本邦国債価格データを用いたゼロ・クーポン・イールド・カーブ推定手法の比較分析

Similar documents
1 Nelson-Siegel Nelson and Siegel(1987) 3 Nelson-Siegel 3 Nelson-Siegel 2 3 Nelson-Siegel 2 Nelson-Siegel Litterman and Scheinkman(199

IMES DISCUSSION PAPER SERIES Discussion Paper No. 99-J- 9 -J-19 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN

わが国のレポ市場について―理論的整理と実証分析―

untitled

「国債の金利推定モデルに関する研究会」報告書

03.Œk’ì

Stepwise Chow Test * Chow Test Chow Test Stepwise Chow Test Stepwise Chow Test Stepwise Chow Test Riddell Riddell first step second step sub-step Step

山形大学紀要

c:/ando/latex/デフォルト確率損実率同時推定/fsa-ando-yamashita.dvi

橡motonishi.PDF

第一次大戦後の日本における国債流通市場の制度改革

デフレの定義(最新版).PDF

会社法制上の資本制度の変容と企業会計上の資本概念について

1 1 1 [2000]

中田真佐男 323‐352/323‐352

, 1), 2) (Markov-Switching Vector Autoregression, MSVAR), 3) 3, ,, , TOPIX, , explosive. 2,.,,,.,, 1

財政赤字の経済分析:中長期的視点からの考察

GDPギャップと潜在成長率

商品流動性リスクの計量化に関する一考察(その2)―内生的流動性リスクを考慮したストレス・テスト―

国際流動性に関する財政的側面について


Auerbach and Kotlikoff(1987) (1987) (1988) 4 (2004) 5 Diamond(1965) Auerbach and Kotlikoff(1987) 1 ( ) ,

1 Jensen et al.[6] GRT S&P500 GRT RT GRT Kiriu and Hibiki[8] Jensen et al.[6] GRT 3 GRT Generalized Recovery Theorem (Jensen et al.[6])


わが国企業による資金調達方法の選択問題

2 1,2, , 2 ( ) (1) (2) (3) (4) Cameron and Trivedi(1998) , (1987) (1982) Agresti(2003)

082_rev2_utf8.pdf


ヒストリカル法によるバリュー・アット・リスクの計測:市場価格変動の非定常性への実務的対応


43 2 PD DR Sommar and Shahnazarianka [19] Simons and Rolwes [17] GDP Figlewski, Frydman and Liang [7] GDP Bonfim [2] 3 Bhattacharjee et al. [1] 2002 [

8’¼‹ä

野村資本市場研究所|「財政の崖」回避をめぐる議論と米国地方債市場(PDF)


相互取引に伴う債権債務の依存構造を考慮した金融機関の与信評価について

IMES Discussion Paper Series 98-J

text.dvi

デフォルト相関係数のインプライド推計( )

デフレ不況下の金融政策をめぐる政治過程

橡AIMRモノグラフ(荻島).PDF

topics_040

Winter 図 1 図 OECD OECD OECD OECD 2003

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008)

アジアの資本移動の変化に関するクラスター分析 アジア域内の証券投資活性化に向けて

本組/根間弘海

PFI

PDFŠpŒ{ٶ

dvi


カルマンフィルターによるベータ推定( )

ACLI-EBC-CLHIA Interim Proposal _J_ June Final.PDF

遺産相続、学歴及び退職金の決定要因に関する実証分析 『家族関係、就労、退職金及び教育・資産の世代間移転に関する世帯アンケート調査』

fiúŁÄ”s‘ê‡ÌŁª”U…−…X…N…v…„…~…A…•‡Ì ”s‘ê™´›ß…−…^†[…fiŠ‚ª›Âfl’«

個人消費支出からみた戦間期の景気変動:LTES個人消費支出の再推計

Transcription:

Steeley [1991]... JAFEE 35 TMU NEEDS E-mail: kentarou.kikuchi@boj.or.jp / /212.7 35

