Swift-Hohenberg

Size: px
Start display at page:

Download "Swift-Hohenberg"

Transcription

1 R Swift-Hohenberg

2 Swift-Hohenberg Hopf Hopf

3 -Lecture notes for Ouyousugaku Benkyoukai Takashi Okuda Sakamoto (Meiji University) 1 [1, 3, 5, 6, 8, 9, 18, 19, 20] [5] 2nd ed. [9] 1st ed. [6] [18] 4.1 Swift-Hohenberg [18] 4.2 [16, 17] 1

4 1.1 a, b, c x ax 2 + bx + c = 0 a 0. (1.1) (1.1) D = b 2 4ac D = 0 D > 0 a = 1, b = 0 D = 4c c 2

5 1: a=1,b=0 (1.1) x = ± c {(x, c) ; c = x 2 } x 2 + c = 0 c = 0 dx dt = x2 + c, x(t) R, c R (1.2) t (1.2) t dx dt = 0 x 2 + c = 0 3

6 (1.2) x(t) ± c. (1.2) ± c t t 0 (± c) 2 + c = c + c = 0 (1.2) ± c c < 0 x y(t) x (1.2) dy dt y(t) = x(t) x, y(t) 1 = (y + x ) 2 + c = 2x y + y 2 + x 2 + c = ±2 c y + y 2 x x 2 + c = 0 dx /dt 0 y(t) y 2 dy dt = ±2 c y. 4

7 x = c y(t) = y(0)e 2t c ; x = c y(t) = y(0)e 2t c ; y(0) x(t) c x(t) c (1.2) 5

8 2: (1.2) 1.2 ẋ dx/dt [3], Theorem 1.0.1) U R n M f : U R n C 1 - x 0 U T > 0 ( T, T ) R x(t) ẋ = f(x) x(0) = x 0 6

9 x(t) ẋ = f(x) f f K x, y f(y) f(x) K x y, x, y U O δ M x a < δ f(x) < M g(x) f(x) = O(g(x)) as x a o lim f(x) x a g(x) = 0 f(x) = o(g(x)) as x a 7

10 dx dt = f(x), x Rn, (1.3) (Flow) I R (1.3) x(0) = x 0 (1.3) φ(t, x 0 ) φ : (t, x 0 ) I R n x(t, x 0 ) R n (1.3) I R (1.3) x 0 R n x(t, t 0, x 0 ) x(t 0 ) = x 0 (1.3) t = t 0 x 0 (1.3) {x R n ; x = x(t, t 0, x 0 ), t I} (1.3) f(x ) = 0 8

11 x R n x(t) (1.3) x(t) ε > 0 δ (1.3) x(t 0 ) y(t 0 ) < δ t > t 0 t R x(t) y(t) < ε x(t) x(t) γ x(t 0 ) y(t 0 ) < γ lim x(t) y(t) = 0 t 9

12 (1.3) x x f Df(x ) 0 t R ẋ = f(x; α), x R n, α R m (1.4) x = x ẇ = g(w; β), w R n, β R m (1.5) w = w (1.4) x = x (1.5) w = w x U h α (x ) = w h α : R n R n p : R m R m 10

13 U (1.4) V = h α (U) β = p(α) (1.5) (1.4) φ(t, x(0); α), (1.5) ψ(t, w(0); β) h α, p τ : R R t R τ (t) > 0 U (1.4) φ(t, x(0); α) ( ) ( h α φ(t, x(0); α) = ψ τ(t), hα (w(0)); p(α) ) - x u = Df(x )u [20] 5 [15] - 0 ẋ = f(x; λ), x R n, λ R p (1.6) (1.6) φ(t, x 0 ; λ) 11

14 x λ λ (1.6) x λ λ = λ 0 λ λ 0 λ x λ (1.3) φ(t, x 0 ; λ), λ λ 0 1 λ = λ 0 x λ (1.3) φ(t, x 0 ; λ 0 ) (1.6) x λ λ = λ 0 x λ0 f x λ0 Df(x λ0 ) 0 0 R 1.3 R ẋ = f(x, µ), x(t) R, µ R (1.7) (1.7) (1.7) (1.7) µ = 0 x(t) 0 f(0, 0) = 0 12

15 f (0, 0) = 0 x (transcritical bifurcation) (1.7) f(0, 0) = 0, f x (0, 0) = 0 f µ (0, 0) = 0, 2 f (0, 0) 0, x µ 2 f (0, 0) 0 x2 (x, µ) = (0, 0) (1.7) ẋ = µx ± x 2 (1.8) [9] f (1.8) (x, µ) = (0, 0) x = 0 µ = ±x f (0, 0) = 0 µ (0, 0) (1.8) x = 0 x = 0 (1.7) (1.7) ẋ = xf (x, µ) (1.9) f(x, µ), x 0, x F (x, µ) f (0, µ) x = 0. x 13

16 F (x, µ) = 0 (x, µ) = (0, 0) x = 0 x F (0, 0) = 0, (0, 0) F x (0, 0) = 2 f (0, 0), x2 2 F x (0, 0) = 3 f (0, 0), x2 F µ (0, 0) = 2 f (0, 0), x µ F (0, 0) 0 µ F (x, µ(x)) = 0 x µ(x) µ(x) µ = 0 0 < dµ dx (0) < F (x, µ(x)) = 0 x 0 = d F F [F (x, µ(x))] = (x, µ(x)) + (x, µ(x))dµ dx x µ dx (x). (x, µ) = (0, 0) F dµ (0, 0) 2 f (0, 0) dx (x) = x = x2 F µ (0, 0) 2. f (0, 0) x µ 14

17 2 f (0, 0) 0 x µ 2 f (0, 0) 0 x2 f(x, µ) (x, µ) = (0, 0) (1.8) (1.8) - (saddle-node bifurcation) (1.7) f(0, 0) = 0, f x (0, 0) = 0 f µ (0, 0) 0, 2 f (0, 0) 0 x2 (x, µ) = (0, 0) (1.7) ẋ = µ ± x 2 (1.10) (fold bifurcation) [9] f [8] 3.3 (1.10), µ > 0 µ < 0 (x, µ) = (0, 0) x (1.7) 15

18 (0, 0) f µ 0 µ = µ(x), µ(0) = 0 f(x, µ(x)) = 0 µ (0) = 0 (1.11) x 2 µ (0) 0 (1.12) x2 f(x, µ(x)) = 0 (1.11), (1.12) f x 0 = d dx (x, µ) = (0, 0) f f [f(x, µ(x))] = (x, µ(x)) + (x, µ(x))dµ x µ dx (x). f dµ (0, 0) dx (x) = x. f µ (0, 0) f (0, 0) 0 µ f (0, 0) = 0 x 16

19 dµ dx (0) = 0 µ(x) x (0, 0) f(x, µ(x)) = 0 x 0 = 2 x [f(x, µ(x))] = 2 f 2 x (x, µ(x)) + 2 f f (x, µ(x)) µ 2 ( dµ dx (x) ) 2 + f x µ (x, µ(x))dµ dx (x) µ (x, µ(x))d2 µ dx 2 (x). (x, µ) = (0, 0) (dµ/dx) x=0 = 0 2 f f (0, 0) + x2 µ (0, µ 0)d2 (0) = 0. dx2 2 f d 2 µ (0, 0) dx (0) = x2 2 f (0, 0) µ f (0, 0) 0 µ 2 f (0, 0) 0 x2 d 2 µ dx 2 (0) 0 (pitchfork bifurcation) (1.7) f(0, 0) = 0, f x (0, 0) = 0 f µ (0, 0) = 0, 2 f (0, 0) = 0, x2 2 f (0, 0) 0, x µ 3 f (0, 0) 0 x3 (x, µ) = (0, 0) (1.7) ẋ = µx + ςx 3, ς = ±1 (1.13) 17

20 ς = 1 (subcritical pitchfork bifurcation), ς = 1 (supercritical pitchfork bifurcation), (1.7) (1.13) f x = 0 F f(x, µ) = xf (x, µ) F (0, 0) = 0, F µ 0 F (x, µ) = 0 µ(x) dµ dx (0) = 0, d 2 µ dx 2 (0) 0 F (x, µ(x)) = 0 f f ±

21 { ẋ = xy x 5 ẏ = y + x 2 (2.1) (2.1) (0, 0) (0, 0) 1.1 (2.1) x(t), y(t) { ẋ = xy ẏ = y. y y(t) = y(0)e t (2.1) y = 0 lim y(t) = lim t t y(0)e t = 0 ẋ ẋ = x 5 { < 0 x > 0 > 0 x < 0 {(x, y) R 2 ; (x, y) (0, 0)} 19

22 x (0, 0) (0, 0) (2.1) 2.1 { ẋ = Ax + f(x, y), (x, y) R n R m. (2.2) ẏ = Bx + g(x, y), n n A, m m B, f, g A 0 B f, g C r - r 2 f(0, 0) = 0, D x f(0, 0) = 0, D y f(0, 0) = 0, g(0, 0) = 0, D x g(0, 0) = 0, D y g(0, 0) = 0 R n R m M (2.2) 0 R n R m U (x, y) (x(0), y(0)) M U 20

