untitled

Similar documents
No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A


1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =


II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

振動と波動

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

st.dvi

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

untitled

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

( ) ( )

6.1 (P (P (P (P (P (P (, P (, P.

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F


6.1 (P (P (P (P (P (P (, P (, P.101

mugensho.dvi

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

2011de.dvi

201711grade1ouyou.pdf

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

プログラム

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

構造と連続体の力学基礎


1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1.2 R A 1.3 X : (1)X (2)X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f

A

meiji_resume_1.PDF

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a,

renshumondai-kaito.dvi

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

B ver B


Untitled

i

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

webkaitou.dvi

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

Morse ( ) 2014

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

2017 II 1 Schwinger Yang-Mills 5. Higgs 1

数学Ⅱ演習(足助・09夏)

73

II 2 II

TOP URL 1


,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

gr09.dvi

II Lie Lie Lie ( ) 1. Lie Lie Lie

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

III Kepler ( )


2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

K E N Z OU

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0

untitled


Mathematical Logic I 12 Contents I Zorn

v er.1/ c /(21)

第10章 アイソパラメトリック要素

III Kepler ( )

0 0. 0

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

main.dvi

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

DVIOUT

notekiso1_09.dvi

TOP URL 1

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

Fubini

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

Microsoft Word - 信号処理3.doc

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

SO(2)

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

Microsoft Word - 表紙.docx


II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

all.dvi

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

x ( ) x dx = ax

Transcription:

1 n m (ICA = independent component analysis) BSS (= blind source separation) : s(t) =(s 1 (t),...,s n (t)) R n : x(t) =(x 1 (t),...,x n (t)) R m 1 i s i (t) a ji R j 2 (A =(a ji )) x(t) =As(t) (1) n = m 3 A full rank t =1, 2, 3,...,T x(1),...,x(t ) s(1),...,s(t ) ( T>n) 1 7 2 ICA 3 stiefel manifold sparse coding 1

A s(t) =A 1 x(t) s(t) s 1 (t),...,s n (t) 4 A 1 W 5 y(t) =W x(t) (2) s(t) y(t) s(t) i.i.d. (independently identically distributed) p s (s) 6 i.i.d. t s 1,...,s n p s (s) = n p si (s i ) (3) i=1 p i (s i ) s i p si (s i )= p s (s)ds i 7. i 1,...,i n 0 a 1,...,a n a 1 s i1,...,a n s in well-defined 1 x 1,x 2 y 1 = a 11 x 1 + a 12 x 2, y 2 = a 21 x 1 + a 22 x 2, (4) y 1,y 2 4 S () 5 6 t 7 s i s i s (s 1,...,s i 1,s i+1,...,s n ) 2

2( ) s =(s 1,...,s n ) x =(x 1,...,x n ) y = W x y =(y 1,...,y n ) s y ( ) x 1,x 2,y 1,y 2 exp(φ 1 (x 1 )), exp(φ 2 (x 2 )), exp(ψ 1 (y 1 )), exp(ψ 2 (y 2 )) x 1,x 2 y 1,y 2 p(x 1,x 2 ) = exp(φ 1 (x 1 )+φ 2 (x 2 )), q(y 1,y 2 ) = exp(ψ 1 (y 1 )+ψ 2 (y 2 )), (5) B y = Ax Pr[x B] = p x (x)dx = p x (A 1 dy y) B B det A = Pr[y B ]= p y (y)dy (6) B (B B A ) p y (y) = p x(a 1 y) det A (7) x 1,x 2 y 1,y 2 Jacobian ( c = det a 11 a 12 a 21 a 22 p(x 1,x 2 )=cq(y 1,y 2 ), φ 1 (x 1 )+φ 2 (x 2 )=ψ 1 (a 11 x 1 + a 12 x 2 )+ψ 2 (a 21 x 1 + a 22 x 2 ) + log c. (9) ) (8) 3