1 1 1 1 2 McCulloch [1971, 1975] Steeley [1991] Tanggaard [1997] Schaefer [1981] Nelson and Siegel [1987] Svensson [1995]... 1 1 23 1 27 1 2 Jonathan Wright Svensson [1995] 36 /212.7

Bank for International Settlements [25] Ioannides [23] Kalev [24] 1989 Oda [1996] 2 22 1989 198 5 198 199 3 1999 21 1999 27 1... 3 198 199 199 37

1 Steeley [1991] 2 3 4 Steeley [1991] 5 1 2 Steeley [1991] Steeley [1991] 1999 1 211 12 4 2 2 1 t T 1 Z (t, T) t T y (t, T) y (t, T) = 1 T t log (Z (t, T)), (1)... 4 212 http://www.imes.boj.or.jp/research/papers/japanese/12-j-3.txt 38 /212.7

t x y (t, t + x), (2) t x y (t, t + x) 2 4 t x Z (t, t + x) Z (t, t + x) x t t r (t) r (t) = lim x y (t, t + x), (3) t S T S < T t T 1 S t S T 1 t T t S T f (t, S, T) Z (t, T) = exp ( f (t, S, T)(T S )) exp ( y (t, S )(S t)), (4) (1) (4) f (t, S, T) f (t, S, T) = 1 ( ) Z (t, T) T S log, (5) Z (t, S ) t t S f (t, S ) 39

( ) 1 Z (t, T) f (t, S ) = lim f (t, S, T) = lim T S T S T S log = Z (t, S ) S log (Z (t, S )), (6) (6) Z (S, S ) = 1 Z (t, t + x) ( x ) Z (t, t + x) = exp f (t, t + s) ds. (7) (1) (7) y (t, t + x) = 1 x x f (t, t + s) ds, (8) 2 1 2 4 /212.7

1 2 A B 9 1 11 A B 2 2 A B B A B 41

3 B 2 B 2 3 3 4 42 /212.7

t = t = Z (, x) y (, x) f (, x) Z (x) y (x) f (x) t = i (i {1,..., n name }) i N i c i i t = T i = {T1 i,..., T i } n i n i cf i cf t = k < l T i k < T i l t = Ti T T = n name i=1 T i := {T 1,..., T ncf }, T j = min i {1,..., n name } 1 k n i cf {T i k ; T i k > T j 1}, T 1 = min i {1,..., n name } 1 k n i cf T i k, t = I = {v 1,..., v ni } P = (P v 1,...,P v n I ) T A = (A v 1,..., A v n I ) T 5 P = P+A P = ( P v 1,..., P v n I ) T T 1 4. v i v i c v i 6 c v i = ( g (c v i, N v i, T 1 ),..., g (c v i, N v i, T j ),...,g(c v i, N v i, T ncf ) ) T, c v i N v i if T j T v i, T j T v i 2 n g (c v i, N v i v i cf, T j ) = c v i N v i + N v i if T j = T v i. 2 n v i cf otherwise c v i n cf 1 c v i j c v i j... 5 P A t = α 6 21 3 21 3 1 4. 43

v i Q v i n cf Q v i = j=1 c v i j Z (T j), (9) 2 4 Z (x) α Z (x) Z (x; α) α (9) α v i Q v i (α) t = Q (α) = (Q v 1 (α),..., Q v n I (α)) T 4 Z (x) Z (x) 3 3 3 3 Z (x) Bank for International Settlements [25] 2 5 1 2 3 McCulloch [1975] Steeley [1991] 2 139 44 /212.7

Fisher, Nychka, and Zervos [1995] Waggoner [1997] Jarrow, Ruppert, and Yu [24] 3 7 u m u m+1 u n 1 u n, m n j l B ( j, x) x [u h, u h+1 ] (m h n 1) (, u m ] [u n, ) l... 7 l l 1 45

