<4D F736F F D2091E6378FCD2092E E58B4B96CD8DD08A5182CC955D89BF2E646F6378>

Similar documents
<4D F736F F D2091E6328FCD208DD08A5182CC94AD90B681458A6791E A834982CC93578A4A2E646F63>

<4D F736F F D AEB8CAF95A893C18DD BC814089BB8A C982A882AF82E98E968CCC96688E7E93992E646F6378>

事故調査委員会中間報告 2013 年 1 月 18 日 事故調査委員会 1. はじめに 2012 年 9 月 29 日 ( 土 ) 兵庫県姫路市の株式会社日本触媒姫路製造所において アクリル酸中間タンクの爆発 火災事故 ( 死者 1 名 負傷者 36 名 ) が発生したことを受けて 10 月 5 日

PowerPoint プレゼンテーション

Microsoft Word - 参考資料5(手法編)v1c.doc

高圧ガス(第576号),P48-53

1 熱, 蒸気及びボイラーの概要 問 10 伝熱についての記述として, 誤っているものは次のうちどれか (1) 金属棒の一端を熱したとき, 熱が棒内を通り他端に伝わる現象を熱伝導という (2) 液体又は気体が固体壁に接触して流れ, 固体壁との間で熱が移動する現象を熱伝達又は対流熱伝達という (3)

める製品でトリブチルスズ化合物が使用されているものの環境汚染防止措置に関し公表する技術上の指針本指針は 第二種特定化学物質であるトリブチルスズ=メタクリラート ビス ( トリブチルスズ ) =フマラート トリブチルスズ=フルオリド ビス ( トリブチルスズ )=2,3 ジブロモスクシナート トリブチ

Xamテスト作成用テンプレート

<4D F736F F F696E74202D E9197BF C A8B9091E5926E906B82D682CC91CE899E82CC95FB8CFC90AB2E B8CDD8AB B83685D>

津波警報等の留意事項津波警報等の利用にあたっては 以下の点に留意する必要があります 沿岸に近い海域で大きな地震が発生した場合 津波警報等の発表が津波の襲来に間に合わない場合があります 沿岸部で大きな揺れを感じた場合は 津波警報等の発表を待たず 直ちに避難行動を起こす必要があります 津波警報等は 最新

第 9 屋外貯蔵タンク冷却用散水設備の基準 ( 昭和 57 年 7 月 1 日消防危第 80 号 ) タンクの冷却用散水設備 ( 以下 散水設備 という ) は 次によること 1 散水設備の設置範囲は 危険物規則第 15 条第 1 号に定める技術上の基準に適合しないタンク ( 一部適合しないものにあ

ときには 平常時とほぼ同程度の活動が期待できるであろう しかし 震度 6 弱以上の強い地震動を受け しかも構内道路や施設周辺の液状化がひどい場合には 現場に駆けつけることさえ困難になることも予想される このようなことを考慮して 活動の種類に応じた妥当な分岐確率を設定する (3) 災害事象の発生確率平

第3類危険物の物質別詳細 練習問題

1.1 阪神 淡路大震災環境省は 阪神 淡路大震災 ( 平成 7 年 1 月 17 日発生 ) の際に兵庫県及び神戸市の協力を得て 大気中の石綿濃度のモニタリング調査を実施した 当時の被災地における一般環境大気中 (17 地点 ) の石綿濃度の調査結果を表 R2.1 に 解体工事現場の敷地境界付近に

1

既存の高越ガス設備の耐震性向上対策について

(Microsoft Word - \207V10\215\\\221\242\212\356\217\200P44-52.doc)

スライド 1

石油コンビナート地域での 災害対応について 平成 30 年 2 月 15 日 神奈川県安全防災局安全防災部 工業保安課コンビナート G

<4D F736F F D D F944D8CF08AB78AED82CC E682E889C AB834B A682A DC58F4994C

化学産業と化学技術の環境貢献 本稿は 化学装置 2010 年 3 月号に筆者が掲載した報文 化学産業 の環境経営と環境貢献 の一部を加筆 削除 修正したものである 環境企画 松村眞 はじめに 環境対策には 環境負荷物質の発生を抑制する上流の分野と やむを得ずに作られてしまう環境負荷物質を無害化する下

る設備装置への徹底した温度管理のほか 熱や火花 静電気など着火源の排除 酸や鉄塩 不純物などの接触を排除するなど その貯蔵 取り扱いには細心の注意が必要とされる 重合反応を防止するため 通常は重合停止剤を添加し安定させているが それでも制御可能な範囲を超える熱源や過酸化物 鉄錆などがあれば重合を促進

東日本大震災を踏まえた課題と現状 コンビナート港湾における地震 津波対策検討会議 ( 国土交通省 経済産業省共同開催 ) コンビナート港湾における地震 津波対策について ( 抜粋 ) 2. コンビナート港湾における地震 津波対策に関する基本的考え方 ( 消防庁 経済産業省部分抜粋 ) コンビナート港

別紙 1 消防危第 174 号 平成 25 年 10 月 4 日 < 関係団体の長 > 殿 消防庁危険物保安室長 ガソリン携行缶本体の注意表示の充実に係るご協力のお願いについて 平素から消防行政へのご理解とご協力を賜り 厚く御礼申し上げます 平成 25 年 8 月 15 日に京都府福知山市花火大会で

仮貯蔵 仮取扱い実施計画書 ( ドラム缶等による燃料の貯蔵及び取扱い ) 保有空地の周囲にロープを張り ( バリケードを立て ) 空地を確保する 第 5 種消火設備を 3 本設置する 保有空地 確保する 高温になることを避けるため 通気性を確保した日除けを設置 工場東側空地約 360 m2 通風 換

<4D F736F F D2091E6358FCD2092B78EFC8AFA926E906B93AE82C982E682E994ED8A51288AEB8CAF95A8835E E82CC D F2982F091CE8FDB82C682B582BD955D89BF2E646F6378>

油漏洩 防油堤内 にて火災発生 9:17 火災発見 計器室に連絡 ( 発見 者 計器室 ) 発見後 速やかに計 器室に連絡してい る 出火箇所 火災の状況及び負傷者の発生状況等を確実に伝え 所内緊急通報の実施 火災発見の連絡を受 けて速やかに所内 緊急通報を実施し 水利の確保 ( 防災セ ンター 動