x 1,x 2 a 11 a 12 ψ1 (a 11 x 1 + a 12 x 2 )+a 21 a 22 ψ2 (a 21 x 1 + a 22 x 2 )= a 11 a 12 ψ1 (y 1 )+a 21 a 22 ψ2 (y 2 )=0. (10) a 11 a 12 =0 a 11 a 12 0 C = {(x 1,x 2 ) y 1 = const.} C (x 1,x 2 ) y 2 C y 2 ψ 2 (y 2 ) = const. (11) ψ 1 (y 1 ) = const. ψ i (y i )=α i y 2 i + β i y i + γ i (12) α i < 0 : 1. 2. (fmri, ) 3. 2 0 E[s i s j ]=0(i j) 4

x =[x(1),...,x(t )] x = UDV (13) x T n full-rank U T n U T U = I, V n D n x V UD 8 UD D 1 U U W x 3 p y (y) = n p yi (y i ) (14) i=1 0 Kullback-Leibler 9 D[p y (y) q y (y)] = E p y[log p y (y) log q y (y)] (15) 8 U, D U =[U 1,U 2 ],D = diag[d 1,D 2 ] ( ) U 1 D 1 Frobenius x 9 KL 5

q y (y) = n i=1 p y i (y i ) n L(W )=D[p y (y) p yi (y i )] (16) W H( ) = E[log p ( )] n L(W )= H(y i ) H(y) (17) y = W x p y (y) = p x(w 1 y) det W i=1 H(y) = = px (W 1 y) det W = i=1 p y (y) log p y (y)dy log p x(w 1 y) dy det W p x (x)(log p x (x) log det W )dx (18) = H(x) + log det W (19) L(W )= n H(y i ) log det W H(x) (20) i=1 H(x) W det W =1 10 L(W ) y i 10 6

det W x(1),...,x(t ) E T H(y i ) E T [log p yi (y i )] (21) E T [f(y i )] = 1 T T f(y i (t)) (22) t=1 log p yi (y i ) log q i (y i ) 11 1. θ q yi (y i )=f(y i ; θ), (23) 2. q yi (y i )=E T [f(y i (t); θ)] (24) f 11 q i (y i ) 7

3. y i 0, 1 Gram-Charlier [ q i (y i )=φ(x) 1+ k=3 κ k k! h k(x) ] (25) h k (x) k κ k k 12 log c x (ω) = k=1 κ k k! (iω)k. (27) 0 x κ 1 = E[x], κ 2 = E[x 2 ], κ 3 = E[x 3 ], κ 4 = E[x 4 ] 3E[x 2 ] 2 κ 3,κ 4 ( ) 3 0 4 ( ) 12 c x (ω) = exp(iωx)p x (x)dx (26) 8

5 L q (W )= n E T [log q i (y i )] log det W (28) i=1 W ( ) ( ) W L q (W ) L q (W )/ W W = W ɛ L q(w ) W. (29) det W det W>0 det W D ij j =1,...,n det W = n w ij D ij, (30) i=1 log det W = 1 det W det W = 1 det W (D ij) (31) =( / w ij ). W 1 =(1/ det W )(D ji ) W =(W 1 ) log det W = W (32) 9

log q i (y i ) = ( log q i(y i ) )= ( log q n i( k=1 w ikx k ) ) w ij w ij = ( d log q i(y i ) dy i x j )=ϕ(y)x (33) φ i (y) = d log q i (y i )/dy i. L q (W )=E T [ϕ(y)x ] W = E T [ϕ(y)y I]W (34) f 2 W 1 W 2 ( ) f(w ) f(w )= (35) w ij grad W f(w ) Lie Lie W GL(n) W 1 I W T W GL(n) V 1,V 2 T W GL(n) V 1,V 2 W 1 T I T I R n n g(v 1,V 2 ) = tr[w V 1 V 2W 1 ] = tr[w 1 W V 1 V 2] (36) G grad W f = G 1 vec[ f(w )] (37) vec V T W GL(n) V 2 = g(v,v )=c 10

