ばらつき抑制のための確率最適制御

Similar documents
() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

通信容量制約を考慮したフィードバック制御 - 電子情報通信学会 情報理論研究会(IT) 若手研究者のための講演会

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

Part () () Γ Part ,

CVaR

数値計算:有限要素法

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

renshumondai-kaito.dvi

K E N Z OU

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

Kalman ( ) 1) (Kalman filter) ( ) t y 0,, y t x ˆx 3) 10) t x Y [y 0,, y ] ) x ( > ) ˆx (prediction) ) x ( ) ˆx (filtering) )

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

December 28, 2018

meiji_resume_1.PDF

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

( 28 ) ( ) ( ) 0 This note is c 2016, 2017 by Setsuo Taniguchi. It may be used for personal or classroom purposes, but not for commercial purp

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

DE-resume

DVIOUT

入試の軌跡

6.1 (P (P (P (P (P (P (, P (, P.101

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

B ver B

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

6.1 (P (P (P (P (P (P (, P (, P.

??

ver.1 / c /(13)

( )

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa

? (EM),, EM? (, 2004/ 2002) von Mises-Fisher ( 2004) HMM (MacKay 1997) LDA (Blei et al. 2001) PCFG ( 2004)... Variational Bayesian methods for Natural

08-Note2-web

st.dvi

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

mugensho.dvi

1 y(t)m b k u(t) ẋ = [ 0 1 k m b m x + [ 0 1 m u, x = [ ẏ y (1) y b k m u

n ( (

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

Microsoft Word - 11問題表紙(選択).docx

さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n

pdf

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

tokei01.dvi

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg (

Microsoft Word - 信号処理3.doc

TOP URL 1

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

03.Œk’ì

untitled


..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,

QMII_10.dvi

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =


I

& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable),

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b)

( ) ( )

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

熊本県数学問題正解

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

ohp_06nov_tohoku.dvi



( ) Loewner SLE 13 February


) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

( ) ( ) 1729 (, 2016:17) = = (1) 1 1

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

³ÎΨÏÀ



6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

untitled

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

1 u t = au (finite difference) u t = au Von Neumann

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

{ 8. { CHAPTER 8. Å (sampling time) x[k] =x(kå) u(ú) t t + Å (u[k]) x[k + 1] =A d x[k] +B d u[k] (8:) (diãerence equation) A d =e AÅ ; B d = Z Å 0 e A

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2


( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

Transcription:

( ) http://wwwhayanuemnagoya-uacjp/ fujimoto/ 2011 3 9 11 ( ) 2011/03/09-11 1 / 46

Outline 1 2 3 4 5 ( ) 2011/03/09-11 2 / 46

Outline 1 2 3 4 5 ( ) 2011/03/09-11 3 / 46

(1/2) r + Controller - u Plant y Plant Controller Plant: dx = f(x(t), u(t)) dt y(t) = h(x(t), u(t)) lim y(t) r(t) = 0 t x(t + 1) = A x(t) + B u(t) y(t) = C x(t) + D u(t) ( ) 2011/03/09-11 4 / 46

(2/2) r + - Controller u Plant y x(t + 1) = A x(t) + B u(t) y(t) = C x(t) + D u(t) ( x(t) ) u(t) = K x(t) ( ) 2011/03/09-11 5 / 46

vs ( ) vs ( ) y y o x o x ( ) 2011/03/09-11 6 / 46

vs ( ) ( ) ( ) ( ) ( ) 2011/03/09-11 7 / 46

vs ( ) ( ) ( ) EM ( + + ) ( + ) ( + ) ( + + ) ( ) 2011/03/09-11 8 / 46

?! ( ) 2011/03/09-11 9 / 46

Outline 1 2 3 4 5 ( ) 2011/03/09-11 10 / 46

X p(y X) Y X Y Y X p(x Y) X, Y p(x, Y) = p(x Y)p(Y) = p(y X)p(X) p(x Y) { }} { p(x Y) = ( ) { }} { p(y X) p(y) }{{} = p(y X)p(X)dX {}}{ p(x) ( ) 2011/03/09-11 11 / 46