(2) 異常現象と認識しているにもかかわらず 情報収集を行った後に通報することとなっている場合には 異常現象と認識した時点で通報する体制とすること (3) 従業員 ( 協力会社等の従業員を含む ) が異常現象の判断に迷うことにより通報が遅れるおそれのある場合には 異常現象の通報に関する教育 訓練の内

高圧ガス(第580号),P50-56

平成 26 年度経済産業省委託事業 高圧ガス取扱施設における リスクアセスメント手法及び保安教育プログラム調査研究 講師データベースの構築 平成 27 年 3 月 高圧ガス保安協会

石コン計画修正H29案_

<4D F736F F D2091E E838D BB95A88FC189CE90DD94F52E646F63>

< F2D819A834A835A B182F182EB82CC C B>

Microsoft PowerPoint - 発表II-3原稿r02.ppt [互換モード]

第 1 章 L P ガスはクリーンエネルギー LP ガスとは LP ガス (LPG) とは Liquefied Petroleum Gas( 液化石油ガス ) の略称で プロパン (C3H8) やブタン (C4 H10) を主成分とするガス体エネルギーです 特に主成分がプロパンの場合は プロパンガス

<4D F736F F F696E74202D C A E955D89BF5F92C394678E968CCC B D89BF82CC8

さいたま市消防用設備等に関する審査基準 2016 第 4 渡り廊下で接続されている場合の取り扱い 155 第 4 渡り廊下で接続されている場合の 取り扱い

<4D F736F F F696E74202D C4816A81798E9197BF A8B4B90A791CE8FDB82CC8DC490AE979D E >

対応すべき行動_0921

182 No. 61 RDF m 13 RDF RDF 中国の石油精製工場で爆発 m 中国の染料用化学製品工場で爆発 t km

概 要 本資料は 可燃性ガス 蒸気を取り扱う工場の電気設備設計及び防爆機器の選定の為の参考にまとめました 防爆機器の各防爆構造の解説は 種々資料があり防爆メーカーのカタログやホームページに解説がありますので省略しますが 出典は 工場電気設備防爆指針 ( ガス 蒸気防爆 ) ですのでそれを参照して下さ

としてまとめました 準備実験では 試験体の内外に 518 カ所の温度センサー ( 熱電対 ) と 41 カ所の熱流センサー ( 熱流束計 ) を設置して計測を行ったほか ビデオカメラを試験体内に 13 台 試験体外に 9 台設置して火災の様子を観察しました 2.2 準備実験より得られたこと木造 3

基準19 ハロゲン化物消火設備の設置及び維持に関する基準

別添 平成 23 年 3 月 17 日 消防庁 東北地方太平洋沖地震における被災地でのガソリン等の運搬 貯蔵及び取扱い上の留意事項 東北地方太平洋沖地震の被害は甚大であり 被災地におけるガソリン 軽油及び灯油等の燃料が不足しています 政府においてもガソリン等の燃料の迅速な運搬及び移送に努めており 被

HPIS

<4D F736F F D2091E E8FDB C588ECE926E816A2E646F63>

7 制御不能な二次災害を発生させない 7-1) 市街地での大規模火災の発生 7-2) 海上 臨海部の広域複合災害の発生 7-3) 沿線 沿道の建物倒壊による直接的な被害及び交通麻痺 7-4) ため池 ダム 防災施設 天然ダム等の損壊 機能不全による二次災害の発生 7-5) 有害物質の大規模拡散 流出

第 21 換気設備等製造所等の換気設備及び排出設備の基準については 次による 1 換気設備 (1) 換気設備は 室内の空気を有効に置換するとともに 室温を上昇させないためのものであり 下記のものがある ア自然換気設備 ( 給気口と排気口により構成されるもの ) イ強制換気設備 ( 給気口と回転式又は

D 液 日団協技術資料 D 液 地下埋設式バルク貯槽の発生能力 1. 制定目的 バルク貯槽を地下埋設し自然気化によってLPガスを消費しようとする場合 需要家の消費量に対して十分な量のLPガスを供給することのできる大きさのバルク貯槽を設置しなければならないが バ

3M 皮膚貼付用両面粘着テープ # /10/25 3M Article Information Sheet Copyright,2018,3M Company All right reserved. 本情報は 3M の製品を適切にご使用頂くために作成したものです 複製ないしダウンロー

<4D F736F F D E9197BF31817A975C91AA907D C4816A82C982C282A282C491CE8FDB926E906B82CC90E096BE2E646F63>

ⅱ 調査地点調査地点は 事業実施区域の敷地境界 2 地点とし 調査時において 風上 風下となる地点とした 調査地点を図 7.4-1に示す ⅲ 調査方法調査方法を表 7.4-3に示す 表 悪臭の調査方法 調査項目 悪臭の状況 気象の状況 調査方法 臭気指数 : 三点比較式臭袋法試料採取時の

ことを呼びかけます Q4. ミサイルが落下する可能性がある との情報伝達があった場合は どうすれば良いのでしょうか A4. 屋外にいる場合 近くの建物 ( できれば頑丈な建物 ) の中又は地下に避難してください 近くに適当な建物等がない場合は 物陰に身を隠すか地面に伏せ頭部を守ってください 屋内にい

<4D F736F F D208E9197BF342D318AB4906B C815B834A815B939982CC8EED97DE82C693C192A528819A89EF8B638CE38F4390B38DCF E646F6378>

未利用原油 ( 含む非在来型原油 ) の国内製油所での精製時の課題に関する調査 (JX リサーチ株式会社 ) 青木信雄 細井秀智 茂木章 1. 調査の目的我が国の原油調達における中東依存度は約 83% 次いでロシアが約 8%(2014 年 ) となっており すべての燃料の中で石油は調達リスクが最も高

PowerPoint プレゼンテーション

時間災害状況等の推移関係機関関係機関の活動内容道府県 ( 防災本部 ) の留意事項 ( 評価の視点 ) 1 日目 3.1 地震に基因する標準災害シナリオ 9:00 (0:00) 地震発生 ( 震度 6 強 ) 特定事業所 施設等の緊急停止措置 災害拡大防止上必要な施設の手動停止操作 地震発生後 速や

