sakigake1.dvi

Similar documents
kokyuroku.dvi

xia2.dvi

R¤Çʬ¤«¤ëÎÏ³Ø·Ï - ¡Áʬ´ô¤ÎÍͻҤò²Ä»ë²½¤·¤Æ¤ß¤ë¡Á

ver.1 / c /(13)

sakigake2.dvi

Shunsuke Kobayashi 1 [6] [11] [7] u t = D 2 u 1 x 2 + f(u, v) + s L u(t, x)dx, L x (0.L), t > 0, Neumann 0 v t = D 2 v 2 + g(u, v), x (0, L), t > 0. x

(time series) ( 225 ) / / p.2/66

ohp_06nov_tohoku.dvi

(a) (b) (c) 4. (a) (b) (c) p.2/27


ẋ = ax + y ẏ = x x by 2 Griffith a b Saddle Node Saddle-Node (phase plane) Griffith mrna(y) Protein(x) (nullcline) 0 (nullcline) (

xia1.dvi

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

Swift-Hohenberg


2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

Gauss Fuchs rigid rigid rigid Nicholas Katz Rigid local systems [6] Fuchs Katz Crawley- Boevey[1] [7] Katz rigid rigid Katz middle convolu

Twist knot orbifold Chern-Simons

Tel : , Fax : URL : tohru / / p.1/12

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

カレツキアン2階級モデルにおける所得分配と経済変動 (マクロ経済動学の非線形数理)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W


( ) ( )

Jorgenson F, L : L: Inada lim F =, lim F L = k L lim F =, lim F L = 2 L F >, F L > 3 F <, F LL < 4 λ >, λf, L = F λ, λl 5 Y = Const a L a < α < CES? C

液晶の物理1:連続体理論(弾性,粘性)

D-brane K 1, 2 ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

第5章 偏微分方程式の境界値問題

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25

1: (Emmy Noether; ) (Feynman) [3] [4] {C i } A {C i } (A A )C i = 0 [5] 2

Powered by TCPDF ( Title 第 11 講 : フィッシャー統計学 II Sub Title Author 石川, 史郎 (Ishikawa, Shiro) Publisher Publication year 2018 Jtitle コペンハーゲン解

2017

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+

No.004 [1] J. ( ) ( ) (1968) [2] Morse (1997) [3] (1988) 1

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

[6] G.T.Walker[7] 1896 P I II I II M.Pascal[10] G.T.Walker A.P.Markeev[11] M.Pascal A.D.Blackowiak [12] H.K.Moffatt T.Tokieda[15] A.P.Markeev M.Pascal

1 Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier analog digital Fourier Fourier Fourier Fourier Fourier Fourier Green Fourier

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

四変数基本対称式の解放


I z n+1 = zn 2 + c (c ) c pd L.V. K. 2

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2


p *2 DSGEDynamic Stochastic General Equilibrium New Keynesian *2 2

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg (

( ) Loewner SLE 13 February

i

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

Euler, Yang-Mills Clebsch variable Helicity ( Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity (i) Yang-Mills 3 A T (T A) Poisson Ha

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

K E N Z OU

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =


ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

note1.dvi

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)


compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

ε ε x x + ε ε cos(ε) = 1, sin(ε) = ε [6] [5] nonstandard analysis 1974 [4] We shoud add that, to logical positivist, a discussion o

Gelfand 3 L 2 () ix M : ϕ(x) ixϕ(x) M : σ(m) = i (λ M) λ (L 2 () ) ( 0 ) L 2 () ϕ, ψ L 2 () ((λ M) ϕ, ψ) ((λ M) ϕ, ψ) = λ ix ϕ(x)ψ(x)dx. λ /(λ ix) ϕ,

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )



1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

平成 28 年度 ( 第 38 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 28 月年 48 日開催月 1 日 semantics FB 1 x, y, z,... FB 1. FB (Boolean) Functional

(a) (b) (c) (d) 1: (a) (b) (c) (d) (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4

1 c Koichi Suga, ISBN

1 Tokyo Daily Rainfall (mm) Days (mm)

Aharonov-Bohm(AB) S 0 1/ 2 1/ 2 S t = 1/ 2 1/2 1/2 1/, (12.1) 2 1/2 1/2 *1 AB ( ) 0 e iθ AB S AB = e iθ, AB 0 θ 2π ϕ = e ϕ (ϕ ) ϕ

main.dvi

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

waseda2010a-jukaiki1-main.dvi

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2

tokei01.dvi

PDF

2,., ,. 8.,,,..,.,, ,....,..,... 4.,..