McCulloch [1975] McCulloch [1975] Z (x) = u 1 = u = u 1 < u 2 < < u nknot McCulloch [1975] B (k, x) (k =,..., n knot ) (1) x 3 k n knot B (k, x) =, x u k 1, (x u k 1 ) 3 6(u k u k 1 ), u k 1 < x u k, (u k u k 1 ) 2 6 + (u k u k 1 )(x u k ) 2 + (x u k) 2 2 (u k+1 u k 1 )( 2u k+1 u k u k 1 6 (x u k) 3 6(u k+1 u k ), u k < x u k+1, + x u k+1 ), u k+1 < x, 2 k = n knot B (k, x) = x. (1) McCulloch [1975] Z (x) (1) n knot Z (x) = 1 + B (k, x) α k. (11) k= Z () = 1 (1) B (k, ) = (k =,...,n knot ) (11) (11) (9) v i Q v i α = (α,α 1,...,α nknot ) T n cf nknot n cf n Q v i (α) = c v i j + c v i j B (k, T j) α cf k = c v i j + ( cv i ) T Bα. j=1 k= j=1 j=1 (12) B ( j, k) B (k, T j ) n cf (n knot + 1) c v i 46 /212.7

j c v i j n cf 1 α ˆα [( ˆα= arg min P Q (α) ) T ( P Q (α) ) ] α n cf n cf P:= ( P v 1 j=1 c v 1 j,..., P v n I n cf j=1 c v n I j ) T, Q (α) := (Q v 1 (α) c v 1 j,...,q v n I (α) j=1, (13) n cf j=1 c v n I j ) T. Q (α) α (13) α ˆα ˆα = (( cb) T cb) 1 ( cb) T P, (14) c c = ( c v 1,..., c v n I ) T c n I n cf X 1 X McCulloch [1975] Steeley [1991] Steeley [1991] McCulloch [1975] Z (x) Z (x) (15) Z (x) = n knot 1 k= 3 B (k, x) α k. (15) Steeley [1991] B (k, x) McCulloch [1975] B (k, x) u 3 < < u nknot < u nknot +1 < u nknot +2 < u nknot +3 B (k, x) (16) 47

D = 1 1, u k x < u k+1 B (k, x) =B D (k, x) :=, otherwise D > 1 B (k, x) =B D (k, x) = u D+k x x u k B D 1 (k + 1, x) + B D 1 (k, x). u D+k u k+1 u D+k 1 u k (16) (16) B Steeley [1991] D = 4 3 (15) Z () = 1 n knot 1 k= 3 B (k, ) α k = 1, (17) (15) (9) v i Q v i n cf Q v i (α) = j=1 c v i j n knot 1 k= 3 n knot 1 B (k, T j ) α k = k= 3 n cf c v i j B (k, T j) α k = ( c v i ) T Bα. (18) j=1 B ( j, k) B (k, T j ) n cf (n knot + 3) (17) (18) α [ ˆα = arg min ( P Q (α)) T ( P Q (α)) ], α n knot 1 s.t. B (k, ) α k = 1. (19) k= 3 ˆα (2) ˆα = { ( cb) T cb } 1 ( cb) T P + 1 { } 1 BT ( cb)t cb ( cb) T P { } { } 1 ( cb)t cb B. ( cb)t cb 1 B B T (2) 48 /212.7

B = (B ( 3, ),..., B (n knot 1, )) T Steeley [1991] 2 Fisher, Nychka, and Zervos [1995] Fisher, Nychka, and Zervos [1995] Z (x) y (x) f (x) f (x) 8 Fisher, Nychka, and Zervos [1995] f (x) f (x) = n B (k, x) α k. (21) k=m B (k, x) (7) (21) ( x Z (x) = exp n = exp B (k, x) := k=m x ) f (s) ds x = exp n B (k, s) α k ds k=m x n ( B (k, s) ds) α k = exp B (k, x) α k, k=m B (k, s) ds. (22) (22) (9) Q v i n cf n Q v i (α) = c v i j exp B (k, T j ) α k = ( cv i ) T exp ( Bα), j=1 k=m n exp ( Bα) := exp ( B (k, T 1 ) α k ),..., exp ( k=m n B (k, T ncf ) α k )... 8 Fisher, Nychka, and Zervos [1995] 3 Fisher, Nychka, and Zervos [1995] k=m T. (23) 49