( 考慮すべき視点 ) 内管について 都市ガスでは需要家の所有資産であるがガス事業者に技術基準適合維持義務を課しており 所有資産と保安責任区分とは一致していない LPガスでは 一般にガスメータの出口より先の消費設備までが需要家の資産であり 資産区分と保安責任区分が一致している 欧米ではガスメータを境

Q4. ミサイルは発射から何分位で日本に飛んでくるのでしょうか A4. 北朝鮮から弾道ミサイルが発射され 日本に飛来する場合 極めて短時間で日本に飛来することが予想されます 例えば 平成 28 年 2 月 7 日に北朝鮮西岸の東倉里 ( トンチャンリ ) 付近から 発射された弾道ミサイルは 約 10

番号文書項目現行改定案 ( 仮 ) 1 モニタリン 別表 : 各種係 グ 算定規程 ( 排出削 数 ( 単位発熱量 排出係数 年度 排出係数 (kg-co2/kwh) 全電源 限界電源 平成 21 年度 年度 排出係数 (kg-co2/kwh) 全電源 限界電源 平成 21 年度 -

平成 29 年 ( ヨ ) 第 2 号玄海原発再稼働禁止仮処分申立事件 債権者長谷川照ほか 債務者九州電力株式会社 補充書面 21 水蒸気爆発対策に関する反論 - 債務者準備書面 5 第 3 の 2 について 佐賀地方裁判所民事部御中 2017( 平成 29) 年 8 月 25 日 債権者ら訴訟代理

<4D F736F F F696E74202D208E518D6C8E9197BF325F94F093EF8AA98D CC94AD97DF82CC94BB92668AEE8F8082C98AD682B782E992B28DB88C8B89CA2E B8CDD8AB B83685D>

Microsoft PowerPoint - 熱力学Ⅱ2FreeEnergy2012HP.ppt [互換モード]

PowerPoint プレゼンテーション

大阪市立大学における 液体ヘリウムの汲み出し状況

PowerPoint プレゼンテーション

環境に貢献するガスタービン燃焼器技術,三菱重工技報 Vol.46 No.2(2009)

<4D F736F F D2088C B835E B B826D82668C668DDA A E312E3189FC92E82E646F63>

Q4. ミサイルは発射から何分位で日本に飛んでくるのでしょうか A4. 北朝鮮から弾道ミサイルが発射され 日本に飛来する場合 極めて短時間で日本に飛来することが予想されます 例えば 本年 2 月 7 日に北朝鮮西岸の東倉里 ( トンチャンリ ) 付近から発射された弾道ミサイルは 約 10 分後に 発

特定駐車場用泡消火設備

Microsoft Word - 整備基本計画0319[1]

<4D F736F F D E817A899E977095D22D979A97F082C882B >

鉄鋼協会・材料系主要大学講義資料(22年度)rev.ppt

D 液 日団協技術資料 D 液 地上設置式横型バルク貯槽等の発生能力 1. 制定目的 バルク貯槽又はバルク容器 ( 以下 バルク貯槽等という ) を設置し 自然気化によってLP ガスを消費しようとする場合 需要家の消費量に対して十分な量のLPガスを供給すること

高圧ガス(第571号),P69-75

<4D F736F F D CA A F976E82AF8D9E82DD94C581698F4390B3816A2E646F6378>

<4D F736F F D208ED497BC82C982E682E98D8288B3834B AED88DA93AE928682CC8E968CCC96688E7E46696E616C816992F990B38CE3816A2E646F6378>

実用発電用原子炉の設置 運転等に関する規則 ( 抜粋 ) ( 昭和 53 年 最終改正 : 平成 25 年 )( 通商産業省令 ) ( 工場又は事業所において行われる廃棄 ) 第九十条法第四十三条の三の二十二第一項の規定により 発電用原子炉設置者は 発電用原子炉施設を設置した工場又は事業所において行

これは 平成 27 年 12 月現在の清掃一組の清掃工場等の施設配置図です 建替え中の杉並清掃工場を除く 20 工場でごみ焼却による熱エネルギーを利用した発電を行っています 施設全体の焼却能力の規模としては 1 日当たり 11,700 トンとなります また 全工場の発電能力規模の合計は約 28 万キ

3M ポリエステルテープ 8411,8412,8437,850( 黒 金 銀 透明 白色 ) 853,856 3M スコッチガード 1001,1002,1004 3M 表面保護テープ 1614,1675 YR36R87 3M スコッチ ファインラインマスキングテープ 222 安全データシート Cop

屋内消火栓設備の基準 ( 第 4.2.(3). オ ) を準用すること (2) 高架水槽を用いる加圧送水装置は 屋内消火栓設備の基準 ( 第 4.2.(4). ア イ及びウ ) を準用するほか (1). ア イ及びウの例によること (3) 圧力水槽を用いる加圧送水装置は 屋内消火栓設備の基準 ( 第

成分 CAS 番号 重量 % 金属蒸着積層フィルム なし 応急措置 応急措置 吸入した場合応急処置は不要 皮膚に付着した場合応急処置は不要 眼に入った場合応急処置は不要 飲み込んだ場合応急処置は不要 予想できる急性症状及び遅発性症状の最も重要な徴候症状毒性学的影響についてはセクション

参考 < これまでの合同会合における検討経緯 > 1 第 1 回合同会合 ( 平成 15 年 1 月 21 日 ) 了承事項 1 平成 14 年末に都道府県及びインターネットを通じて行った調査で情報提供のあった資材のうち 食酢 重曹 及び 天敵 ( 使用される場所の周辺で採取されたもの ) の 3

フルコーンパターンノズル 品 名 型 式 フルコーンノズル.1 セパレート式 KSF, KSFG 一体式 KSFS, KSFHS, KSFH, KSFI フランジ式 KSF F 楕円吹ノズル.6 フルコーンパターンノズル セパレート式 一体式 角吹ノズル KSE, KSE S, KSE H KSE

( 給油取扱所関係 ) 問危険物の規制に関する政令 ( 昭和 34 年政令第 306 号 以下 政令 という ) 第 17 条第 3 項第 6 号に規定する自家用の給油取扱所 ( 以下 自家用給油取扱所 という ) にあっては 危険物の規制に関する規則 ( 昭和 34 年総理府令第 55 号 ) 第