Centralizers of Cantor minimal systems

chap1.dvi

Morse ( ) 2014

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

ver F = i f i m r = F r = 0 F = 0 X = Y = Z = 0 (1) δr = (δx, δy, δz) F δw δw = F δr = Xδx + Y δy + Zδz = 0 (2) δr (2) 1 (1) (2 n (X i δx

& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable),

( ) ) AGD 2) 7) 1

pdf

takei.dvi

untitled

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

QMII_10.dvi

Transcription:

(Zin ARAI) arai@cris.hokudai.ac.jp http://www.cris.hokudai.ac.jp/arai/ 1 dynamical systems ( mechanics ) dynamical systems 3 G X Ψ:G X X, (g, x) Ψ(g, x) =:Ψ g (x) Ψ id (x) =x, Ψ gh (x) =Ψ h (Ψ g (x)) ( x X g, h G) G X Ψ x X G O(x) := Ψ(G, x) G Z f =Ψ 1 : X X O(x) ={f k (x) k Z} x k f k (x) 1

f k f f k = f f }{{} k R Ψ R Z R 2 L λ (x) =λx L λ : R R λ 0 L λ x λ X = R G = Z Ψ k = L k λ 1 x λ =1.01 x <0 x λ λ Ψ(k, x) =L k λ (x) =λk x k λ > 1 λ < 1 Z k 2

3 λ 0 λ =0 L λ k <0 Ψ k Z Z Z 0 := {k Z k 0} 4 L λ Q λ (x) =λx(1 x) x Q λ L λ (1 x) x =1 Q λ (1) = 0 Q λ R Q λ ([0, 1]) [0, 1] Q λ :[0, 1] [0, 1] [0, 1] L λ 2 Q λ Q k λ (x) 3

1 5 1 dx dt = λx λ R x λ <0 t =0 x = x 0 x(t) =x 0 e λt Ψ:R R R Ψ(t, x) :=xe λt 4

M C 1 G = R X = M Ψ:R M M C 1 M ξ dψ(t, x) ξ x := dt Ψ Z Z 0 G R flow flow G = Z flow Ψ : R X X t R f(x) =Ψ(t, x) f : X X f Ψ -t f flow t t=0 S P(x) x 2 flow Ψ p X T T Ψ T (p) =p T>0 p p S p x S S T x S f(x) 5

p S U f : U S f flow S 2 flow S X flow flow f : X X X [0, 1] X {1} X {0} (x, 1) (f(x), 0) X = X [0, 1]/ (x, s) (x, s), (x, 1) (y, 0) y = f(x) flow Ψ Ψ t (x, s) =(f t+s (x), t+ s t + s ) f suspension flow x := max{k Z k x} f suspension flow Ψ S = X {0} f flow flow flow 6 G = Z, Z 0 R 100 6

3 F. Diacu and P. Holmes, Celestial Encounters, Springer L λ y X x X ω- t k Ψ t k (x) y R Z y X x X α- t k Ψ t k (x) y ω- α- ω(x) = Ψ t (x), α(x) = Ψ t (x) ω-α- T 0 t T T 0 t T 7

7 R 2. X = R 2 S 2 C 1 x X ω(x) α(x) flow α ω limit cycle 3 3 Van der Pol R 2 3 genus 3 genus T 2 flow x T 2 O(x) x T 2 O(x) =T 2 8

8 Lorenz ẋ = σx + σy ẏ = ρx y xz ż = βz + xy R 3 σ, ρ, β Lorenz (σ, ρ, β) =(10, 28, 8/3) 4 50 45 40 35 30 z 25 20 15 10 5 0 40 20 y 0 20 40 20 15 10 5 0 5 10 15 20 x 4 Lorenz 1950 9