23 t [0, T ] u(t) U (2.2) t [0, T ] (x(t), y(t)) M (2.2) W c δ x < δ h(0) = 0, Dh(0) = 0 h(x) W c = {(x, y) R n R m ; y = h(x)} (2.2) [1] [1] [1], Theorem 1 (2.2) (2.2) u = Au + f(u, h(u)), u < δ, u R n (2.3) [1] [1], Theorem 2 (2.2) (x, y) (0, 0) (2.3) u 0. (2.2) (x(t), y(t)) 21

24 (x(0), y(0)), x(0), y(0) 1 (2.2) (2.3) u(t) t x(t) = u(t) + O(e γt ), y(t) = h(u(t)) + O(e γt ), (γ > 0) [1] h(x) y = h(x) t ẏ = Dh(x)ẋ = Dh(x){ Ax + f(x, h(x)) } ẏ = By + g(x, y) = Bh(x) + g(x, h(x)) Bh(x) + g(x, h(x)) = Dh(x){ Ax + f(x, h(x)) } (2.4) h(x) [1], Theorem 3 C 1 - ϕ : R n R m ϕ(0) = Dϕ(0) = 0 q Dϕ(x){ Ax + f(x, ϕ(x)) } Bϕ(x) + g(x, ϕ(x)) = O( x q ) as x 0 22

25 h(x) ϕ(x) = O( x q ) [1] (2.4) O( x p ) O( x p ) (2.1) 2.2 (2.1) { ẋ = xy x 5 ẏ = y + x 2 (2.1) h(x) (2.1) (2.4) A = 0, B = 1, f(x, y) = xy x 5, g(x, y) = x 2 h(x) + x 2 = dh dx (x){ xh(x) x5 } (2.5) h(x) = a 2 x 2 +a 3 x 3 + a 2, a 3,... h(0) = h (0) = 0 23

26 h(x) O(x 2 ) (2.5) h (x) = O(x), xh(x) = O(x 3 ), x 5 = O(x 5 ) h(x) + x 2 = O(x){O(x 3 ) + O(x 5 )}} h(x) = x 2 + O(x 4 ) (2.1) ẋ = x 3 + O(x 5 ) x 0 y =

27 Haragus Iooss [6] [6] X, Y X Y L(X, Y ) L L(X,Y ) := sup Lu Y u X =1 X = Y L(X, X) L(X) X Y k C k (X, Y ) F : X Y, F C k (X, Y ) ( ) F C k = max sup D j F (x) L(X j=0,...k j,y ) x X C k (X, Y ) η C η (R, X) { } ( ) C η (R, X) := u C 0 (R, X) ; u Cη = sup e η t u(t) X < t R C η (R, X) Cη F η { F η (R, X) := u C 0 (R, X) ; u Fη 25 } ( ) = sup e ηt u(t) X < t R

28 L : X Y im L im L := {Lu Y ; u X} Y. L ker L ker L := {u X ; Lu = 0} X. X Y L L(X, Y ) ρ(l) ρ ; ρ := {λ C ; λi L : X Y is bijective}. I L σ(l) σ σ := C \ ρ. X, Y, Z X Y Y Z Z du dt = Lu + N(u) (3.1) L N L L(X, Z) k 2 0 X V N C k (V, Y ) N(0) = 0, DN(0) = 0 D 26

29 N(0) = 0 u(t) 0 (3.1) L σ σ = σ + σ 0 σ σ + = {λ σ; Re λ > 0}, σ 0 = {λ σ; Re λ = 0}, σ = {λ σ; Re λ < 0}, Re λ λ 2 γ sup Re λ < γ, λ σ γ < inf λ σ + Re λ σ 0 (3.1) L 0 σ 0 Γ {λ ; Re λ < γ} σ 0 Dunford ([7], Section III. 4, [21], 1.3 ) P 0 = 1 2πi Γ (λi L) 1 dλ L(Z, X) 27

30 P 0 P 2 0 = P 0, P 0 Lu = LP 0 u for all u X dim(im P 0 ) P h P h = I P 0 P h P 2 h = P 0, P h Lu = LP h u for all u X P 0 L(X, Y ) X Y Y Z P h L(X) L(Y ) L(Z) E 0 = im P 0 = ker P h X, Z h = im P h = ker P 0 Z Z Z = E 0 X h X h = P h X X, Y h = P h Y Y L 0, L h L E 0, X h L 0 L(E 0 ), L h L(Z h, X h ) L 0 σ 0 L h σ h = σ + σ (3.1) L 28

31 3 η [0, γ] f C η (R, Y h ) u h du h dt = L hu h + f(t) u h = K h f C η (R, Z h ) K h L(C η (R, Y h ), C η (R, Z h )) C : [0, γ] R K h L(Cη(R,Y h ),C η(r,z h )) C(η). 2.1 ([6], Theorem 2.9) 1, 2, 3 Ψ C k (E 0, X h ) Ψ(0) = 0, DΨ(0) = 0, 0 X U M 0 = {u 0 + Ψ(u 0 ) ; u 0 E 0 } X (i) M 0 u u(0) M 0 U t [0, T ] u(t) U (3.1) t [0, T ] u(t) M 0 (ii) M 0 t R U (3.1) u t R u(t) U (3.1) u(0) M 0. [6] 29

32 ([6], Collorary 2.12) (3.1) u(t) t I I R u(t) M 0 u = u 0 + Ψ(u 0 ) u 0 Ψ du 0 dt = L 0u 0 + P 0 N(u 0 + Ψ(u 0 )). DΨ(u 0 ){ L 0 u 0 + P 0 N(u 0 + Ψ(u 0 )) } = L h Ψ(u 0 ) + P h N(u 0 + Ψ(u 0 )), for all u 0 E 0. [6] u = u 0 + Ψ(u 0 ) (3.1) P 0, P h 3 Y Z with Y Z ω 0, c α [0, 1) ω R, ω ω 0 iω L ρ(l) (iωi L) 1 L(Z) c ω, (3.2) (iωi L) 1 L(Y,X) c. (3.3) ω1 α 30

33 L L 3.1 [4, 21] [2] [1] 6 A L(X, Z) A D(A) X φ (0, π/2) M 1 a S a,φ = {λ ; φ < arg(λ a) < π, λ a} (3.4) A ρ(a) (λi A) 1 L(Z) M λ a, for all λ S a,φ ( Z {T (t)} t 0 {T (t)} t 0 (i) T (0) = I s, t > 0 T (t)t (s) = T (t + s) (ii) u Z t +0 T (t)u u; 31

34 (iii) u Z t T (t)u 0 < t < {T (t)} t 0 1 lim (T (t)u u) = Lu, t +0 t u Z L T (t) ( [4], Theorem 1.3.4) A A {e At } t 0 : e At = 1 (λi + A) 1 e λt dλ 2πi Γ Γ λ argλ θ A ρ( A) A A [4] X, Y, Z Z = Y 2.1 [6], Theorem 2.20 X, Y, Z 1, 2, L h (3.2) 2.1 [6] 32

35 ([6], Theorem 3.22) σ + = (3.1) M 0 u(t) U, t > 0 (3.1) u(t) M 0 (3.1) u(t; u(0)) u(0) U u(t; u(0)) U, t > 0 (3.1) ũ M 0 U γ u(t; u(0)) = u(t; ũ) + O(e γ t ) as t. [6] u t = 2 u x + u + g(u), 2 u(0, t) = u(π, t). (3.5) u(x, t) (x, t) (0, π) R g g C k (R, R), k 2 g(0) = 0, g (0) = 0 33

36 X = {u H 2 (0, π) ; u(0) = u(π) = 0}, Y = Z = {u L 2 (0, π) ; u(0) = u(π) = 0} X, Y (= Z) (3.5) u(t, x) 0 Lu := u + u λ j = 1 j 2, sin jx, j N j = 1 λ 0 = 0, λ j < 0, j > 1 σ 0 = {0}, σ = {λ j ; j > 1, j N}, σ + = λ 0 = 0 sin x 0 P 0 u Z sin x [0, π] L 2 P 0 u = 2 ( π ) u sin x dx sin x π 0 (3.2) v Z w (I P 0 )X (iω L)w = v (w = (iω L) 1 v (iω 1)w w = v. w (0, π) (iω 1) π w 2 dx π w w dx = π vw dx

37 π 0 w w dx = [w w] π 0 π 0 w w dx = w 2 L 2 π (iω 1) w 2 L + 2 w 2 L = vw dx. 2 π ω w 2 L = Im vw dx. 2 ω w 2 L v 2 L 2 w L w L 2 1 ω v L 2 w L 2 = (iωi L) 1 v L 2 1 ω v L 2 (iωi L) 1 L(Z) = sup (iω L) 1 v L 2 1 v L 2 =1 ω. (3.5) L L [21] 35

38 3.2.2 Swift-Hohenberg Swift-Hohenberg (SHE) u t = u xxxx 2u xx (1 ν)u u 3, x R l X = Hper 4 := {u Hloc(R) 4 ; u(x) = u(x + l)}, Y = Z = L 2 per := {u L 2 loc(r) ; u(x) = u(x + l)} u(t, x) u = u m (t)e imk0x, k 0 = 2π/l. m Z u(t, x) R u m (t) = u m (t) u(t, x) 0 u t = L u, Lu = u (4) 2u (1 ν)u λ j = ν (1 j 2 k0) 2 2, e ±ijk0x, j Z (ν, k 0 ) C j := {(ν, k 0 ) R R + ; ν = (1 j 2 k 2 0) 2 }, j Z (ν, k 0 ) C j λ ±j = 0 j Z (ν, k 0 ) = (0, 1 j ) 36