別添 4 レファレンスアプローチと部門別アプローチの比較とエネルギー収支 A4.2. CO 2 排出量の差異について 1990~2012 年度における CO 2 排出量の差異の変動幅は -1.92%(2002 年度 )~1.96%(2008 年度 ) となっている なお エネルギーとして利用された廃

Microsoft Word - 1_RA指針通達_確定版(別添1&2を除く)

1

2 被害量と対策効果 < 死者 負傷者 > 過去の地震を考慮した最大クラス あらゆる可能性を考慮した最大クラス 対策前 対策後 対策前 対策後 死者数約 1,400 人約 100 人約 6,700 人約 1,500 人 重傷者数約 600 人約 400 人約 3,000 人約 1,400 人 軽傷者

Microsoft PowerPoint - 1.プロセス制御の概要.pptx

Microsoft Word - 木材の塩素濃度報告110510_2.docx

GPS 安全性要約書 塩酸(35%)

PowerPoint プレゼンテーション

Q5: 点検で不合格になった場合は? A5: 点検で不合格になった容器弁は 新品の容器弁に更新する必要があります Q6: 点検ではなく更新することはできるの? A6: 更新することはできます 更新した場合は 容器弁の安全性 の点検は必要ありません 劣化の著しいものや当工業会が交換を推奨する期間 (1

資料 1 3 小規模附属物点検要領 ( 案 ) の制定について Ministry of Land, Infrastructure, Transport and Tourism

<4D F736F F D208C46967B926E906B82CC96C6906B8C9A95A8899E939A89F090CD>

資料2 紙類の判断の基準等の設定に係る検討経緯について

その時点で改めて ミサイルが落下する可能性がある旨を伝達し 直ちに避難することを呼びかけます Q4. ミサイルが落下する可能性がある との情報伝達があった場合は どうすれば良いのでしょうか A4. 屋外にいる場合 近くの建物 ( できれば頑丈な建物 ) の中又は地下に避難してください 近くに適当な建

Transcription:

第 7 章低頻度大規模災害の評価 7.1 評価対象とする災害事象確率的なリスク評価 ( 平常時の事故や短周期地震動による被害の評価 ) では リスクマトリックスを用いて防災計画における想定災害の抽出を行った 一方 リスクマトリックスにおいて発生危険度は極めて低い又は確率的評価ができないものの 影響度が大きいと評価される 低頻度大規模災害 については これまで想定災害として取り上げられないことが多かった しかしながら 東日本大震災では 千葉県市原市で発生した LPG タンクの爆発火災のように これまで想定していなかったような大規模な災害が発生している このことを踏まえ 評価上の発生確率は極めて小さい又は確率的評価ができない災害であったとしても 発生したときの影響が甚大な災害については 発生確率には言及せずに影響評価を行い 周辺住民の避難対策に資するものとする 7.1.1 大規模災害の事例 (1) 危険物タンク 防油堤外流出火災昭和 39(1964) 年の新潟地震では スロッシングにより原油タンクの上部から溢流して着火し 隣接するタンク群が炎上した さらに 地震により防油堤が破損し そこから火災が拡大して付近の民家にも延焼した 海上流出昭和 53(1978) 年の宮城県沖地震では 地震動により 容量 20,000~30,000kL のタンク 3 基の側板と底板の接合部付近で破断が発生した これにより 合わせて約 70,000kL の油が流出し このうち数千 kl がガードベースンで閉止できず海上流出した タンク全面 防油堤火災 ( ボイルオーバーによるもの ) ボイルオーバーは 火災熱によりタンク内で油の高温層が形成され これがタンク底部の水に接触して水が急激に沸騰し 巨大な炎を吹き上げると同時に油が噴出する現象である このような災害は 危険物タンクの防油堤内火災や全面火災が長時間継続して 油が熱せられた場合に起こり得る ボイルオーバーの事例は 世界で約 50 件が報告されている 過去最大の被害を与えた事例は 昭和 57(1982) 年ベネズエラにおいて起きたものである 丘の上にある C 重油タンクで 火災発生から 6 時間 15 分後にボイルオーバーが起き あふれた重油が周囲約 3km に広がり 隣接するタンクに延焼した 津波による流出油の拡大東日本大震災では 仙台地区の複数の事業所において 津波によりタンク付属配管が破損して流出した油が防油堤内及び周辺道路まで拡大している 古積博他 : ボイルオーバーの事例と最近の研究 消防研究所報告 No.117 pp.1 19 2014 仙台市消防局警防部危険物保安課 : 東日本大震災におけるコンビナート地区の被害とその対応 Safety & Tomorrow No.142 p.50 58 7-1

(2) 高圧ガスタンク ファイヤーボール (BLEVE によるもの ) BLEVE(Bolng Lqud Expandng Vapor Exploson) とは 沸点以上の温度で貯蔵している加圧液化ガスの貯槽や容器が何らかの原因により破損し 大気圧まで減圧することにより急激に気化する爆発的蒸発現象である 典型的には 火災時の熱により容器等が破損して BLEVE を引き起こす BLEVE の発生は内容物が可燃性のものに限らないが 可燃性の場合には着火してファイヤーボールと呼ばれる巨大な火球を形成することが多い BLEVE 現象が明らかになった最初の事故は 昭和 41(1966) 年 フランスの製油所で発生した大規模な LPG の爆発 火災事故である この事故は 作業のために開けた球形タンクの底部のバルブが閉まらなくなり LPG が流出して道路に拡散した 道路を通りかかった乗用車により引火 爆発し その火が漏洩したタンクに到達した タンクの火災から BLEVE が起こり 同じタンクヤードにある他の LPG が延焼した 平成 23(2011) 年の東日本大震災では 千葉県市原市の LPG タンクで BLEVE が発生した タンク開放検査後にタンク内の空気を排出するために満水状態であった LPG タンクが 地震により倒壊して周辺の配管を破損した この影響で 長時間にわたって LPG が漏洩し 火災に至った 火災発生からおよそ 1 時間強で最初の BLEVE が発生し その後別の LPG タンクが 5 回にわたり爆発し 火災が拡大した 爆発時の飛散物により 隣接する事業所で火災が発生した さらに 近隣の居住地区で 飛散物や爆風により 窓ガラス シャッター等の破損が発生した 低温液化ガスタンクの損傷 破壊 低温液化ガスタンクが損傷 破壊に至った事故の事例として 昭和 19(1944) 年にアメリカで発生した LNG タンクの破壊事故が挙げられる この事故では LNG タンクが脆性破壊により完全に崩壊し 漏洩した LNG が蒸発して巨大な蒸気雲を形成し これに着火して爆発に至った このタンクの内槽に用いられていた 3.5% ニッケル鋼は LNG の沸点付近の温度でも脆性破壊が発生する可能性が高いと推定されている 現在の低温 LNG ガスタンクでは 安全性が確認された 9% ニッケル鋼が用いられており こうした事故は起こり得ないと考えられている コークスガスホルダーの爆発火災 v 平成 15(2003) 年 愛知県東海市にあるコークスガス (COG) ホルダー ( 容量 40,000kL) において爆発が発生して全壊し その影響で隣接する COG ホルダー及び高炉ガスホルダー ( いずれも容量 100,000kL) でも爆発が起きた はじめに爆発した COG ホルダーの内部にはピストンが設けられており COG の量に応じて上下する構造となっている このピストンには バランスを保つために ピストンの上側と下側の両方に円周に沿っておもりが配置されている 事故の原因は ピストンの下側のおもりをつり下げているフレーム破断して このおもりが落下してピストンが傾いて側壁との間に隙間が生じ COG がガスホルダー上部に漏洩して空気と混合し 小林光夫 田村昌三 : フランスフェザンの LPG タンク爆発火災 失敗知識データベース http://www.sozogaku.com/fkd/hf/hc0300001.pdf コスモ石油株式会社千葉製油所液化石油ガス出荷装置及び貯槽設備火災 爆発事故調査報告書 2011 片山典彦 : 低温タンクの損傷 RUMPES Vol.17 No.4 p.1-3 2003 v 厚生労働省 : 製鉄事業場における化学設備等の定期自主検査等の徹底について 基安発第 0716002 号 2004 7-2