{ }} { p(x Y) = ( ) { }} { p(y X) {}}{ p(x) p(y X) p(x) dx : p(x Y)! p(x) ( ) p(y X) p(x) ( ) p(y X) ( ) 2011/03/09-11 12 / 46

y = θu + w w N(0, σ w ) ( ) p(w) = p(y θu) = p(u, y θ) 1 (y θu)2 exp 2πσw 2σ w p(θ)! p(θ) = 1 exp (θ µ θ) 2 2πσθ 2σ θ p(u, y θ)p(θ) = ( ) exp(θ 2 )! ( ) 2011/03/09-11 13 / 46

{ xt+1 = Ax t + Bu t + w t, w t N(0, Q), x 0 N(µ 0, Σ 0 ) y t = Cx t + Du t + v t, v t N(0, R) Θ := {A, B, C, D, Q, R} X := {x 0, x 1,, x t, µ 0, Σ 0 } ( ) : Θ X! p(θ, X) p(θ)p(x) p(θ) p(x) ( ) 2011/03/09-11 14 / 46

: p(θ, X Y) q(θ, X Y) p q KL KL(q, p) := q log q p dxdθ q F(q) q log p(y) = F(q) + KL(q, p) } {{ } ( ) q(θ, X Y) = q(θ Y)q(X Y) F(q(Θ, X Y)) Θ, X ( ) ( ) 2011/03/09-11 15 / 46

VB-E VB-M q(x) (new) p(x) exp E q(θ) (old) [log p(x, Y Θ)] q(θ) (new) p(θ) exp E q(x) (old) [log p(θ, Y X)] E( ) p( ), q( ) ( ) ( ) 2011/03/09-11 16 / 46

( ) ( ) 2011/03/09-11 17 / 46

Outline 1 2 3 4 5 ( ) 2011/03/09-11 18 / 46

( ) { xt+1 = Ax t + Bu t + w t, w t N(0, Q), x 0 N(µ 0, Σ 0 ) y t = Cx t + Du t + v t, v t N(0, R) Θ I := {A, B, Q} Θ O := {C, D, R} X := {x 0, x 1,, x t, µ 0, Σ 0 } p(θ I, Θ O, X) p(θ I )p(θ O )p(x) ( ) 2011/03/09-11 19 / 46

: p(y X) p(x) p(x Y) = p(y X)p(X)dX [Beal 03, Barber & Chiappa 07] x t 1 Q, R ( ) p(vec(a, B) µ AB, Q, G) = N(vec(A, B) µ AB, G Q) p(vec(c, D) µ CD, R, H) = N(vec(C, D) µ CD, H R) { p(q ν, S Q ) Q 1 (ν n 1)/2 exp 1 } 2 tr(q 1 S 1 Q ) { p(r η, S R ) R 1 (η l 1)/2 exp 1 } 2 tr(r 1 S 1 R ) ( ) 2011/03/09-11 20 / 46

{ ẋ = Ax + Bu y = Cx + Du x = Tx { x = T AT 1 x + TBu y = CT 1 x + D? ( ) 2011/03/09-11 21 / 46

p(a, B, C, D Q 1, R 1 ) q(a, B, C, D Q 1, R 1 ) f T p(ā, B, C, D Q 1, R 1 )? f T q(ā, B, C, D Q 1, R 1 ) ( ) 2011/03/09-11 22 / 46

p(a, B, C, D Q 1, R 1 ) f T p(ā, B, C, D Q 1, R 1 ) q(a, B, C, D Q 1, R 1 ) f T q(ā, B, C, D Q 1, R 1 ) ( ) 2011/03/09-11 22 / 46

p(θ) x = Tx p(a, B, C, D, Q, R) = p(t AT 1, TB, CT 1, D, TQT T, R)! d(a, B, C, D, Q, R) = d(t AT 1, TB, CT 1, D, TQT T, R)! ( ) 2011/03/09-11 23 / 46

X ( ) Θ? ( ( ) x = Tx?) Yes! ( ) 2011/03/09-11 24 / 46

( A = 1 03 006 094 Ā = ( 1 1 1 1 ) (, B = ) ( 1, B = 1 0 006 ), C = ( 1, 0 ), D = 0 ), C = ( 1, 1 ), D = 1 ( ) 2011/03/09-11 25 / 46