39 λ ±j = 0, λ m < 0, m Z \ { j, j} L w Hper 4 (iωi L)w = v (iωi L)w = w (4) + 2w + (iω + 1 ν)w w (0, l) w 2 L 2 per + 2 w 2 L 2 per + (iω + 1 ν) w 2 L 2 per w 2 L 2 per + 2 w 2 L 2 per + (iω + 1 ν) w 2 L 2 per l = wv dx. 0 ω w 2 L 2 per = Im ( π 0 ) wv dx w L 2 per v L 2 per (iωi L) 1 L(Z) = sup (iω L) 1 v L 2 per 1 v L 2 =1 ω. per (ν, k 0 ) = (0, 1/ j ) (SHE) 37

40 4 Swift-Hohenberg 4.1 Swift-Hohenberg Swift-Hohenberg (SHE) u t = u xxxx 2u xx (1 ν)u u 3, x (0, l) l X = Hper 4 := {u Hloc 4 ; u(x) = u(x + l)}, Y = Z = L 2 per := {u L 2 loc ; u(x) = u(x + l)} u(t, x) u = u m (t)e imk0x, k 0 = 2π/l m Z (SHE) u m e imk 0x m Z = m Z + m 1 Z λ m u m e imk 0x u m1 u m2 u m3 e i(m 1+m 2 +m 3 )k 0 x (4.1) m 2 Z m 3 Z u u m (t) = u m (t) λ m = ν (1 m 2 k0)

41 u(t, x) 0 e ±imk 0x P n P n u = 1 ( l ) ue ink0x dx e ink0x, l 0 n Z (4.1) e ink 0x (0, l) m Z l = m Z m n m Z 0 l l 0 u m e i(m n)nk 0x dx 0 u m e i(m n)nk 0x dx + l λ m u m e i(m n)nk 0x dx = l λ m u m, l m 1 Z m 2 Z m 3 Z 0 l = + = l m 1,m 2,m 3 Z 0 m 1 +m 2 +m 3 n l m 1,m 2,m 3 Z m 1 +m 2 +m 3 =n m 1,m 2,m 3 Z m 1 +m 2 +m 3 =n 0 0 u n dx = l u n, u m1 u m2 u m3 e i(m 1+m 2 +m 3 n)k 0 x u m1 u m2 u m3 e i(m 1+m 2 +m 3 n)k 0 x u m1 u m2 u m3 e i(m 1+m 2 +m 3 n)k 0 x u m1 u m2 u m3 (SHE) F u n = λ n u n m 1,m 2,m 3 Z m 1 +m 2 +m 3 =n u m1 u m2 u m3, n Z (4.2) {u m } m Z X F := {{u m } m Z ; u m = u m, {u m } m Z 2 X F := m Z(1+m 2 ) 4 u m 2 < } 39

42 X F {u m } m Z P n : L 2 per L 2 per, n Z H 4 per u(t, x) = m Z u m(t)e imk 0x H 4 per : {u m } m Z = { 1 l l 0 } (P m u) e imk0x dx m Z j Z (ν, k 0 ) = (0, 1/ j ) λ ±j = 0, λ m < 0, m Z \ { j, j} λ ±j = 0, (4.3) u j = 0 u j + λu j u m1 u m2 u m3, (4.4) u j = 0 u j + λū j u m = λ m u m m 1,m 2,m 3 Z m 1 +m 2 +m 3 =j m 1,m 2,m 3 Z m 1 +m 2 +m 3 = j m 1,m 2,m 3 Z m 1 +m 2 +m 3 =m u m1 u m2 u m3, (4.5) u m1 u m2 u m3, ( m = j ). (4.6) λ ±j = 0 M 0 X F R s λ j < s ν, k 0 (ν, k 0 )- (0, 1/ j ) U p (ν, k 0 ) U p u j = u j u j m = j u m = h m (u j, u j, λ j ), m Z \ { j, j} (4.7) h m (0, 0, 0) = h m u j (0, 0, 0) = h m u j (0, 0, 0) = h m λ j (0, 0, 0) = 0 40

43 (4.7) t λ m h m (u j, u j, λ j ) m 1,m 2,m 3 Z m 1 +m 2 +m 3 =m = h u j + h u j + h λj. u j u j λ j u m1 u m2 u m3 {u m } m R, m j XF + λ j = O(δ) h m (u j, u j, λ j ) = O(δ 2 ) (4.4) Σ m 1, m 2, m 3 j m j = j j + j j = j j, j, j (m 1, m 2, m 3 ) = (j, j, j), (j, j, j), ( j, j, j) u j = λ j u j 3u 2 ju j + h.o.t.. u j = λ j u j 3u j u j 2 + h.o.t (4.8) u j (t) R z = u j R, λ j = C ż = Cz 3z 3 (4.9) z(t) 0 C < 0 C > 0 C = 0 z(t) ± C/3 41

44 C > 0 Swift-Hohenberg u(x) = ±2 λ j /3 cos(2πjx/l) + O( u 4 H ) per 2 λ j > 0 λ j 0 (4.3) (SHE) u(t, x) u(t, x + θ) for all θ R u(t, x) u(t, x + θ) u(x) = ±2 λ j /3 cos(2πjx/l + θ) + O( u 4 H ), per 2 θ [0, 2π) λ k = 0, (ν, k 0 ) = (ν, 2π/L) = (0, 1/ j ) (SHE) (ν, k 0 ) C m n, j Z, n = j C n C j C n λ n = 0, C j λ j = 0 λ n = λ j = 0 Swift-Hohenberg [18]

45 u 3 h m [18] 3.5 [12] [11] Integro-Reaction-Diffusion system : u t = D 2 u 1 x + au + bv + F (u, v) + s l u(t, x) dx, x (0, l), t > 0, 2 l 0 (IRD) v t = D 2 v 2 + cu + dv + G(u, v), x (0, l), t > 0, x2 (NBC) u x = v x = 0 at x = 0, l D 1, D 2 l a, b, c, d, s (IRD) (A1) F, G F (ξ, η) = O( (ξ, η) 3 ), G(ξ, η) = O( (ξ, η) 3 ) (A2) F (u, v) F ( u, v), G(u, v) G( u, v) (A3) a, c > 0, b, d < 0, a + d < 0, := ad bc > 0 43

46 (A4) bc d + d < 0 [17] (u(t, x), v(t, x)) 0 {(u, v) H 2 (0, l) H 2 (0, l) ; u, v satisfiy (NBC)} L ( ) ( u D1 u + au + bv + (s/l) l L = u dx ) 0 v D 2 v + cu + dv (u (t, x), v (t, x)) t > 0, x [0, l] (IRD) t > 0, x [0, 2l] (u (t, x), v (t, x)) (u (t, x), v (t, x)) = { (u (t, x), v (t, x)), x [0, l) (u (t, 2l x), v (t, 2l x)), x [l, 2l] (u, v ) x = l (u, v ) x = l l =..., l, 2l, l, 0, 4l,... x R (u per, v per ) u per, v per x R 2l u t = D 2 u 1 x + au + bv + F (u, v) + s 2l u(t, x) dx, x (0, 2l), t > 0, 2 2l (IRD 0 ) v t = D 2 v 2 + cu + dv + G(u, v), x (0, 2l), t > 0, x2 2l (IRD ) (u(t, x), v(t, x)) = (u(t, x), v(t, x)) (4.10) 44

47 (0, l) (IRD)-(NBC) (IRD ) X = {(u, v) H 2 per H 2 per ; u, v satisfiy (4.10)} Y = Z = {(u, v) L 2 per L 2 per ; u, v satisfiy (4.10)} F, G F (u, v) = F jk u j v k + o( (u, v) 3 X), j+k=3 G(u, v) = G jk u j v k + o (u, v) 3 X), j+k=3 F jk = 1 jk F j!k! u j v (0, 0), G k jk = 1 jk G (0, 0), j + k = 3, j, k N. j!k! u j vk u, v u(t, x) = u m (t)e imk0x, m Z v(t, x) = v m (t)e imk0x, (k 0 = π/l) m Z (IRD )-(PBC) P m : P n (u, v) = 1 2l ( l 0 ) (u, v)e ink0x dx e ink0x, n Z ( ) ( d um um = M m dt v m v m ) + ( Fm G m ), m 0, (4.11) 45

48 ( a + s b ) M m = c d ( a D1 m 2 k0 2 b ) (m = 0), (4.12) c d D 2 m 2 k 2 0 (m 0), F m = G m = m 1 +m 2 +m 3 =m m 1,m 2,m 3 Z m 1 +m 2 +m 3 =m m 1,m 2,m 3 Z (F 30 u m1 u m2 u m3 + F 21 u m1 u m2 v m3 +F 12 u m1 v m2 v m3 + F 03 v m1 v m2 v m3 ), (G 30 u m1 u m2 u m3 + G 21 u m1 u m2 v m3 +G 12 u m1 v m2 v m3 + G 03 v m1 v m2 v m3 ) (4.11) X F := X F X F X F := {{α m } m Z ; α m = α m R, {α m } m Z 2 X F := m Z(1+m 2 ) 2 α m 2 < } {(u m, v m )} m Z X F (u, v) X P m { 1 l } {(u m, v m )} m Z = (P m (u, v)) e imk0x dx 2l 0. m Z (4.11) (IRD )-(PBC) {λ m } m Z {M m } m Z 0 det M m = 0 46