B j, k = B (k, T j ) Q v i (α) α α Fisher, Nychka, and Zervos [1995] (23) α = α 1 Q v i (α) 9 ( Q v i (α) ( c v i ) T exp ( Bα ) + ) α exp ( Bα) (α α ) α=α =Q v i (α ) + ( c v i ) T α exp ( Bα) (α α ) α=α =Q v i (α ) ( c v i ) T [ B ( exp ( Bα ) 1 T)] (α α ). (24) 1 1 = (1,..., 1) T (n m + 1) X v i (α ) = ( c v i ) T [ B ( exp ( Bα ) 1 T)], Y v i (α ) = P v i Q v i (α ) + X v i (α ) α, (25) (23) α = α ˆα (α ) [( ˆα (α ) = arg min Y (α ) X (α ) α ) T ( Y (α ) X (α ) α ) ], α X (α ):= (X v 1 (α ),..., X v n I (α )) T, Y (α ):= (Y v 1 (α ),..., Y v n I (α )) T. (26) (26) Z () = 1 (22) n n Z () = exp B (k, ) α k = exp α k = 1, k=m k=m (26) ˆα (α ) = ( X (α ) T X (α ) ) 1 X (α ) T Y (α ), (27) α = α Fisher,... 9 (24) 5 /212.7

Nychka, and Zervos [1995] (27) ˆα (α ) α 1 (24) Q v i (α) (27) ˆα (α 1 ) α 2 α 2 ˆα (α i ) Fisher, Nychka, and Zervos [1995] (21) B (k, x) 3 3 McCulloch [1971] 2 1 B (k, x) McCulloch [1971] Steeley [1991] 2 B (16) D = 3 B (k, x) Steeley [1991] 4. 3 Tanggaard [1997] Tanggaard [1997] 4. 1 11 Q v i (α) n cf Q v i = j=1 c v i j α j = ( c v i ) T α, α j = Z (T j ). (28) Q v i (α) α ˆα (29) [ min ( P Q (α)) T ( P Q (α)) ]. (29) α ˆα ˆα = ( c T c) 1 c T P, (3) c = ( c v 1,..., c v n I ) T... 1 (1) x McCulloch [1971] 11 Tanggaard [1997] Carleton and Cooper [1976] Houglet [198] 51

Schaefer [1981] Schaefer [1981] Z (x) D B D (k, x) D k B D (k, x) = ( 1) j+1 D k xk+ j j k + j, k >, j= D k j := (D k)! (D k j)!j!, B D (, x) =1. (31) Schaefer [1981] Z (x) Z (x) = D B D (k, x) α k. k= Z () = 1 B D (k, ) =, k > α = 1 Z (x) = D B D (k, x) α k = 1 + k= D B D (k, x) α k. (32) k=1 (32) (9) v i Q v i α = (α 1,...,α D ) T n cf D n cf n Q v i (α) = c v i j + c v i j B D (k, T j ) α cf k = j=1 k=1 j=1 j=1 c v i j + ( cv i ) T Bα. (33) B ( j, k) B D (k, T j ) n cf D 52 /212.7

(33) ˆα [( ˆα= arg min P Q (α) ) T ( P Q (α) ) ], (34) α n cf n cf P:= ( P v 1 j=1 c v 1 j,..., P v n I n cf j=1 c v n I j ) T, Q (α) := (Q v 1 (α) c v 1 j,..., Q v n I (α) j=1 n cf j=1 c v n I j ). ˆα ˆα = (( cb) T cb) 1 ( cb) T P, (35) Nelson and Siegel [1987] Nelson and Siegel [1987] f (x) (36) ) ( f (x) = α + α 1 exp ( xα3 x + α 2 exp x ). (36) α 3 α 3 (8) (36) y (x) y (x) = 1 x x ( ) 1 exp ( x/α3 ) f (s) ds = α +α 1 x/α 3 +α 2 ( 1 exp ( x/α3 ) x/α 3 ( exp x )). (37) α 3 v i Q v i (9) Nelson and Siegel [1987] Z (x; α) (37) α := (α,α 1,α 2,α 3 ) T ˆα { ˆα = arg min ( P Q (α)) T ( P Q (α)) }. (38) α 53