(l 2 ) l 2 : : ± 2σ 5 x 105 4 3 2 1 0 0 20 40 60 80 100 ( ) 2011/03/09-11 26 / 46

(50 ) (50 ) : : : ± 2σ 20 0-20 -40 10-1 10 0 10 1 200 0-200 10-1 10 0 10 1 ( ) 2011/03/09-11 27 / 46

(200 ) (200 ) : : : ± 2σ 40 20 0-20 -40 10-1 10 0 10 1 0-100 -200-300 10-1 10 0 10 1 ( ) 2011/03/09-11 28 / 46

Outline 1 2 3 4 5 ( ) 2011/03/09-11 29 / 46

?! : : ( ) 2011/03/09-11 30 / 46

x t+1 = Ax t + Bu t T 1 ( ): J T (u) = ( ): J (u) = t=0 t=0 J T, J! ( x T t Qx t + u T t Ru ) t + x T T Fx T ( x T t Qx t + u T t Ru ) t u t = u t (x t, t) ( ) 2011/03/09-11 31 / 46

V(x 0 ) ( ) ( V(x t ) := min J(u x t ) = min V(xt+1 ) + x T u t,,u T 1 u t t Qx ) t + u T t Ru t 2 V(x t ) = x T t Π t x t Π t x T t Π ( t x t = min x T Π u t t+1 t+1x t+1 + x T t Qx ) t + u T t Ru t ( = min (Axt + Bu t ) T Π t+1 (Ax t + Bu t ) + x T u t t Qx ) t + u T t Ru t u t 2 ( ) u t = (R + B T Π t+1 B) 1 (B T Π t+1 A)x t Π t =Q + A T Π t+1 A (A T Π t+1 B)(R + B T Π t+1 B) 1 (B T Π t+1 A) : Π N = F : Π t+1 = Π t = Π Π ( ) 2011/03/09-11 32 / 46

LQG LQG(Linear Quadratic Gaussian) ϵ t T 1 ( ): J T (u) = E x t+1 = Ax t + Bu t + Gϵ t t=0 ( ): J (u) = E t=0 ( x T t Qx t + u T t Ru ) t + x T ( x T t Qx t + u T t Ru t) x 0 T Fx T x 0 ( ) 2011/03/09-11 33 / 46

x t+1 = Ax t + Bu t + Gϵ t MCV(Minimum Cost variance) [Sain 66] J(u) =E[Ĵ] + λ var[ĵ] T 1 Ĵ = (x T t Qx t + u T t Ru t) + x T T Fx T t=0 RS(Risk Sensitive) [Whittle 81] J(u) = 2θ 1 log E[exp( θ 2 Ĵ)] =E[Ĵ] θ 4 var[ĵ] + O(θ2 ) A, B ( ) 2011/03/09-11 34 / 46

[De Koning 82, F 10] x t+1 = A t x t + B t u t + G t ϵ t A t, B t, G t, ϵ t T 1 ( ( ): J T (u) = E x T t Qx t + u T t Ru t + tr (S cov[x t+1 x t ]) ) + x T T Fx T t=0 ( ( ): J (u) = E x T t Qx t + u T t Ru t + tr (S cov[x t+1 x t ]) ) t=0 tr (S cov[x t+1 x t ]) = E[x T Sx t+1 t+1 x t ] E[x t+1 ] T SE[x t+1 x t ] ( ) 2011/03/09-11 35 / 46

S = 0 V ( ) V(x t ) := min J(u x t ) = min u t,,u T 1 u t ( E[V(xt+1 ) x t ] + x T t Qx t + u T t Ru ) t 2 V Π t V(x t ) = x T t Π t x t + β t ( ) 2011/03/09-11 36 / 46

u t = (R + Σ BB + E[B T Π t+1 B]) 1 (Σ BA + E[B T Π t+1 A])x t Π t =Q + Σ AA + E[A T Π t+1 A] (Σ AB + E[A T Π t+1 B]) (R + Σ BB + E[B T Π t+1 B]) 1 (Σ BA + E[B T Π t+1 A]) Π T =F Σ XY := E[X T SY] E[X] T SE[Y] ( ) 2011/03/09-11 37 / 46

u t = (R + B T ΠB) 1 B T ΠAx t Π =Q + A T ΠA A T ΠB(R + B T ΠB) 1 B T ΠA (S = 0, T = ) u t = (R + E[B T ΠB]) 1 E[B T ΠA]x t Π =Q + E[A T ΠA] E[A T ΠB](R + E[B T ΠB]) 1 E[B T ΠA] 2 ( ) 2011/03/09-11 38 / 46