49 D 2, k 0, s det M 0 = det M 1 = det M 2 = 0 ([16], [17]) L [ k 0 = k0 1 { := 5 } ] 1/2 25 8dD 2 16ad, 1 D 2 = {dd 1(k 0) 2 } (k 0) 2 {D 1 (k 0) 2 a}, s = s := /d, 0 (3.2) (3.4) v = (u, v) X L : X Z ( ) ( u L D1 u + au + bv + (s/(2l)) 2l = u dx ) 0 v D 2 v + cu + dv T (t)v := e L t v = m Z e M mt P m v, v X M m, (m Z) 6 ( m = 0, ±1, ±2) 0 { 1 l } (P m (u, v)) e imk0x dx 2l 0 47 m Z = {(u m, v m )} m Z X F

50 e Mmt P m v P m v <. m Z m Z lim t +0 ( ) e L t v v /t = m Z lim t +0 = m Z M m P m v = L v ( e M m t P m v P m v ) /t L 0 (k 0, D 2, s) = (k0, D2, s ) M 0, M 1, M 2 ( ) ( ) d bc/d d + D2 m 2 k0 2 a D 1 m 2 k0 2 T 0 =, T m =, m = 1, 2, c c c c ( ũ m ) ( 0 0 ) ( ũm ) ( fm ) ṽ m = 0 µ m ṽ m + T 1 m g m, m = 0, 1, 2. µ 0 := d + bc/d, µ m := (a + d) m 2 (D 1 + D 1,2 2 )(k 1,2 0 ) 2, f m := f m t (u mj,v mj )=T m t (ũ mj,ṽ mj ), g m := g m t (u mj,v mj )=T m t (ũ mj,ṽ mj ) ṽ j = h (2) j (ũ 0, ũ 1, ũ 2 ), j = 0, 1, 2, (u m, v m ) = (h (1) m, h (2) m )(ũ 0, ũ 1, ũ 2 ), m N \ {1, 2} 48

51 h (j) m ũ j (0, 0, 0) = h (j) m (0, 0, 0) = 0, j = 1, 2 h ( j) m (IRD ) h (j) m = O( ũ 0, ũ 1, ũ 2 3 ) ([16], [17]) a, b, c, d, D 1 (k 0, D 2, s) = (k 0, D 2, s ) (IRD) W c loc (IRD) ż 0 = (µ 0 + a 1 z0 2 + a 2 z1 2 + a 3 z2)z a 4 z1z o( (z 0, z 1, z 2 ) 3 ), ż 1 = (µ 1 + b 1 z0 2 + b 2 z1 2 + b 3 z2)z b 4 z 0 z 1 z 2 + o( (z 0, z 1, z 2 ) 3 ), ż 2 = (µ 2 + c 1 z0 2 + c 2 z1 2 + c 3 z2)z c 4 z 0 z1 2 + o( (z 0, z 1, z 2 ) 3 ). (4.13) z j (t) = ũ j (t) = cu j(t) (a D 1 j 2 k 2 0)v j (t) c[j 2 k 2 0(D 1 + D 2 ) (a + d)] R, j = 0, 1, 2 µ j, a j, b j, c j (IRD) [16] (4.13) ż 0 = (µ 0 + a 1 z0 2 + a 2 z1 2 + a 3 z2)z a 4 z1z 2 2, ż 1 = (µ 1 + b 1 z0 2 + b 2 z1 2 + b 3 z2)z b 4 z 0 z 1 z 2, ż 2 = (µ 2 + c 1 z0 2 + c 2 z1 2 + c 3 z2)z c 4 z 0 z1. 2 (4.14) 49

52 (4.14) (z 0 (t), z 1 (t), z 2 (t)) = (0, ±z 1, 0), z 1 = µ 2 /b 2 e 1 := (0, ±z 1, 0) µ 1 e 1 µ 1 b 2 < 0 e 1 2µ M e1 := 0 α β, 0 c 4 µ 1 /b 2 γ α = µ 0 a 2 µ 1 /b 2, β = a 4 µ 1 /b 2 and γ = µ 2 c 2 µ 1 /b 2 a 4 c 4 < 0 (µ 0, µ 2 ) {(µ 0, µ 2 ) ; tr M e1 } = {(µ 0, µ 1 ) ; µ 0 + µ 2 (a 2 + c 2 )µ 1 /b 2 = 0} SB = {(µ 0, µ 2 ) ; det M e1 = 0} = {(µ 0, µ 2 ) ; (µ 0 a 2 µ 1 /b 2 )(µ 2 c 2 µ 1 /b 2 ) a 4 c 4 µ 2 1/b 2 2 = 0} (µ 0, µ 2 ) = (µ ± 0, µ ± 2 ) M e1 0 (µ 0, µ 2 ) tr M e1 = det M e1 = 0 µ 0, µ 2 µ j = µ P (±) j, (j = 0, 2) M e1 2µ T 1 M e1 T = 0 0 1,

53 1 0 0 T = 0 2β 0. 0 α γ 2 (4.14) ±e 1 b 2 < 0 z 1 = z 1 z, z = µ 1 /b 2 ( z 1 (t), z 0 (t), z 2 (t)) z 1 2µ z 1 N 1 ( z 1, z 0, z 2 ) ż 0 = 0 α β z 0 + N 0 ( z 1, z 0, z 2 ), ż 2 0 c 4 µ 1 /b 2 γ z 2 N 2 ( z 1, z 0, z 2 ) (4.15) N 0 ( z 1, z 0, z 2 ) = 2a 4 z z 1 z 2 + 2a 2 z z 1 z 0 + F 0 ( z 1, z 0, z 2 ), N 1 ( z 1, z 0, z 2 ) = b 1 z z b 2 z z b 3 z z b 4 z z 0 z 2 + F 1 ( z 1, z 0, z 2 ), N 2 ( z 1, z 0, z 2 ) = 2c 2 z z 1 z 2 + 2c 4 z z 1 z 0 + F 2 ( z 1, z 0, z 2 ). (z, x, y) z z 1 x = T 1 z 0. y (µ 0, µ 2 ) p 1, p 2, p j 1 (4.15) ż 2µ z Ñ 1 (z, x, y) ẋ = 0 p 1 1 x + Ñ 0 (z, x, y), (4.16) ẏ 0 0 p 2 y Ñ 2 (z, x, y) 51 z 1

54 Ñ 1 (z, x, y) = N 1 (z, 2βx, (α γ)x 2y), Ñ 0 (z, x, y) = N 0 (z, 2βx, (α γ)x 2y), Ñ 2 (z, x, y) = N 2 (z, 2βx, (α γ)x 2y). p j < 2µ 1, j = 1, 2, (4.14) M c M c (4.16) ( ẋ where ẏ ) = ( p1 1 0 p 2 ) ( x y ) + j,k N j+k=3 f 30 = 2z (a 2 a 4 α/β)h (a 1 β 2 + a 3 α 2 ), ( fjk x j y k f 21 = 2a 4 z H 20 /β + 2z (a 2 a 4 α/β)h 11 8a 3 α, f 12 = 2a 4 z H 11 /β + 2z (a 2 a 4 α/β)h a 3, f 03 = 2a 4 z H 02 /β, g jk x j y k ), (4.17) g 30 = 2z [(a 2 c 2 )αβ a 4 α 2 + c 4 β 2 ]H 20 /β + 4α[(a 1 c 1 )β 2 + (a 3 c 3 )α 2 ], g 21 = 2z (a 4 α/β + c 2 )H z [α(a 2 c 2 ) a 4 α 2 /β + c 4 β]h 11 +4[α 2 (3c 3 2a 3 ) + β 2 c 1 ], g 12 = 2z [(a 2 c 2 )α a 4 α 2 /β + c 4 β]h z (a 4 α/β + c 2 )H α(a 3 3c 3 ), g 03 = 2z (a 4 α/β c 2 )H c 3, H 20 = 2z µ 1 (β 2 b 1 + b 3 α 2 βb 4 α), H 11 = 2z µ 1 (βb 4 2αb 3 ) H 20 µ 1, H 02 = z [2b µ 2 3 (µ 1 + α) + b 4 β] H µ

55 (4.17) (4.16) p 1 = p 2 = µ 1 = (4.16), (z, x, y) (z, x, y) Dumorutier- Kokubu [13] µ 1 b 2 < 0 (4.16) 5 (4.17) [3] 3.3, [6] 3, [9] 19 [8] [14] [18] 3.3 [14] 53

56 5.1 R n dx = Lx + F (x), dt x(t) R, (5.1) F (x) = O(x 2 ). (5.1) F (x) F (x) = p N p 2 F p [x (p) ] H k R n k H k k H k R n x = (x, y) R 2 H k = H k R n. H 2 = span{x 2, xy, y 2 } H 2 = H 2 R 2 = span{x 2, xy, y 2 } span{ t (1, 0), t (0, 1)} {( ) ( ) ( ) ( ) x 2 xy y 2 0 ( 0 ) ( 0 )} = span 0, 0, 0, x 2, xy, y 2 54