W = W ɛv f(w )=f(w ɛv ) (38) V ɛ f(w )= ɛtr [ f(w ) V ] + o(ɛ) (39) Lagrange λ L(V )= ɛtr [ f(w ) V ] λ(c tr [ W 1 W V V ] ) (40) V ɛ f(w ) +2λW 1 W V = 0 (41) V = ɛ 2λ f(w )W W (42) c ɛ/(2λ) =1 V = f(w )W W (43) f(w )=L q (W ) (34) grad W f(w )=E T [ϕ(y)y I]W (44) 13 13 11

(whitening) sphering Lie W O(n) T W O(n) W t W (0) = I W (t) W (t) =I, W(0) = W (45) Ẇ (0) W + W Ẇ (0) = 0 (46) Ẇ (0) + Ẇ (0) = 0 (47) V T I O(n) V V c(t) =(I +tv/2)(i tv/2) 1 ċ(0) = V O(n) V T I O(n). T I O(n) SO(n) Lie so(n) W T I O(n) W T W O(n) tr[v1 V 2] (isometric) (GL(n) W 1 W ) I R n n V T I R n n T I O(n) T O(n) V = V V 2 + V + V. (48) 2 O(n) 3 (M,g) (R m,h) g h a M f grad M a f grad Rm a f T am O(n) R n n f T W O(n) 12

1. W T I R n n f W f (49) 2. T I R n n (48) W f 1 2 (W f f W ) (50) 3. W T W O(n) 1 2 (W f f W ) 1 2 ( f W f W ) (51) 1/2 grad W f = f W f W (52) W = W ɛgrad W f O(n) W O(n) grad W f I O(n) X ψ(i, t, X) = exp(tx) (53) W O(n) 1. grad W f T I O(n) f W f W W f f W (54) 2. I W f f W exp(t(w f f W )) (55) 3. W exp(t(w f f W )) W exp(t(w f f W )) (56) 13

X so(n) Θ α (X) =(I + X α )α/2 (I X α ) α/2, α 0, α R (57) α =1 ( I + X 1 ) α =2 Cayley α Θ 1 (X) ={(I + X)(I + X) } 1/2 (I + X) (58) Θ 1 (X) =(I + X 2 )(I X 2 ) 1 (59) Θ (X) = exp(x) (60) Θ α (tx) t 2 Θ α (tx) =I + tx + t 2 X2 2 + O(t3 ) (61) FastICA 6 ICA A p(x; θ, ξ) (θ ξ ) u(x; θ, ξ) = p(x; θ, ξ) (62) θ v(x; θ, ξ) = p(x; θ, ξ) (63) ξ 14

14 z(x, θ) ξ θ, ξ 15 E,ο[z(x, θ)] = 0, (67) [ ] det K 0, K = E,ο z(x, θ) (68) θ E,ο[z(x, θ)z(x, θ) ] < (69) T z(x(t), θ) = 0 (70) t=1 ˆθ M M T 14 Crameŕ-Rao 1 T K 1 E,ο[zz ]K (71) V 1 n [ ] 1 Gu G uv G vu G v (64) V θ 1 n (G u G uv G 1 v G vu ) 1 (65) V θ 1 n G 1 u (66) 15 z θ R(θ) 15

ICA F (y,w)=i ψ(y) (72) y 16 F ij i j W i = j E yi,y j [ψ(y i )y j ] = 0 (73) 1 E yi [ψ(y i )y i ] (74) y i E yi [ψ(y i )y i ] 1 0 7 8 Stiefel [1, 2, 3] 16 ψ 16

[1] In ( ) I, (2002) [2] A. Hyvärinen, J. Karhunen, E. Oja: Independent Component Analysis, John Wiley & Sons (2001) [3] (2004) 17