Svensson [1995] Svensson [1995] Nelson and Siegel [1987] (36) f (x) f (x) ( f (x) = α + α 1 exp x ) ) ( x + α 2 exp ( xα3 x + α 4 exp x ). (39) α 3 α 3 α 5 α 5 (39) y (x) y (x) = 1 x x ( ) 1 exp ( x/α3 ) f (s) ds = α +α 1 x/α 3 ( 1 exp ( x/α3 ) +α 2 x/α 3 ( 1 exp ( x/α5 ) +α 4 x/α 5 ( exp x α 3 ( exp x α 5 )) )). (4) (4) Nelson and Siegel [1987] v i Q v i 5 2 2 4 4. McCulloch [1975] +1 4. Nelson and Siegel [1987] 4 2 54 /212.7

1 P T v i n v i v i λp v i cf P + λp v i P X ỹ X (x; P) P + λp v i ỹ X (x; P + λp v i ) X T v i n v i cf l X (λ, ε; T v i ) n v i cf l X (λ, ε; T v i ):= n v i cf T v i n v i + cf ε Tncf T v i n v +ε i cf ỹ X (x; P + λp v i ) ỹ X (x; P) 2 dx ỹ X (x; P + λp v i ) ỹ X (x; P) 2 dx. (41) ε λ (41) X v i T v i n v i cf (41) (41) ε λ Nelson and Siegel [1987] 1 4. 55

Steeley [1991] u l = l (l = 3,..., 33) 32 1 4/32 =.125 2 3 1 2/32 =.625 3/32 =.9375 Steeley [1991] Nelson and Siegel [1987] Steeley [1991] McCulloch [1975] McCulloch [1975] u l = l (l =,..., 3), u 1 = 31 1 2/31 =.645 1 2 3/31 =.968 2 3 4/31 =.129 1 Steeley [1991] McCulloch [1975] Steeley [1991] 12 4 4 1 Tanggard [1997] 4... 12 McCulloch [1971] McCulloch [1975] Steeley [1991] 56 /212.7

1 4 8 8 1 2 McCulloch [1971, 1975] Steeley [1991] 4. 4. McCulloch [1971, 1975] Steeley [1991] 4 Vasicek and Fong [1982] McCulloch and Kochin [2] 13 McCulloch [1971, 1975] Steeley [1991] 4 3 2 3 1 3 2 2 2 3 3... 13 Vasicek and Fong [1982] Z (x) x = 1 exp ( αs) Z (s)(= Z (x)) Vasicek and Fong [1982] Z (s) McCulloch and Kochin [2] 57

1 199 2 1 3 21 26 27 5 5 a 2 3 2 4 1 5 5 (a) 21 6 1 (b) 211 9 2 (%) (%) 4.5 4. 4. 3.5 3.5 3. 3. 2.5 2.5 2. 2. 1.5 1.5 1. 1..5.5. 1 4 7 1 13 16 19 22 25 28. 1 4 7 1 13 16 19 22 25 28 n n = 1, 2,..., 1, 15, 2, 3 GJGBn Index n n = 1, 2, 3, 5, 7, 1, 3 2 USGGn Index 1 USGG12M Index 58 /212.7

b 5 a 3 14 2 6 7 6 8 15 2 2 6 29 2 17 2. (%) 1.5 1..5. 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 n GJGBn Index... 14 FRB Svensson [1995] Gükaynak, Sack, and Wright [27] FRB 1 2 29 15 7 1 7 28 7 6 8 7 59