57 ([14], Theorem 2) (5.1) N(z) dz dt = F (z), z Rn D z N(z) L z L N(z) = 0 (5.2) L L L (L ) ad L : P (x) D x P (x) L x L P (x) (5.3) (5.1) F (x) ad L [F ] := D x F (x) L x L F (x) = 0 [14] [14] 2.4 ( 0 1 ) L = 0 0 (5.4) ) ) ) ( ẋ ẏ = ( ) ( x y + ( F1 (x, y) F 2 (x, y), t (x, y) R 2 (5.5) 55

58 (5.3) ( ) ( ) ( ) ( (F1 ) x (F 1 ) y 0 0 x 0 0 (F 2 ) x (F 2 ) y 1 0 y 1 0 ( ) ( ) ( ) (F1 ) x (F 1 ) y 0 0 = (F 2 ) x (F 2 ) y x F 1 ( ) x(f1 ) y = = 0 x(f 2 ) y F 1 x F 1 y = 0, x F 2 y = F 1 ) ( F1 (x, y) F 2 (x, y) ) F 1 = f(x) F 2 = yf(x)/x+g(x) F 1 (x) = f(x) = xϕ 1 (x) F 2 = yϕ 1 (x) + ϕ 2 (x) ϕ 2 = β(x) + α(x) ( ) ( ) ( F1 (x, y) x 0 = ϕ 1 (x) + F 2 (x, y) y 1 t (F 1, F 2 ) H 2 ) ( 0 β ( x) + x ) α ( x). (F 1, F 2 ) = (ax 2, axy + bx 2 ) t (F 1, F 2 ) H 3 (F 1, F 2 ) = (ax 3, ax 2 y + bx 3 ) t (F 1, F 2 ) H k (F 1, F 2 ) = (ax k, ax k 1 y + bx k ). (5.6) 56

59 (P 1, P 2 ) = ( ax k, ax k 1 y) H k (5.7) ad L [(P 1, P 2 )] = 0 ad L [(P 1, P 2 ) + (ax k, ax k 1 y + bx k )] = ad L [(0, ax k 1 y + b x k )] = 0. (5.5) ( ) ( ẋ = ẏ y ax k 1 y + bx k ) F (x) F = F (x; µ) [14], Theorem 5 ẋ = Lx + F (x; µ) ż = N(z; µ) N(e L t z; µ) = e L t N(z; µ) F (0; µ) ker L D x F (0; µ) L [14] 57

60 (5.4): L = ( ) t (0, µ) kerl L L E ( ) 0 F (0; µ) = DF (0; µ) = µ 0 ( µ1 0 0 µ 2 ) ( ) µ 3 0 ( µ1 0 ) L DF (0; µ) = ( µ1 µ = ( 0 0 µ 3 µ 2 0 µ 1 ) ( ) ( 0 0 µ µ µ 1 ), (µ 2 = µ 3 µ 1 ) ) (5.4) ( ) ( ẋ 0 = ẏ µ 0 ) ( ) ( ) ( 0 0 x + + p 1 p 2 y (4.17) ) y +O( (x, y) k ) ax k 1 y + bx k 58

61 5.2 [8] 8.4 (4.17) (u, w) u = x, w = y + p 1 x + f 30 x 3 + f 21 x 2 y + f 12 xy 2 + f 03 y 3, (4.17) u = w, ẇ = p 1 u + p 2 w + σ 1 u 3 + σ 2 u 2 w + (g f 21 )uw 2 +(g 03 + f 12 )w 3 + O( (x, y) 5 ) + ( p 1 + p 2 (x, y) 3 ), (5.8) p 1 = p 1 p 2, p 2 = p 1 + p 2, σ 1 = g 30, σ 2 = (g f 30 ) ɛ, ɛ 1 : σ1 u = ɛ U, w = ɛ 2 σ 1 3/2 W, T = ɛ σ 1 σ 2 t p 1 = ɛ 2 σ2 1 σ 2 2 σ 2 2 P 1, p 2 = ɛ 2 σ 1 P 2. σ 2 u = ɛũ, w = ɛ 2 w, t = ɛt σ 2 p 1 = ɛ 2 p 1, p 2 = ɛ 2 p 2, du dt = W, (5.9) dw dt = P 1 U + ɛ P 2 W + (sign σ 1 )U 3 + ɛ (sign σ 2 ) U 2 W + O(ɛ 2 ). 59

62 sign σ 2 = +1 t W T T, W W, [17]) µ 1 b 2 µ 1 < 0. (4.17) ( (4.15) M c ) { u = w, ẇ = p 1 u + p 2 w + ςu 3 ɛ u 2 w, (5.10) p 1 = P 1 p 2 = ɛp 2, ɛ, ɛ 1 ς = sign σ 1 = sign g 30. [17] (IRD) (4.14) (4.14) (4.17) (4.17) (5.10) (5.10) 3,4 chapter 4 of [1] [3]

63 (IRD) 3,4 L1 3: ς > 0 (5.10) {(p 1, p 2 ) ; p 1 < 0, p 2 = 0} {(p 1, p 2 ) ; p 1 = 0} L 1 := {(p 1, p 2 ) ; p 2 = ɛ p 1 /5 + O((ɛp 1 ) 2 )} 61

64 L2 L3 L2 L3 L4 4: ς < 0 (5.10) 3 L 2 := {(p 1, p 2 ) ; p 2 = ɛ p 1 } L 3 := {(p 1, p 2 ) ; p 2 = 4ɛ p 1 /5+O(p 2 1)} p 1 L 3 L 4 := {(p 1, p 2 ) ; p ɛ p 1 } L 3 L 4 62

65 5.3 Hopf (5.10) p 2 = 0 (5.10) (0, 0) ± p 1 p 1 < [8] 5.10) Ẋ = AX + F (X), X = t (x, y) R A 2 2 λ = α + iω, ω > 0. λ q = (q 1, q 2 ) C 2 λ A p = (p 1, p 2 ) C 2 λ A t A < p, q >:= p 1 q 1 + p 2 q 2 = 1 z(t) C z =< p, (x, y) >. (x, y) (x, y) = zq + z q. 63

66 (5.11) ż = λz+ < p, F (zq + z q) >, z C g(z, z) =< p, F (zq + z q) > g kl g g(z, z) = k+l 2 g 1 k!l! g klz k z l (5.11) g 20, g 11, g 02 z z = w + h 20 2 w2 + h 11 w w + h 02 2 w2 w(t) C w = z h 20 2 z2 h 11 z z h 02 2 z2 + O( z 3 ) ẇ = ż h 20 zż h 11 (ż z z z) h 02 z z + = λw + (g 20 λh 20 )w 2 + (g 11 2 λh 11 )w w + (g 02 (2 λ λ)h 02 ) w 2 + O( w 3 ) 2 h 20 = g 20 λ, h 11 = g 11 λ, h 02 = g 02 2 λ λ ż = λz + k+l k!l! g klz k z l

67 g kl z = w + h 30 6 w3 + h 21 2 w2 w + h 12 2 w w2 + h 03 6 w3 w = z h 30 6 z3 h 21 2 z2 z h 12 2 z z2 h 03 6 z3 + O( z 4 ) t ẇ = ż h 30 2 z2 ż h 21 2 (2z zż + z2 z) h 12 2 (ż z2 + 2z z z) h 03 2 z2 z = λw + g 30 2λh 30 6 w 3 + g 21 (λ + λ)h 21 w 2 w 2 + g 12 2 λh 12 w w 2 + g 03 + (λ 3 λ)h 03 w 3 + O( w 4 ) 2 6 h 30 = g 30 2λ, h 12 = g 12 2 λ, h 03 = g 03 3 λ λ α = 0 λ + λ = 0 g 21 z 2 z (5.11) ż = λz + c 1 z z (5.12) c 1 (5.11) g kl c 1 = g 20g 11 (2λ + λ) + g λ 2 λ + g (2λ λ) + g

68 (5.11) ( d y1 dt y 2 ) = d ( β 1 1 β +d(y y 2 2) ) ( y1 y 2 ( y1 y 2 ) ) sign (Re c 1 ) = 1 ω 2 Re (ig 20g 11 + ωg 21 ) + O( (y 1, y 2 ) 4 ) (5.13) [8] (5.13) y 1 (t) = r(t) cos θ(t), y 2 (t) = r(t) sin θ(t) ṙ = (β + dr 2 )r, θ = 1 r(t) = β/d, θ = t βd < 0 d d > 0 d < 0 Hopf bifurcation) - - Poincaré-Andronov-Hopf bifurcation 66

69 5.3.2 Hopf (5.10) : { u = w, ẇ = p 1 u + p 2 w + ςu 3 ɛ u 2 w, (5.14) p 2 = 0, p 1 < 0 p1 i 1 t ( i/ p 1, 1), 2 p 1 i t ( i p 1, 1) < t ( i p 1, 1), 1 t ( i/ p 1, 1) >= 1 2 z =< (u, w), ( i p 1, 1) >= i p 1 u + w, (u, w) = ( i 2 (z z), 1 ) (z + z) p 1 2 g(z, z) :=< ( i p 1, 1), (0, ςu 3 ɛ u 2 w) > 67