このガスに破断したフレームやピストン部材等が側壁に衝突して発生した火花により着火して爆発に至ったと推定されている (3) プラント 近年の大規模事故事例平成 23(2011) 年 山口県周南市にある第二塩化ビニルモノマー製造施設において 塩酸塔還流槽を中心とする爆発火災が発生した この事故では 爆発した設備が損壊し 爆風及び飛来物により周辺プラントが一部損壊する被害が出た 平成 24(2012) 年 山口県和木町にあるレゾルシンプラントで 2 回にわたって爆発火災が発生した この事故では 事業所内の設備が大きく損壊した他 事業所外で広範囲にわたって住宅のガラスの破損等の被害が出た 平成 24(2012) 年 兵庫県姫路市のアクリル酸製造施設内の中間タンクで爆発 火災が発生し 隣接するアクリル酸タンク等の設備 建屋及び消防車両に延焼した この事故では 中間タンクの高温内容物が爆発時に飛散している また 蒸気爆発後にファイヤーボールが発生した可能性もある 平成 26(2014) 年 三重県四日市市で 水素精製設備に設置されていた水冷熱交換器を取り外して洗浄中に クロロシランポリマー類の加水分解生成物とみられる物質が爆発し 火災が発生した この爆発により 水冷熱交換器の蓋の飛翔 爆風による周辺設備の窓ガラスの破損等が起きた さらに 大気中に噴出した可燃性物質が燃焼してファイヤーボールを形成した v 7.1.2 評価対象とする災害事象対象とする災害事象は 次のとおりとする 県内の石油コンビナート等特別防災区域には 特定事業所に住宅 一般の事業所 都市高速道路等が近接している地区があることから ここで挙げる災害を想定した対策が必要であるといえる (1) 発生確率は低いが影響が甚大な災害平常時の事故の評価及び短周期地震動による被害の評価において 発生危険度が D レベル又は E レベルで影響度が I と評価された災害事象は 表 7.1.1 のとおりである これらの災害事象について 周辺住民の避難対策の観点から 平常時より影響が大きくなる場合を対象に影響評価を行う 東ソー株式会社南陽事業所第二塩化ビニルモノマー製造施設爆発火災事故調査対策委員会報告書 2012 三井化学株式会社岩国大竹工場レゾルシン製造施設事故調査委員会報告書 2013 株式会社日本触媒姫路製造所アクリル酸製造施設爆発 火災事故調査報告書 2013 v 三菱マテリアル株式会社四日市工場高純度多結晶シリコン製造施設爆発火災事故調査報告書 2014 7-3

表 7.1.1 発生確率は低いが影響が甚大な災害施設区分災害事象危険物タンク防油堤内流出火災高圧ガスタンク毒性液体タンク大量流出毒性ガス拡散製造施設 (2) 発生確率を評価できないが影響が甚大な災害発生確率を評価できないが影響が甚大な災害事象として 表 7.1.2 に挙げる事象を対象とする これらの災害について 影響評価を定量的に行う 表 7.1.2 発生確率を評価できないが影響が甚大な災害施設区分災害事象危険物タンク防油堤内流出毒性ガス拡散高圧ガスタンクファイヤーボール (BLEVE によるもの ) 低温液化ガスタンクの大規模火災副生ガスホルダーの爆発火災毒性液体タンク防液堤内流出毒性ガス拡散 (3) 発生確率 影響とも評価が困難な災害発生確率 発生した場合の影響ともに評価が困難な災害事象として 表 7.1.3 に挙げる事象を対象とする これらの災害事象については 影響評価を定性的に行う 表 7.1.3 発生確率 影響とも評価が困難な災害施設区分災害事象危険物タンク防油堤外流出火災防油堤から海上への流出ボイルオーバーによる大規模火災製造施設反応暴走等による爆発 7-4