2 2 2 1 1 2 2.5 1 1.5 2 2 2 1 1 2 2 1 6 /212.7

.. 2 2...5.5 2 (42) 39 j=2 (y (.5(j + 1)) 2y (.5 j) + y (.5(j 1)) ) 2. (42).. 3... 1 3 2 2 2 5 1 2 3 NEEDS 1999 1 4 21 12 3 7 7 1999 1 15 3 5 2 3 61

7 12 1 8 1 2 6 5 4 2 2 3 1999/1 2/1 1/1 2/1 3/1 4/1 5/1 6/1 7/1 8/1 9/1 1/1 / 2 5 1 2 3 35 3 25 2 15 1 5 1999/1 2/1 1/1 2/1 3/1 4/1 5/1 6/1 7/1 8/1 9/1 1/1 / 2 1989 Oda [1996] 2 22 2 2 62 /212.7

2 4 8 McCulloch [1975] 2 4. 1 3 McCulloch [1975] Steeley [1991] 2 4. 3 1 33 Steeley [1991] Fisher, Nychka, and Zervos [1995] McCulloch [1971] 2 2 4. 1 3 McCulloch [1971] Fisher, Nychka, and Zervos [1995] Steeley [1991] 2 2 4. 2 1 32 Steeley [1991] Tanggaard [1997] 2 4. Schaefer [1981] 2 4. 5 Nelson and Siegel [1987] 2 4. Svensson [1995] 2 4. 2.. 8 63

1.5 1 1.5 2 1 8 8 3 1 1 McCulloch [1975] Steeley [1991] McCulloch [1971] Steeley [1991] Schaefer [1981] Tanggaard [1997] Nelson and Siegel [1987] Svensson [1995] 1,84 3 2,162 619 11,788 4 2,947 8 (%) 3. 2.5 2. 1.5 1..5..5 1. 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 Nelson and Siegel [1987] 25 5 2 Svensson [1995] 25 8 29 Tanggaard [1997] 1999 3 19 Schaefer [1981] 26 2 2 64 /212.7

Schaefer [1981] Nelson and Siegel [1987] Svensson [1995] Tanggaard [1997] 2 Schaefer [1981] Nelson 2 McCulloch [1975] Steeley [1991] McCulloch [1971] Steeley [1991] Schaefer [1981] Tanggaard [1997] Nelson and Siegel [1987] Svensson [1995] 1 2 2 36 11 88 2 2 5 3 11 4 15 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 1 2,947 1999 1 4 21 12 3 2 8 ±2 65

9 2.5 (%) 2. 1.5 1..5..5 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 Steeley [1991] McCulloch [1975] Svensson [1995] Schaefer [1981] and Siegel [1987] Svensson [1995] 9 Schaefer [1981].5 McCulloch [1975] Steeley [1991] McCulloch [1971] Steeley [1991] 4 4 McCulloch [1975] Steeley [1991] Mc- Culloch [1971] Steeley [1991] 66 /212.7

3 McCulloch [1975] Steeley [1991] McCulloch [1975] Steeley [1991] 29.178.185 3.414 27.58 29.126 29.116.144.198.182 3.93 3.598 3.87 4.728 4.441 4.714 5.41 1 2 4 McCulloch [1975] Steeley [1991] McCulloch [1971] Steeley [1991] 1.587 1 2 1.47 1 2 1.93 1 2 1.991 1 2 1 (42) 2 1 3 4 Steeley [1991] 4 Steeley [1991] 4 4 Steeley [1991] 1 Steeley [1991] 67

1 Steeley [1991] 3. (%) 2.5 2. 1.5 1..5. 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 Steeley [1991] 2 2 8 2 2 8 9.5 9 1 9.5 9 1 Steeley [1991] 8 Steeley [1991] 4 Steeley [1991] 3 Steeley [1991] Steeley 1 Steeley Nelson and Siegel [1987] NS Steeley 2 3 Steeley 68 /212.7

1 Nelson and Siegel [1987] 11 Steeley NS 21 12 3 3 1 1 Steeley 12 28 8 2 7 7 6 8 Steeley NS 6 8 Steeley 13 Steeley NS NS 6 Steeley 6 11 21 12 3 2.5 (%) 2. 1.5 1..5. 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 Steeley NS 69