70 g := 1 8p 1 [( ) ( ) ] iς iς ɛ z + ɛ z (z z z) 2 p1 p1 z 2 z c 1 := p ( ) 1 iς ɛ 4 p1 p 1 < 0, ɛ > 0 Re c 1 = p 1 ɛ/4 < 0. p 1 = 0 (5.10) (0, 0) 6 (5.10) : { u = w, ẇ = p 1 u + p 2 w + ςu 3 ɛ u 2 w, (6.1) [3] 4.5 [9] 28, [19] 5.7 [1] 4 (5.10) 6.1 ẋ = f(x) + ɛg(x), x R 2 (6.2) g g(x, t) = g(x, t + T ) t (5.10) 68

71 ɛ = 0 (6.2) H(x) ( ) H f(x) = t (f 1 (x, y), f 2 (x, y)) = t (x, y), H (x, y). y x ε = 0 (6.2) p 0 = (0, 0) q 0 (t); lim t q0 (t) = p 0, lim t + q0 (t) = p 0 Γ 0 Γ 0 := {q 0 (t) ; t R} {p 0 } Γ 0 α 0 Γ 0 q α, α ( 1, 0) α 0 q α q 0 t p 0 t = t 0 x ɛ 0 ɛ = 0 q 0 (t t 0 ) q 0 (0) {(x, y) ; y = 0} (6.2) qε(t, s t 0 ), qε u (t, t 0 ) ɛ ɛ qε(t, s t 0 ) = q 0 (t t 0 ) + εq1(t, s t 0 ), t [t 0, ), qε u (t, t 0 ) = q 0 (t t 0 ) + εq1 u (t, t 0 ), t (, t 0 ] 69

72 (6.2) f(q 0 + εq s 1) = f(q 0 ) + εdf(q 0 )q s 1 + O(ε 2 ), f(q 0 + εq u 1 ) = f(q 0 ) + εdf(q 0 )q u 1 + O(ε 2 ) q s 1 = Df(q 0 (t t 0 ))q s 1(t, t 0 ) + g(q 0 (t t 0 )), q u 1 = Df(q 0 (t t 0 ))q u 1 (t, t 0 ) + g(q 0 (t t 0 )) (6.3) q s ε qu ε p 0 ɛ 0 (6.2) (ẋ, ẏ)(t 0 ) = f(q 0 (0)) f(q 0 ) (x(t), y(t)) = q 0 (t t 0 ) t = t 0 f (q 0 (0)) V = span{f (q 0 (0))} V q s ε(t 0 ) := q s ε(t 0, t 0 ) q s ε(t 0 ) := q s ε(t 0, t 0 ) d(t 0 ) d(t 0 ) = ε f (q 0 (0)) (q u 1 (t 0 ) q s 1(t 0 )) f (q 0 (0)) = ε f(q0 (0)) (q u 1 (t 0 ) q s 1(t 0 )) f(q 0 (0)) t (a, b), t (c, d) t (a, b) t (c, d) = ad bc M(t 0 ) = f(q 0 (0)) (q u 1 (t 0 ) q s 1(t 0 )) 70

73 M(t 0 ) ε 0 ε 0 ε < ε 0 ε p 0 (6.2) M(t 0 ) 0 p 0 [3], [9], (t, t 0 ) := f(q 0 (t t 0 )) (q u 1 (t, t 0 ) q s 1(t, t 0 )) = f(q 0 (t t 0 )) q u 1 (t, t 0 ) f(q 0 (t t 0 )) q s 1(t, t 0 ) u (t, t 0 ) := f(q 0 (t t 0 )) q u 1 (t, t 0 ), s (t, t 0 ) := f(q 0 (t t 0 )) q s 1(t, t 0 ) s (t, t 0 ) t d s dt (t, t 0) = Df(q 0 (t t 0 )) q 0 (t t 0 ) q s 1(t, t 0 ) +f(q 0 (t t 0 )) q s 1(t, t 0 ) q 0 (t t 0 ) ε = 0 (6.2) (6.3) q 0 (t t 0 ) = f(q 0 (t t 0 )). d s dt (t, t 0) = Df(q 0 (t t 0 )) f(q 0 (t t 0 )) q1(t, s t 0 ) +f(q 0 (t t 0 )) (Df(q 0 (t t 0 ))q1(t, s t 0 ) + g(q 0 (t t 0 )). 71

74 Df(q 0 (t t 0 ) f(q 0 (t t 0 )) q1(t, s t 0 ) +f(q 0 (t t 0 )) Df(q 0 (t t 0 ))q1(t, s t 0 ) = tr (Df(q 0 ))f(q 0 (t t 0 )) q1(t, s t 0 ) = tr (Df(q 0 )) s (t, t 0 ) d s dt (t, t 0) = tr (Df(q 0 )) s (t, t 0 ) + f(q 0 (t t 0 )) g((q 0 (t t 0 ), t). t 0 tr (Df(q 0 )) = (f 1 ) x (q 0 ) + (f 1 ) y (q 0 ) = 2 H x y 2 H x y = 0 d s dt (t, t 0) = f(q 0 (t t 0 )) g(q 0 (t t 0 )). d s dt (t, t 0) dt = lim t s (t, t 0 ) s (t 0, t 0 ) = lim t [ f(q 0 (t)) q s 1(t, t 0 ) ] s (t 0, t 0 ) = f(p 0 ) p 0 s (t 0, t 0 ) = 0 p 0 s (t 0, t 0 ) = s (t 0, t 0 ) s (t 0, t 0 ) = f(q 0 (t t 0 )) g(q 0 (t t 0 )) dt. t 0 u (t 0, t 0 ) = t0 f(q 0 (t t 0 )) g(q 0 (t t 0 )) dt. 72

75 M(t 0 ) = (t 0, t 0 ) = u (t 0, t 0 ) s (t 0, t 0 ) = = f(q 0 (t t 0 )) g(q 0 (t t 0 )) dt f(q 0 (t)) g(q 0 (t)) dt (5.10) ς = 1 { u = w, ẇ = p 1 u + p 2 w + ςu 3 ɛ u 2 w, (6.4) ς = 1, (p 2, ɛ) = (0, 0) (5.10) H(u, w) = w2 2 p u u4 4 M(t 0 ) M(t 0 ) = = (w, p 1 u u 3 ) (0, p 2 w ɛu 2 w) dt (p 2 w 2 ɛu 2 w 2 ) dt 73

76 p 2 = ɛ u 2 w 2 dt. w 2 dt (p 2, ɛ) = (0, 0) ( {(u, w) ; H(u, w) = 0} ) w = ± p 1 u 2 u4 2 u > 0 (0, 0) w = p 1 u 2 u4 2 t t = t 0 ( 2p 1, 0) (0, 0) w = p 1 u 2 u4 2 t = t 0 ( 2p 1, 0) t du dt = w 74

77 M(t 0 ) = 0 p 2 = ɛ = ɛ = ɛ = ɛ t0 t0 2p 1 u 2 w 2 du w 2 du u 2 w du + 0 2p 1 0 2p 1 0 2p 1 0 = ɛ t 0 u 2 w du w du u 2 w du w du + w du t 0 u 2 p 1 u 2 u4 2 du + p 1 u 2 u4 2 du + u 2 = 4 5 ɛ p 1, (p 1 > 0). p 1 u 2 u4 2 du p 1 u 2 u4 2 du 0 2p1 u 2 0 2p1 ( ) p 1 u 2 u4 du 2 ( ) p 1 u 2 u4 du 2 p 2 = 4 5 ɛ p 1, p 1 > 0 M(t 0 ) = ς = +1 (5.10) : { u = w, ẇ = p 1 u + p 2 w + u 3 ɛ u 2 w, 75

78 ς = 1, (p 2, ɛ) = (0, 0) (5.10) H(u, w) = w2 2 p u u4 4 (p 2, ɛ) = (0, 0) (5.10) u > 0 ( p 1, 0) H = p 2 1/4 w = 1 2 (u 2 + p 1 ), u > 0 t ( p 1, 0) t = t 0 w ( p 1, 0) H = p 2 1/4 w = 1 2 (u 2 + p 1 ), u > 0 t = t 0 w t + ( p 1, 0) M(t 0 ) M(t 0 ) = = = p 1 (w, p 1 u + u 3 ) (0, p 2 w ɛu 2 w) dt (p 2 w 2 ɛu 2 w 2 ) dt p 1 p 2 w ɛ u 2 wdu p 2 = ɛ p 1 p 1 u 2 (u 2 + p 1 ) du p 1 p 1 (u 2 + p 1 ) du = ɛ 1 5 p 1, (p 1 < 0). 76

79 M(t 0 ) = 0 ( p 1, 0) ( p 1, 0) ς = 1 [1] 7 [8] ẋ = α + x 2 + O(x 3 ) ẋ = α + x 2 (7.1) 77

80 ẏ = F (y, α) := α + y 2 + ψ(y, α), (7.2) ψ(y, α) = O(y 3 ). (7.2) (y, α) M M := {(y, α) ; F (y, α) = α + y 2 + ψ(y, α) = 0} F (0, 0) = 0, F (0, 0) = 1 0 α (0, 0) U g(0) = 0, F (y, g(y)) = 0 α = g(y) (y, α) U M = {(y, α) ; α = g(y)}. g(y) y = 0 F (y, g(y)) = 0 y d F F dg (F (y, g(y))) = (y, g(y)) + (y, g(y)) dy y α dy (y) = 0 y = 0 (g(0) = 0 F F (0, 0) = 0, y (0, 0) = 1 α dg dy (0) = 0 78

