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..
TOP URL 1
TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7
power.tex
Contents ii 1... 1... 1... 7... 7 3 (DFFT).................................... 8 4 (CIFT) DFFT................................ 10 5... 13 6... 16 3... 0 4... 0 5... 0 6... 0 i 1987 SN1987A 0.5 X SN1987A
II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R
II Karel Švadlenka 2018 5 26 * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* 5 23 1 u = au + bv v = cu + dv v u a, b, c, d R 1.3 14 14 60% 1.4 5 23 a, b R a 2 4b < 0 λ 2 + aλ + b = 0 λ =
後期化学_04_酸塩基pH
2011 ( ) ph H3O + H + H3O + HCl H3O + HCl + H2O H3O + + Cl HCl H + + Cl OH OH NaOH OH NaOH Na + + OH NH3 OH NH3 + H2O NH4 + + OH 1 H + OH H + H + * 1 NH3 HCl NH4Cl NH4Cl NH3 + Cl NH3 + HCl NH4 + + Cl.
II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3
II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )
006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................
³ÎΨÏÀ
2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p
( )
18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................
25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3
<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202D B202D B202D
わかりやすい熱力学第 3 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/060013 このサンプルページの内容は, 第 3 版発行時のものです. i ii 49 7 iii 3 38 40 90 3 2012 9 iv 1 1 2 4 2.1 4 2.2 5 2.3 6 2.4 7 2.5
30
3 ............................................2 2...........................................2....................................2.2...................................2.3..............................
1 26 ( ) ( ) 1 4 I II III A B C (120 ) ( ) 1, 5 7 I II III A B C (120 ) 1 (1) 0 x π 0 y π 3 sin x sin y = 3, 3 cos x + cos y = 1 (2) a b c a +
6 ( ) 6 5 ( ) 4 I II III A B C ( ) ( ), 5 7 I II III A B C ( ) () x π y π sin x sin y =, cos x + cos y = () b c + b + c = + b + = b c c () 4 5 6 n ( ) ( ) ( ) n ( ) n m n + m = 555 n OAB P k m n k PO +
1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV
H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [
3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e
2011de.dvi
211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37
概況
2 4 6 2 2 2 3 2 4 22 5 23 27 34 37 44 45 46 2 78.67 85.77 2.6. 7. 2 2, 65 85,464 93,8 65 85.5 93.2 8 56.2 77.9 2 8.87 88.8 3 () 65 3 6 2 2 2 2 2 22 3 2 2 2 2 2 2 2 2 28.58 28.74 29.9 8.8 8.84 2.63 65 28.3
n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz
1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x
スライド 1
酸と塩基 代謝概要 平成 31 年 4 月 18 日 病態生化学分野教授 ( 生化学 2) 山縣和也 本日の学習の目標 ヘンダーソン ハッセルバルヒの式を理解する アミノ酸の電荷について理解する 自由エネルギーについて理解する 1. 酸と塩基 ( ヘンダーソン ハッセルバルヒの式 ) 2. 代謝概要 ( 反応速度について ) 生体内の反応の多くに酸 塩基反応が関わっている またアミノ酸や核酸は酸や塩基の性質を示す
n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................