12 28 8 2 2.5 (%) 2. 1.5 1..5. 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 Steeley NS 13 6 1.5 (%) 1..5..5 1. 1999/1 2/1 1/1 2/1 3/1 4/1 5/1 6/1 7/1 8/1 9/1 1/1 / Steeley NS O/N 16 Steeley NS... 16 Steeley 6 JGB 1 JGB JGB 7 /212.7

Steeley 14 Steeley NS 1 2 1 1bp 2 1bp 1 2 Steeley NS 1. 2 Steeley Fisher, Nychka, and Zervos [1995] Waggoner [1997] Jarrow, Ruppert, and Yu [24] 3 1 Jarrow, Ruppert, and Yu [24] JRY Steeley JRY (21) B 71

14 1 2 3. (%) 1 (%).12 2.5.1 2..8 1.5.6 1..4.5.2.. 1999/1 1/1 3/1 5/1 7/1 9/1 / 2/1 2/1 4/1 6/1 8/1 1/1 Steeley NS 3.5 2 (%) (%).14 3..12 2.5.1 2..8 1.5.6 1..4.5.2. 1999/1 1/1 2/1 2/1 3/1 5/1 7/1 9/1 4/1 6/1 8/1 1/1 Steeley. / NS 72 /212.7

{ 1 Tcf min ( P Q (α)) T ( P Q (α)) + λ α n I } ( f (y) ) 2 dy. (43) (43) (43) λ Jarrow, Ruppert, and Yu [24] Ruppert [1997] 15 Steeley JRY Steeley 15 Steeley JRY 29 2 17 2.5 (%) 2. 1.5 1..5 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 JRY Steeley 4 (%) 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 JRY Steeley 73

7 JRY Steeley Steeley JRY 15 5 2 1 Steeley [1991] Steeley Steeley 1 74 /212.7

21 Steeley 2 1 199 21 1 2 75

2 23 5 2 22 149 164 14 1989 No. 212-J-3 212 Bank for International Settlements, Zero-coupon Yield Curves: Technical Documentation, BIS paper No.25, 25. Carleton, Willard T., and Ian A. Cooper, Estimation and Uses of the Term Structure of Interest Rates, Journal of Finance, 31(4), 1976, pp.167-183. Fisher, Mark, Douglas W. Nychka, and David Zervos, Fitting the Term Structure of Interest Rates with Smoothing Splines, Federal Reserve System Working Paper No. 95-1, Board of Governors of the Federal Reserve System, 1995. Gürkaynak, Refet S., Brian Sack, and Jonathan H. Wright, The U.S. Treasury Yield Curve: 1961 to the Present, Journal of Monetary Economics, 54(8), 27, pp.2291 234. Houglet, Michel X., Estimating the Term Structure of Interest Rates for Non-homogeneous Bonds, Ph.D Dissertation, University of California Berkeley, 198. Ioannides, Michalis, A Comparison of Yield Curve Estimation Techniques using UK Data, Journal of Banking and Finance, 27(1), 23, pp.1 26. Jarrow, Robert, David Ruppert, and Yan Yu, Estimating the Interest Rate Term Strucuture of Corporate Debt with a Semiparametric Penalized Spline Model, Journal of the American Statistical Association, 99(465), 24, pp.57 66 Kalev, Petko S., Estimating and Interpreting Zero Coupon and Forward Rates: Australia, 1992-21, Working Paper, Monash University, 24. McCulloch, J. Huston, Measuring the Term Structure of Interest Rates, Journal of Business, 44(1), 1971, pp.19 31., The Tax-adjusted Yield Curve, Journal of Finance, 3(3),1975, pp.811 83., and Levis A. Kochin, The Inflation Premium Implicit in the US Real and Nominal Term Structures of Interest Rates, Working Paper #98-12, Ohio State University, 2. Nelson, Charles R., and Andrew F. Siegel, Parsimonious Modeling of Yield Curves, Journal of Business, 6(4), 1987, pp.473 489. 76 /212.7