81 F (y, g(y)) y d 2 dy (F (y, g(y))) = 2 F 2 y (y, g(y)) + 2 F dg (y, g(y)) 2 y α dy (y) + F α (y, g(y)) d2 g (y) = 0. dy2 y = 0 2 F dg (0, 0) = 2, y2 F (0) = 0, dy d 2 g (0) = 2. dy2 M (y, α) = (0, 0) (0, 0) = 1 α M = {(y, α) ; α = g(y) = y 2 + O(y 3 )} G(y, α) = α y 2 = +O(y 3 ) y = a 1 (± α) + a 2 (± α) 2 + a 3 (± α) 3 + G(y, α) a 1, a 2, a 3,... G(y, α) = 0 y 1 (α), y 2 (α) y 1 (α) := α + O(α), y 2 (α) = α + O(α) (7.1) x 1 (α) = α, x 2 (α) = α α 1 α h α (x) { x α 0 h α (x) = a(α) + b(α)x α < 0 a(α) := (y 1 (α) + y 2 (α))/2, b(α) := (y 1 (α) y 2 (α))/(2 α). 79

82 h α h α (x j (α)) = y j (α), j = 1, 2 lim h α(x) = x. α 0 h α (7.1) (7.2) h a (7.1) (7.2) f(x, α) f : R 2 R (i) f(0, 0) = 0, (ii) f x (0, 0) = 0, (iii) f xx (0, 0) 0, (iv) f α (0, 0) 0. ẋ = f(x, α), x R, α R (7.3) η = β ± η 2, η R, β R ± f(x, α) = f 0 (α) + f 1 (α)x + f 2 (α)x 2 + O(x 3 ) ξ = x + δ ξ = ẋ = f 0 (α) + f 1 (α)(ξ δ) + f 2 (α)(ξ δ)

83 (iii) ξ = [f 0 (α) f 1 (α)δ + f 2 (α)δ 2 + O(δ 3 )] +[f 1 (α) 2f 2 (α)δ + O(δ 2 )]ξ +[f 2 (α) + O(δ)]ξ 2 +O(ξ) 3. f 2 (0) = 1 2 f xx(0, 0) 0. F (α, δ) := f 1 (α) 2f 2 (α)δ + O(δ 2 ) F (0, 0) = 0, α 1 α F δ (0, 0) = 2f 2(0) 0 F (α, δ(α)) = 0, δ(0) = 0 g(α, δ) = 0 δ = δ(α) α = 0 F (α, δ(α)) = 0 d F F dδ (F (α, δ(α))) = (α, δ(α)) + (α, δ(α)) dα α δ dα (α) = 0 δ(α) df 1 dα (0) + 2f 2(0) dδ (0) = 0. dα δ(α) = 1 df 1 2f 2 (0) dα (0)α + O(α2 ) δ = δ(α) (f j (α) α ) ξ = [f 0(0)α + O(α 2 )] + [f 2 (0) + O(α)]ξ 2 + O(ξ 3 ) (7.4) 81

84 = d/dα µ(α) µ = f 0(0)α + O(α 2 ) µ(0) = 0 (iv) µ (0) = f 0(0) = f α (0, 0) 0. G(µ, α) = µ f 0(0)α + O(α 2 ) G(0, 0) = 0, G α (0, 0) = f 0(0) 0 α(0) = 0, G(µ(α), α) = 0 α = α(µ) b(µ) = f 2 (0) + O(α(µ)) (iii) b(0) = f 2 (0) = 1 2 f xx(0, 0) 0. µ (7.4) ξ = µ + b(µ)ξ 2 + O(ξ 3 ) η = b(µ) ξ, β = b(µ) µ η = b(µ) ξ = b(µ) µ + b(µ) b(µ) η2 + O(η 3 ) = βη + b(µ) b(µ) η2 + O(η 3 ). 82

85 s = sign {b(µ)} µ 1 s = sign {b(µ)} = sign {b(0)} = sign {f xx (0, 0)}. η = βη + sη 2 + O(η 3 ), s = sign {f xx (0, 0)}. (7.3) η = β ± η R 3 x 1 = x 2, x 2 = 0, ẏ = y + g(x 1, x 2 ) (8.1) [1] g : R 2 R C 2 - g(0, 0) = 0, g(x 1, x 2 ) = O(x x 2 2) (8.1) 83

86 χ : R 2 R C { 1 (x 2 χ(x 1, x 2 ) = 1 + x 2 2 ε 2 ), 0 (x x 2 2 (2ε) 2 ) G(x 1, x 2 ) = χ(x 1, x 2 )g(x 1, x 2 ) ε x 1 = x 2, x 2 = 0, ẏ = y + G(x 1, x 2 ), (8.2) (8.1) (x 1, x 2 ) < ε (8.2) x 1 (t) = z 1 + z 2 t, x 2 = z 2, z j = x j (0) (8.3) h (8.2) y(t) = h(x 1 (t), x 2 (t)) h(x 1 (t), x 2 (t)) d dt h(x 1(t), x 2 (t)) = h(x 1 (t), x 2 (t)) + G(x 1 (t), x 2 (t)) (8.4) h (x 1, x 2 )- e t t h lim h(x 1(t), x 2 (t))e t = 0 t 84

87 (8.4) h(x 1 (t), x 2 (t)) (8.2) t 0 (8.3) h(z 1, z 2 ) = 0 e s G(z 1 + z 2 s, z 2 )ds (8.5) (8.2) (x 1 (0), x 2 (0), y(0)) = (z 1, z 2, h(z 1, z 2 )) (8.2) y(t) = h(z 1, z 2 )e t + = t t e s t G(z 1 + z 2 s, z 2 )ds 0 e s t G(z 1 + z 2 s, z 2 )ds s s = s t x j (s) = x j ( s + t) = x j ( s), z j = x j (0), j = 1, 2 x j d x 1 d s = x 2, d x 2 d s = 0 (8.6) x 1 ( s) = z 1 + z 2 s, x 2 ( s) = z 2 z j = x j (0) = x j ( t) z 1 = x j ( t) = z 1 + z 2 ( t), z 2 = x 2 ( t) = z 2 85

88 = = t 0 e s t G(z 1 + z 2 s, z 2 )ds e s G( z 1 + z 2 ( t) + z 2 ( s + t), z 2 )d s 0 e s G( z 1 + z 2 s, z 2 )d s = h( z 1, z 2 ). h(x 1, x 2 ) (8.2) (8.1) g y (8.5) h(x 1, x 2 ) = 0 e s G(x 1 (s), x 2 (s), h(x 1 (s), x 2 (s)))ds (8.7) (8.7) [1] 8.2 γ = 0, ẋ = γ x + f(x, y), ẏ = γy + g(x, y), (γ > 0, 1 γ > 0) y = h(x) ẋ = γ x + f(x, h(y)), 1 γ > 0 γ γ < γ ε x, y < ε 86

89 [1] X, Y X Y L(X, Y ) L L(X,Y ) := sup Lu Y u X =1 [10], X = Y L(X, X) L(X) X Y k C k (X, Y ) F : X Y, F C k (X, Y ) ( ) F C k = max j=0,...k sup D j F (x) L(X j,y ) x X C k (X, Y ) η F η (R, X) { } ( ) F η (R, X) := u C 0 (R, X) ; u Fη = sup e ηt u(t) X < t R F η (R, X) Fη L : X Y im L im L := {Lu Y ; u X} Y. L ker L ker L := {u X ; Lu = 0} X. 87

90 X Y L L(X, Y ) ρ(l) ρ ; ρ := {λ C ; λi L : X Y is bijective}. I L σ(l) σ σ := C \ ρ. X, Y, Z X Y Y Z Z du dt = Lu + N(u) (8.8) L N L L(X, Z) k 2 0 X V N C k (V, Y ) N(0) = 0, DN(0) = 0 D 88

91 N(0) = 0 u(t) 0 (8.8) L σ σ = σ + σ 0 σ σ + = {λ σ; Re λ > 0}, σ 0 = {λ σ; Re λ = 0}, σ = {λ σ; Re λ < 0}, Re λ λ 2 γ, γ sup Re λ < γ, λ σ 0 < inf λ σ + Re λ, sup Re λ < γ λ σ + σ 0, σ + L L(X, Z) L σ 0, σ + Γ {λ ; Re λ < γ} σ 0 Dunford ([7], Section III. 4, [21], 1.3 ) P 0 = 1 (λi L) 1 dλ L(Z, X) 2πi P 0 Γ P 2 0 = P 0, P 0 Lu = LP 0 u for all u X 89

92 dim(im P 0 ) Γ + {λ ; Re λ > 0} σ + P + = 1 (λi L) 1 dλ L(Z, X) 2πi Γ + P + P h P h P h = I (P 0 + P + ) P 2 h = P 0, P h Lu = LP h u for all u X P 0 L(X, Y ) X Y Y Z P h L(X) L(Y ) L(Z) E 0 = im P 0 X, E + = im P + X, Z h = im P h Z Z = E 0 E + X h E := E 0 E + L 0, L +, L h L E 0, E +, X h u X u = u 0 + u h + u +, u 0 = P 0 u E 0, u + = P + u E +, u h = P h u Z h, 90