(1/2) ( ) 1 01 E[A] = 001 099 ( ) 0 E[B] = 001 0 0 0 0 0 0 0 25 10 5 0 0 0 0 0 0 0 0 0 0 cov[vec( A, B)] = 0 0 0 0245 0 0 0 0 0 0 0 0 0 0 0 0 0 25 10 5 Q = ( ) ( ) 10 0 40 0, R = 1, F = 0 10 0 40 ( ) 2011/03/09-11 39 / 46

数値例 (2/2) 従来法と提案法 (S = 100) の状態 x1 50 25 40 20 30 20 15 state X1 state X1 10 0 10 10 5 20 30 0 40 50 5 0 50 100 150 200 250 0 50 100 time 150 200 250 time 従来法と提案法 (S = 100) の入力 u 3000 150 100 2000 50 1000 0 0 50 1000 100 2000 150 3000 200 4000 250 0 50 藤本 健治 (名古屋大学) 100 150 200 250 0 ばらつき抑制のための確率最適制御 50 100 150 200 250 2011/03/09-11 力学系研究会 40 / 46

( ) x k+1 = A t x t lim E[x t x 0 ] = 0 t lim E[ x t 2 x 0 ] = 0 t [De Koning 82] ( ) 2011/03/09-11 41 / 46

x t+1 = A t x t + B t u t u t = (R + Σ BB + E[B T ΠB]) 1 (Σ BA + E[B T ΠA])x t Π =Q + Σ AA + E[A T ΠA] (Σ AB + E[A T ΠB]) (R + Σ BB + E[B T ΠB]) 1 (Σ BA + E[B T ΠA])! ( ) 2011/03/09-11 42 / 46

: T 1 ( J T (u) =E x T t Qx t + u T t Ru t + tr (S cov[x t+1 x t ]) ) + x T T Fx T t=0 B L B L Π :=Q + L T RL + E[(A BL) T (Π + S)(A BL)] E[(A BL)] T SE[(A BL)] B L u t = Lx t J t (u) := x T 0 B L t Fx 0 B L J J J ( ) 2011/03/09-11 43 / 46

Outline 1 2 3 4 5 ( ) 2011/03/09-11 44 / 46

? or vs? (2 ) ( ) 2011/03/09-11 45 / 46

[1] D Barber and S Chiappa Unified inference for variational Bayesian linear Gaussian state-space models In Advances in Neural Information Processing Systems 19 (NIPS 20), pp 81 88 The MIT Press, 2007 [2] M J Beal Variational Algorithms for Approximate Bayesian inference PhD thesis, University of Londong, London, UK, 2003 [3] W L De Koning Infinite horizon optimal control of linear discrete time systems with stochastic parameters Automatica, Vol 18, No 4, pp 443 453, 1982 [4] K Fujimoto, S Ogawa, Y Ota, and M Nakayama Optimal control of linear systems with stochastic parameters for variance suppression: The finite time horizon case In Proceedings of the 18th IFAC World Congress, 2011 [5] K Fujimoto, A Satoh, and S Fukunaga System identification based on variational bayes method and the inavriance under coordinate transformations Submitted, 2011 [6] M K Sain Control of linear systems according to the minimal variance criterion: A new approach to the disturbance problem IEEE Trans Autom Contr, Vol 11, No 1, pp 118 122, 1966 [7] P Whittle Risk-sensitive Linear/Quadratic/Gaussian control Advances in Applied Probability, Vol 13, pp 764 777, 1981 [8],, Vol 20, No 10, pp 404 412, 2007 [9], H D, Vol J91-D, No 6, pp 1648 1655, 2008 ( ) 2011/03/09-11 46 / 46