7.2 危険物タンクの災害 7.2.1 防油堤内全面火災 (1) 想定災害危険物タンクの防油堤内流出火災について 大破流出により防油堤の全面に流出油が拡大する場合を想定して 影響の評価を行う タンク本体の大破流出は 腐食劣化や地震時の損傷 あるいはそれらの複合により引き起こされる可能性があるが 現在ではタンク技術基準が強化されており 新基準に適合しているタンクではタンク本体からの大破流出の危険性は低いといえる 一方 阪神 淡路大震災においては タンク径に対して比較的高さの高い容量 1,000kL 未満のタンクが 地震に対して脆弱であることが明らかになり これを踏まえて容量 500~1,000kL の準特定タンクの技術基準が制定されている 現在運用中の特定タンク ( 容量 1,000kL 以上 ) は全て新基準に適合している 準特定タンクについては 平成 29(2017) 年 3 月末までの適合期限が設けられている 対象地域における 技術基準別の危険物タンクの数を表 7.2.1 に示す 一部の準特定タンクは旧基準であり 大破流出の潜在的危険性が高いといえる 地区名 表 7.2.1 技術基準別の危険物タンク基数 特定タンク準特定タンク特定外新法旧法新基準旧基準タンク 福岡地区 9 43 27 4 0 83 北九州地区 4 73 16 7 2 102 白島地区 2 0 2 0 0 2 豊前地区 2 4 0 0 0 6 注 1) 容量が 1,000kL 以上のタンクを特定タンク 500kL 以上 1,000kL 未満のタンクを準特定タンク それ以外のタンクを特定外タンクという 注 2) 特定外タンクは 毒性危険物を貯蔵するタンクのみの基数である (2) 影響評価評価方法は 平常時の防油堤内流出火災とほぼ同様とし 火災による放射熱の影響を評価する なお 確率的なリスク評価では 仕切堤で区切られた広大な防油堤の場合には 流出油が全面に広がることは現実的に考えにくいとして 防油堤内流出火災を仕切堤の 2 倍の面積として想定したが ここでは仕切堤の有無にかかわらず 防油堤全面における火災を想定する 影響の目安の値は 2.3kW/m 2 ( 概ね 90 秒で人体皮膚に 2 度の熱傷 ( 熱により表皮がはがれて水ぶくれを生じるとされる ) を起こすとされる熱量 ) とする 防油堤内全面火災による各地区における放射熱の影響距離 ( 防油堤の中心からの距離 ) の分布を図 7.2.1 に示す 影響距離は 最大で半径 220m 程度となる 福岡地区及び北九州地区の一部の施設は住居 一般事業所が近接しており こうした地域に影響が及ぶ可能性がある なお 容量が小さいタンクで影響距離が大きくなるタンクがあるが これは単体のタンクの容量に対して防油堤面積が広いためである しかし こうしたタンク群においては 1 基のタンクのみの流出で防油堤全面まで広がることは考えにくい 計 7-5

250 200 影響距離 (m) 150 100 50 0 0 5000 10000 15000 20000 25000 30000 35000 40000 タンク容量 (kl) 福岡地区北九州地区白島地区豊前地区 図 7.2.1 防油堤内全面火災による放射熱の影響距離 7-6

7.2.2 防油堤外流出火災防油堤外への危険物の流出は 地震により防油堤が破損するなどして流出する場合や 複数タンクの大破流出により防油堤を溢流する場合が考えられる 流出量は複数タンクの大破流出の場合が多くなるが その危険性は極めて低い 流出した危険物に着火して火災となった場合の放射熱の影響範囲は流出面積に依存し 流出範囲の特定が難しいことから 定性的に評価する 防油堤外に流出した場合 流出油防止堤が設置されている事業所ではこれにより流出拡大を防止でき 住宅地等まで流出した危険物が拡大する可能性は低いと考えられるものの 大規模な地震となった場合流出油防止堤が破損する可能性もある 本調査では流出油防止堤の設置状況の調査を行っていないが 福岡地区及び北九州地区では 特定屋外タンクから住居 一般事業所までの距離は 最も近接している地点で約 100~200m である 防油堤内全面火災 (7.2.1 参照 ) による放射熱の影響範囲が敷地外の近接する住居 一般事業所を含むことから こうした地域まで流出範囲が拡大した場合には 火災による放射熱の影響が及ぶ場合がある 7.2.3 防油堤から海上への流出防油堤からの海上流出については 海上流出に至るルートや流出量を特定することが困難であるため 定性的に評価する 海上流出は 防油堤外への大量流出が発生し 流出油防止堤の破損箇所から海上流出に至る場合 及び排水溝から海上流出に至る場合が考えられる このうち 排水溝からの流出については 含油排水の場合には排水処理設備により処理が行われるものの 雨水排水溝から流出した場合にはガードベースンから海上に至る可能性がある 昭和 53(1978) 年の宮城県沖地震の事例のように 港湾に通じる排水口を直ちに閉止できないと海上流出に至ることから こうした箇所から流出が拡大する可能性を考慮して 防災対策を検討する必要がある 7.2.4 ボイルオーバーによる大規模な火災原油や重油等を貯蔵するタンクにおいて タンク火災が長時間継続した場合にはボイルオーバーが発生する可能性がある ボイルオーバーが発生すると 熱せられた油の噴出 ファイヤーボールの生成等により影響範囲が拡大する ボイルオーバーによって油が噴出する範囲は一般的にタンク直径の 10 倍程度とされているが 影響範囲の具体的な検討は困難であるため 定性的に評価する 過去の事例によれば ボイルオーバーが発生する油種は 原油 重油が圧倒的に多く これらを貯蔵するタンクでは発生の可能性が高いと考えられる 発生した場合の影響については ボイルオーバーの燃焼実験では 周囲で一時的に受ける放射熱量は ボイルオーバーしないときと比べて 10 倍以上になる場合もあることが示されている いずれの地区においても 原油や重油を取り扱う危険物タンクがあり 同時多発災害等 消防力が不足する場合に ボイルオーバーによる火災に至る可能性がある 古積博他 : ボイルオーバーの事例と最近の研究 消防研究所報告 No.117 pp.1 19 2014 古積博 : 石油タンクの火災性状の研究 東京大学学位論文 1996 7-7