[1] X. Ψ:G X X C>0 x X U y U t G t x y C x X U : x y U t G such that d(ψ t (x), Ψ t (y)) >C d X 9 ( ( ) x a x H a,b : R 2 R 2 : y) 2 + by x M. Hénon 10

a =1.4, b =0.3 5 amazon [6] [7] 11

[1],, 2000. [2] B. Hasselblatt and A. Katok, A First Course in Dynamics, Cambridge University Press, 2003. [3] R. L. Devaney, An Introduction to Chaotic Dynamical System, 2nd ed., Perseus Books Publishing, 1989. 2,, 2003. [4] M. W. Hirsch, S. Smale and R. L. Devaney, Differential Equations, Dynamical Systems and an Introduction to Chaos, 2nd ed., Academic Press, 2004.,, 2007. [5]J.PalisandW.deMelo,Geometric Theory of Dynamical Systems, Springer, 1982. [6] C. Robinson, Dynamical Systems, CRC Press, 1999.,, 2001. [7] A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, 1995. 2 [10] 600 [8] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical System, and Bifurcations of Vector Fields, Springer, 1983. [9] K. T. Alligood, T. D. Sauer and J. A. Yorke, Chaos. An Introduction to Dynamical Systems Springer, 1997. 1, 2, 3, 2006. [10] P. Cvitanović, et al., Chaos: classical and quantum, http://chaosbook.org/ Handbooks Handbook 3 Volume 1A, 1B Z R 12

random dynamical systems Volume 2 [11] B. Hasselblatt and A. Katok (ed.), Handbook of Dynamical Systems, Volume 1A, Elsevier Science, 2002. [12] B. Hasselblatt and A. Katok (ed.), Handbook of Dynamical Systems, Volume 1B, Elsevier Science, 2006. [13] B. Fiedler (ed.), Handbook of Dynamical Systems, Volume 2, Elsevier Science, 2002. S. Smale Differential Dynamical Systems [14] [6] [15] [16] [17] [14] S. Smale, The Mathematics of Time: Essays on Dynamical Systems, Economic Processes, and Related Topics, Springer, 1980. [15] M. Shub, Global Stability of Dynamical Systems, Springer, 1987. [16] J. Palis and F. Takens, Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations, Cambridge University Press, 1993. [17] C. Bonatti, L. Diaz and M. Viana, Dynamics Beyond Uniform Hyperbolicity, Springer, 2005. [18] [19] [18] V. I. Arnold, Mathematical Methods of Classical Mechanics, 2nd ed., Springer, 1989. 1,, 1980. [19],, 1998. [11] 13

Franks Misiurewicz 2 [20] C. Conley, Isolated Invariant Sets and the Morse Index, American Mathematical Society, 1976. [21] J. Franks, Homology and Dynamical Systems, American Mathematical Society, 1982. [22] smooth ergodic theory [7] [25] [22] V. I. Arnold and A. Avez, Probrèmes Ergodiques de la Mécanique Classique, Gauthier-Villars, 1967.,, 1972. [23] M. Pollicott and M. Yuri, Dynamical Systems and Ergodic Theory, Cambridge University Press, 1998. [24] P. Walters, An Introduction to Ergodic Theory, Springer, 1982. [25] M. Pollicott, Lectures on Ergodic Theory and Pesin Theory on Compact Manifolds, Cambridge University Press, 1993. [26] [27] [28] [29] [30] [26] A. F. Beardon, Iteration of Rational Functions, Springer, 1991. [27] J. Milnor, Dynamics in One Complex Variable, 3rd ed., Princeton University Press, 2006 [28] S. Morosawa, Y. Nishimura, M. Taniguchi and T. Ueda, Holomorphic Dynamics, Cambridge University Press, 2000. 14

[29],, 2002. [30] M. Braverman and M. Yampolsky, Computability of Julia Sets, Springer, 2009. [31, 32] [33] [31] D. Lind and B. Marcus, Symbolic Dynamics and Coding, Cambridge University Press, 1995. [32] B. Kitchens, Symbolic Dynamics, Springer, 1998. [33] H. Xie, Grammatical Complexity and One-dimensional Dynamical Systems, World Scientific, 1996. 15