Oda, Nobuyuki, A Note on the Estimation of Japanese Government Bond Yield Curves, IMES Discussion Paper No.96-E-27, Institute for Monetary and Economic Studies, Bank of Japan, 1996. Ruppert, David, Empirical-bias Bandwidths for Local Polynomial Nonparametric Regression and Density Estimation, Journal of the American Statistical Association, 92(439), 1997, pp.149 162. Schaefer, Stephen M., Measuring a Tax-specific Term Structure of Interest Rates in the Market for British Government Securities, Economic Journal, 91(362), 1981, pp.415 438. Steeley, James M., Estimating the Gilt-edged Term Structure: Basis Splines and Confidence Intervals, Journal of Business Finance and Accounting, 18(4), 1991, pp.513 529. Svensson, Lars E. O., Estimating Forward Interest Rates with the Extended Nelson and Siegel Method, Sveriges Riksbank Quarterly Review, 3(1), 1995, pp.13 26. Tanggaard, Carsten, Nonparametric Smoothing of Yield Curves, Review of Quantitative Finance and Accounting, 9(3), 1997, pp.251 267. Vasicek, Oldrich A., and H. Gifford Fong, Term Structure Modeling Using Exponential Splines, Journal of Finance, 37(2), 1982, pp.339 348. Waggoner, Daniel F., Spline Methods for Extracting Interest Rate Curves from Coupon Bond Prices, Federal Reserve Bank of Atlanta Working Paper 97 1, 1997. 77

1 17 1 6 2 12 2 1 2 5 1 2 3 3 2 9 2 6 2 12 2 18 2 27 9 2 27 1 15 28 6 2 27 12 2... 17 23 18 3 2 2 8 2 5 2 11 2 78 /212.7

3 2 1 1 365 1 1 19 29 6 2 29 6 22 2 3... 19 21 3 3. 2 http://www.mof.go.jp/jgbs/auction/past auction schedule/result22.xls 212 5 1 29 6 2 1 211 212 29 6 22 79

21 3 2 21 1 1 15 1 1 2 23 1 7 2 9 15 3 7 2 9 2 2 21 21 6 22 23 1... 21 3 29 9 21 24 21 23 8 /212.7

1996 9 19 T +7 7 1997 4 1 T + 3 3 1999 1 21 12 4 21 3 g (c v i, N v i, T v i 1 ) 22 d g (c v i, N v i, T v i 1 ) = cv i N v i ( 1 2 + d ). 365 d g (c v i, N v i, T v i 1 ) = cv i N v i d 365.... 22 4.. 81

g (c v i, N v i, T v i 1 ) = cv i N v i, 2 2 21 3 d A v i A v i = c v i N v i d 365. d A v i = c v i N v i d 365 c v i N v i 2 d < 183 d 183, d d 82 /212.7

A v i = c v i N v i d 365 c v i N v i 2 d < 183 d 183. d 83

2 Steeley [1991] 1 3 Steeley [1991] 2 1 1 Steeley [1991] t = 4 1 2 1 15 1 2 1 15 1 1 27 1 2 1 1 1 2 t = V W 1 X Y 1 12 (X V) W +Y +1 n month V W X Y 2 2 t = 1 2 T 1 < T 2 < < T nmonth t = v i (i = 1,...n) V W X Y 2 2 v i 1 4 c v i := ( c v i 1,..., cv i n month ) T c v i 84 /212.7

B B B 2 4. B (k, x) (16) (k, j) B ( j 4, T k ) B = B ( 3, T 1 ) B (n knot 1, T 1 )..... B ( 3, T nmonth ) B (n knot 1, T nmonth ), (A-1) Steeley [1991] α = (α 3,...,α nknot 1) T T j Z (T j ) (15) Bα j α v i Q v i (α) Q v i (α) = ( c v i ) T Bα, (A-2) B B (A-1) 1 (A-1) B (A-2) 4 B 85

86 /212.7