7.3 高圧ガスタンクの爆発火災 7.3.1 ファイヤーボールを伴う爆発火災 (1) 想定災害高圧ガスタンクにおいて 爆発火災が発生した場合の影響を評価する 確率的なリスク評価では 高圧ガスタンクの短時間全量流出爆発火災の影響について評価を省略したが ここでは 周辺火災等の影響により BLEVE 及びファイヤーボールが生じる場合を想定する BLEVE(Bolng Lqud Expandng Vapor Exploson) とは 沸点以上の温度で貯蔵している加圧液化ガスの貯槽や容器が何らかの原因により破損し 大気圧まで減圧することにより急激に気化する爆発的蒸発現象である 典型的には 火災時の熱により容器等が破損して BLEVE を引き起こす BLEVE の発生は内容物が可燃性のものに限らないが 可燃性の場合には着火してファイヤーボールと呼ばれる巨大な火球を形成することが多い 東日本大震災での市原市の例の場合 球形 LPG 貯槽 ( 地震当時は満水状態 ) が倒壊して周辺の配管を破損し 直ちに漏洩停止することができず 長時間にわたって LPG が漏洩し 火災に至ったものである 当時の対応では周辺タンクへの散水冷却を実施していたが 火災発生からおよそ 1 時間強で最初の BLEVE が発生し その後 5~10 分間隔で計 5 回の大規模爆発が発生している 高圧ガスタンクの周辺で火災が発生し 漏洩停止できず火災が継続するような場合には BLEVE 発生の危険性がある 特にタンクが近接して設置されているような場合は 十分な散水冷却が行えないことも予想され 注意が必要である (2) 影響評価 BLEVE 及びファイヤーボールの影響は ファイヤーボールによる放射熱の他 蒸気雲爆発による爆風圧やタンク破裂による飛散物が考えられるが 本調査では最も影響範囲が大きくなると考えられる ファイヤーボールによる放射熱を評価する 評価対象とするタンクは 可燃性の加圧された液化ガスタンクとする 評価方法は 参考資料 2 に示すとおりである 東日本大震災における市原市のガスタンク爆発事例では 球形 LPG タンク ( 当時の貯蔵量 600kL) で直径約 300m のファイヤーボールを形成し 継続時間は 20 秒程度と推測される そこで 影響の目安の値は ストール の実験により 20 秒で人体皮膚に第 2 度の熱傷を起こすとされる熱量である 6.0kW/m 2 とする ファイヤーボールによる放射熱の影響距離 ( タンク中心からの距離 ) の分布を図 7.3.1 に示す 影響が及ぶ範囲は 最大で 2.5km 程度となる 影響の大きさはファイヤーボールを形成する可燃性ガス量に依存し 爆発時に瞬間的に気化する可燃性ガスの量は 物質の種類や貯蔵温度 圧力に依存する 例えば プロパンは比較的気化する割合が大きく危険性が高いといえる Stoll, A.M. and Chanta, M.A., Method and Ratng System for Evaluaton of Thermal Protecton. Aerospace Medcne, 40, 1969. 7-8

3000 2500 2000 影響距離 (m) 1500 1000 500 0 0 500 1000 1500 2000 2500 3000 3500 貯蔵量 (t) 北九州地区豊前地区 図 7.3.1 ファイヤーボールによる放射熱の影響距離 7-9

7.3.2 低温液化ガスタンクの全面火災 (1) 想定災害北九州地区には LNG を貯蔵する低温液化ガスタンクがあり 当該タンクの大規模災害として 内圧上昇等により屋根が破損した後着火してタンク火災に至る場合が考えられる タンク内圧上昇の要因としては 外部火災による熱の影響や LNG 受入時の層状化 ( ロールオーバー ) が考えられる 当該 LNG タンクは 高発泡設備や散水設備等の各種防災設備が設置されている ロールオーバー防止の対策が施されている 内圧上昇時の脱圧に関しては安全弁等により多重化されているなどの対策がとられている こうしたことから 内圧上昇により屋根破損に至る可能性についても小さいと考えられるが 万一に備え 屋根が破損してタンク全面火災となった場合の影響を評価する 注 ) ロールオーバー現象は 次のような現象である 様々な産地から輸入される LNG はその組成が異なるため 二種類の密度の大きく異なった LNG をタンクに受入れて貯蔵すると LNG が上下二層に分離 ( 層状化 ) する可能性がある 層状化した状態で一定の時間が経過すると BOG(Bol off Gas: 自然気化したガス ) 発生により上層の LNG 密度は徐々に高くなり ある時刻になると 上層と下層の密度が一致する 二層の密度が一致した時点で二層の境界が消滅して 上下が急激に反転して LNG が混合する この現象をロールオーバー現象という ロールオーバーが発生した場合 下層の LNG に蓄えられた熱エネルギーが急激に放出され 短時間に大量の BOG が発生する その結果 タンク内圧が急上昇し 場合によってはタンクが破損するような極めて危険な状態となる 昭和 46(1971) 年にイタリアのラ スペティア LNG 基地でロールオーバーが発生して 大量の BOG を大気放出した事例がある (2) 影響評価評価方法は 以下のとおりである ( 危険物タンクのタンク全面火災の評価 ( 第 3 章 3.3.2) と同じ ) 1 火炎の想定底面がタンク面積 高さが底面直径の 1.5 倍の火炎を想定する 2 影響の算定火炎中央の高さにおいて 放射熱の影響が目安の値以上となる火炎中心からの距離 (L) を影響範囲として算定する 影響の目安の値は 2.3kW/m 2 ( 概ね 90 秒で人体皮膚に 2 度の熱傷 ( 熱により表皮がはがれて水ぶくれを生じるとされる ) を起こす熱量 ) とする 対象とする低温 LNG タンクは 8 基あるが タンク形状は全て同じ仕様となっている タンク全面火災による放射熱の影響が及ぶ距離を算定すると 210m 程度となり 事業所内部にとどまる 高橋公紀 神谷篤志 :LNG 受入基地のためのロールオーバーシミュレーション 日揮技術ジャーナル Vol.3 No.1 p.1-6 2014 7-10

7.3.3 副生ガスホルダーの爆発火災 (1) 想定災害北九州地区には 副生ガス ( コークスガス 転炉ガス 高炉ガス ) を貯蔵するホルダーがある これらのガスホルダーの内部で ガスと空気が混合して着火 爆発することを想定する 副生ガスホルダーの形式として 主に無水式 有水式がある 無水式ガスホルダーは ホルダー内部にピストンがあり ガスの流出入に応じてピストンが上下する構造となっている 有水式ガスホルダーは 水槽にガス槽を浮かべ ガスの流出入に応じてガス槽が上下する構造となっている 7.1.1 で挙げたコークスガスホルダーの爆発火災は 無水式ガスホルダーで発生したものである 無水式ガスホルダーについては この事例のように ホルダー内のピストンが傾き 側板との間から貯蔵しているガスが上部に漏洩し 漏洩したガスと空気の混合気に着火 爆発することを想定する 有水式ガスホルダーについては 東日本大震災において ガイドローラー部の外れや支柱の変形があったものの 気密性は維持され ガスの漏洩は発生しなかった 有水式ガスホルダーについては 構造上内部でガスと空気が混合することは起こりにくいと考え 評価対象から除外する (2) 影響評価評価方法は 以下のとおりである 1 可燃性ガス量の想定副生ガスホルダー内で爆発を生じ得るガスの最大量として タンク内において 貯蔵しているガスが当量で燃焼する場合を想定する 当量とは 貯蔵しているガスと空気とが完全燃焼するような混合割合の物質量を表す 2パラメータの設定消防庁指針では 爆発による影響の解析手法として TNT 等価法が示され ガスの種類に応じたパラメータ (K 値 ) が示されている ( 参考資料 2) ここで対象としている混合ガスについては この K 値が示されていないことから 実際のガスの取扱い状況を基に燃焼熱量を推定した 影響の目安とする爆風圧の値は 2.1kPa(95% の確率で大きな被害はないとされ 家の天井が一部破損する 窓ガラスの 10% が破壊されるとされる圧力 ) とする 副生ガスホルダー内部での爆発による爆風圧の影響が及ぶ距離を算定すると 表 7.3.1 のようになる いずれのガスホルダーについても 影響範囲は事業所内部又は事業所付近の海上にとどまる 表 7.3.1 副生ガスホルダーの爆発火災の影響距離 物質名 影響距離 コークス炉ガス 400m 高炉ガス 490m 転炉ガス 480m 総合資源エネルギー調査会都市熱エネルギー部会ガス安全小委員会災害対策ワーキンググループ : 東日本大震災を踏まえた都市ガス供給の災害対策検討報告書 2012 可燃性ガス量及びパラメータの設定に当たっては Det Norske Vertas 社の Phast6.7 によった 7-11

7.4 製造施設における爆発火災製造施設における 平常時の事故及び短周期地震動による事故の影響評価は 流出した可燃性ガスが拡散し 空気との混合が進んだ後に着火した場合 ( 蒸気雲爆発 ) を前提としたものである しかしながら 反応容器の温度 圧力管理の不具合や 重合反応等のプロセスにおける反応暴走により爆発が起こった場合 こうした評価よりも影響が大きくなることがある 幸い東日本大震災では大きな事故は発生していないが 大規模地震時には電力会社からの送電停止や周波数変動 非常用発電設備の停止等が長時間にわたり発生する可能性もあり 全電源喪失によるユーティリティの停止も反応暴走の一因となるものと考えられる このような災害事象の発生危険性は個々のプラントのプロセスごとに異なり こうしたことを考慮した発生危険度や影響を評価することは困難である そのため 各事業所において起こり得る災害の評価と対策を考えることが必要となる 7.5 毒性物質の大量流出による毒性ガス拡散 (1) 想定災害毒性物質の大量流出による毒性ガス拡散を想定する 確率的評価 ( 第 3 章 第 4 章 ) においては 毒性物質を取り扱う施設からの流出事象について 流出口の面積を一律 0.1cm 2 とした場合又は防油堤 防液堤の一部に流出する場合を想定した ここでは これよりも流出量が大きくなる場合を想定する 評価対象とする物質は以下のとおりである ( 括弧内の数値は影響評価の目安の値を表し 30 分以内に脱出しないと元の健康状態に回復しない濃度とされる ) アクリロニトリル : 85ppm アンモニア :300ppm 塩素 : 10ppm フッ化水素 : 30ppm 毒性物質の危険性は各物質の特性により異なり 各々の事業所においては物質の特性に応じた対策がとられている 流出した場合の一般的な対応としては まず緊急遮断による流出停止を行い 液体で流出した場合には流出範囲の拡大防止を行う アンモニア等水に吸収されやすい物質については散水を行い また吸引設備が備えられている場合には吸引し 除害設備で処理することになる このような応急対応が成功すれば大規模な毒性ガス拡散には至らないが 万一流出停止及び漏洩の局所化に失敗した場合には 長時間にわたって毒性ガスが拡散する危険性がある (2) 影響評価影響評価として 次の場合を算定する 危険物タンク及び毒性液体タンクについては 防油堤又は防液堤全面に内容物が流出する場合 毒性ガスタンク及びプラントについては 配管断面積の 1/100 の面積 ( ただし 下限を 0.75cm 2 上限を 12.56cm 2 とする ) の流出口から内容物が長時間流出する場合 なお ガス拡散の影響範囲は 流出発生時の風向や風速 大気の状態等の気象条件に左右され 大きく変化する可能性もあることから 注意が必要である 毒性物質 ( アンモニア 塩素 アクリロニトリル フッ化水素 ) を取り扱う施設は 北九州地区及び豊前地区にある これらの毒性物質が大量に流出し 蒸発 拡散した場合の影響距離を算定すると 7-12

図 7.5.1 のようになる 物質別の最大の影響距離は アクリロニトリル約 480m アンモニア約 1.3km 塩素 約 3.0km フッ化水素約 3.6km となる 施設によっては 広範囲にわたって住居 一般事業所に影響が及ぶおそれがある 4,000 3,500 3,000 影響距離 (m) 2,500 2,000 1,500 1,000 500 0 0 0.5 アクリロニトリル 1 1.5 アンモニア 2 2.5塩素 3 フッ化水素 3.5 4 図 7.5.1 毒性物質の長時間流出による毒性ガス拡散の影響距離 なお 毒性物質を取り扱う施設においては 以下のような防災設備や防災対策があることから 実際に上記のような災害が起こる可能性は極めて低いと考えられる 毒性物質を取り扱う施設には いずれも散水設備が備えられており 蒸発の抑制や漏洩した物質の吸着等を行い 拡散を防止する アクリロニトリルは 漏洩した場合 直ちには蒸発しないことから 漏洩した液を回収する措置がとられる アンモニアタンクには 散水設備の他に防液堤が備えられており 漏洩したアンモニアや水に吸着させたアンモニアを外部に排出しないようにしている 塩素タンクは 屋内に設置されており 外部に拡散する可能性は屋外に設置されているタンクと比較して低い フッ化水素タンクにおいては 散水設備 吸引設備 防液堤が備えられている他 外部への拡散を防止するために配管接続部分にカーテンを設けるなどの対策がとられている 7-13