93 X h = P h X, Y h = P h Y (8.8) du 0 dt = L 0u 0 + P 0 N(u), du + = L + u + + P + N(u), dt du h dt = L hu h + P h N(u) cut-off χ : E R, = 0, + χ(u ) = { 1 for u 1 0 for u 2 χ(u ) [0, 1] for all u E E cut-off ε (0, ε 0 ] P 0 N ε (u), P + N ε (u), u = u 0 + u + + u h N0(u ε 0 + u + + u h ) = (P 0 N)(u 0 χ(u 0 /ε) + u + χ(u + /ε) + u h ), u 0 E 0, N+(u ε 0 + u + + u h ) = (P + N)(u 0 χ(u 0 /ε) + u + χ(u + /ε) + u h ), u + E +, Z = E 0 E + X h du 0 dt = L 0u 0 + N0(u), ε du + = L + u + + N ε dt +(u), du h dt = L hu h + P h N(u) (8.9) 91

94 L 0, L +, L h e Lht w X C 3 e γt w X, w Z h, t > 0, e L +t w X C 1 e γ t w X, w E +, t R, r > 0 C 2 (r) e L 0t w X C 2 (r)e r t w X, w E 0, t R. γ cu γ cu = max{r, γ } N C 1 (X, Y ) γ cu < γ ε 0 u 0 X, u + X < ε 0 h C 0 (E 0 E + ; Z h ) : W cu loc := {(u 0 + u + + u h ) Z; u h = h(u 0 + u + )} (8.8) h(0, 0) = 0. u = u 0 + u + + u h E 0 E + X h = X du 0 dt = L 0u 0 + N0(u), ε u 0 E 0, du + = L + u + + N ε dt +(u), u + E +, du h dt = L hu h + P h N(u), u h X h (8.10) 92

95 (w 0 (t, w w ψ), w + (t, w w ψ)) w 0 (0) = w 0 (0, w w ψ) = w 0 0, w + (0) = w + (0, w w ψ) = w 0 + ẇ 0 = L 0 w 0 + N ε (w 0 + w + + ψ(w 0 + w + )), w 0 E 0 ẇ + = L + w + + N ε +(w 0 + w + + ψ(w 0 + w + )), w + E + (8.11) j E F C k,1 C k,1 (E; F ) := { C k,1 w C k,1 (E; F ); w j,lip D j w(x) D j w(y) := sup x,y E,x y x y E <, 0 j k w; C k,1 (E, F ) := w; C k (E; V ) + max 0 j k w j,lip. E = F C k,1 (E; E) = C k,1 (E) ψ(0, 0) = 0 ψ C 0,1 b (E; Z h ) T (T ψ)(w w 0 +) = 0 e L hs (P h N)(w 0 (s, w w ψ) + w + (s, w w ψ) + ψ(w 0 + w + )) ds T T h = h T h (8.8) C 0 - } 93

96 p p 1 ψ ψ 1 < p, ψ(w 0 + w + ) ψ( w 0 + w + ) Zh < p 1 ( w 0 w 0 E0 + w + w + E+ ) ψ N(u), w 0 E0 < ε, w + E+ < ε k (ε), = 0, +, h N (w ε 0 + w + + ψ) Y0 k (ε)ε, = 0, +, P h N h (w 0 + w + + ψ) Y+ k h (ε)ε, N (w ε 0 + w + + w h ) N ( ε w 0 + w + + w h ) Y0 κ (ε)( w 0 w 0 E0 + w + w + E+ + w h w h Yh ), = 0, +, P h N(w 0 + w + + w h ) P h N( w 0 + w + + w h ) Yh κ h (ε)( w 0 w 0 E0 + w + w + E+ + w h w h Yh ) T ψ(w0 0 + w+) 0 0 C 3 εκ h (ε) 0 e γs ds = C 3 εκ(ε)/γ. w 0 (t) = w 0 (t, w w ψ( w w +)), 0 w + (t) = w + (t, w w ψ( w w +)) 0 94

97 N(u) t 0 ψ w + (t, w w ψ(w 0 + w + )) w + (t, w w ψ( w 0 + w + )) E+ C 1 e γ t w 0 0 w 0 0 E0 +C 1 κ + (ε) 0 t e γ (s t) { w 0 w 0 E0 + w + w + E+ + ψ(w w 0 +) ψ( w w 0 +) Zh } ds C 1 e γ t w 0 0 w 0 0 E0 +C 1 κ + (ε)(1 + p 1 ) 0 t e γ (s t) { w 0 w 0 E0 + w + w + E+ } ds. w 0 (t, w w ψ(w w 0 +)) w 0 (t, w w ψ( w w 0 0)) E0 C 2 (r)e rt w 0 0 w 0 0 E0 +(1 + p 1 )C 2 (r)κ 0 (ε) 0 t e r(s t) { w 0 w 0 E0 + w + w + E+ } ds. 95

98 w 0 w 0 E0 + w + w + E+ 2 max{c 1, C 2 (r)}e max{γ,r}t { w 0 0 w 0 0 E0 + w 0 + w 0 + E+ } +2(1 + p 1 ) max{c 1 κ + (ε), C 2 (r)κ 0 (ε)} 0 t e max{γ,r}(s t) { w 0 w 0 E0 + w + w + E+ } ds. w 0 w 0 E0 + w + w + E+ 2C 4 { w0 0 w 0 0 X + w+ 0 w + 0 X }e γt, (8.12) C 4 = max{c 1, C 2 (r)}, γ = max{γ, r} + 2κ(ε)(1 + p 1 )C 4, κ(ε) = max{κ 0 (ε), κ + (ε)}. ε γ, γ p 1 ψ,c 4 L 0, L + γ = max{γ, r} + 2κ(ε)(1 + p 1 )C 4 < γ 96

99 T ψ(w w 0 +) T ψ( w w 0 2) 0 0 C 3 e γs P h N(w 0 + w + + ψ) P h N( w 0 + w + + ψ) X ds 0 C 3 κ h (ε) e γs { w 0 w 0 E0 + w + w + E+ + ψ(w 0 + w + ) ψ( w 0 + w + ) Zh } ds 0 C 3 κ h (ε)(c 4 + p 1 ){ w0 0 w 1 0 E0 + w+ 0 w 2 0 E+ } e (γ γ)s ds C 3 κ(ε)(c 4 + p 1 )(γ γ) 1 { w 0 0 w 0 1 E0 + w 0 + w 0 2 E+ }. ψ 1, ψ 2 C 0,1 (E 0 E +, Z h ) ψ j Lip < p 1 T ψ 1 T ψ C 3 κ 0 (ε) e γs { ψ 1 ψ w 0 (s, ψ 2 ) w 0 (s, ψ 2 ) E0 + w + (s, ψ 2 ) w + (s, ψ 2 ) E+ } ds C 3 κ 0 (ε) ψ 1 (w 0, w + ) ψ 2 (w 0, w + ) 0 + I 1, 0 I 1 := e γs( w 0 (s, w0, 0 w+, 0 ψ 1 ) w 0 (s, w0, 0 w0, 0 ψ 2 ) E0 + ) + w + (s, w0, 0 w+, 0 ψ 1 ) w + (s, w0, 0 w0, 0 ψ 2 ) E+ ds. 97

100 ψ j (w 0, w + ) X sup ψ j (w 0 + w + ) Zh = ψ j 0, j = 1, 2. w 0 E 0,w + E + w (t, ψ j ) = w (t, w w ψ j ), = 0, +, w + (t, ψ 1 ) w + (t, ψ 2 ) E+ 0 t C 1 κ + (ε) e L +(s t) {N ε +(w 0 (s, ψ 1 ) + w + (s, ψ 1 ) + ψ 1 ) N+(w ε 0 (s, ψ 2 ) + w + (s, ψ 2 ) + ψ 2 )} ds 0 t e γ (s t) { w 0 (s, ψ 1 ) w 0 (s, ψ 2 ) E0 E+ + w + (s, ψ 1 ) w + (s, ψ 2 ) E+ + ψ 1 ψ 2 0 }ds C 1 κ + (ε) ψ 1 ψ 2 0 (γ ) 1 (e γ t 1) +C 1 κ + (ε) 0 t e γ (s t) { w 0 (s, ψ 1 ) w 0 (s, ψ 2 ) E0 + w + (s, ψ 1 ) w + (s, ψ 2 ) E+ }ds 98

101 w 0 (t, ψ 1 ) w 0 (t, ψ 2 ) E0 0 t C 2 (r)κ 0 (ε) e L 0(s t) {N ε (w 0 (s, ψ 1 ) + w + (s, ψ 1 ) + ψ 1 ) N ε (w 0 (s, ψ 2 ) + w + (s, ψ 2 ) + ψ 2 )} ds 0 t E0 e r(s t) { w 0 (s, ψ 1 ) w 0 (s, ψ 2 ) E0 + w + (s, ψ 1 ) w + (s, ψ 2 ) E+ + ψ 1 ψ 2 0 }ds C 2 (r)κ 0 (ε) ψ 1 ψ 2 0 (r) 1 (e rt 1) +C 2 (r)κ 0 (ε) 0 t e r(s t) { w 0 (s, ψ 1 ) w 0 (s, ψ 2 ) E0 + w + (s, ψ 1 ) w + (s, ψ 2 ) E+ }ds t 0 w 0 (t, ψ 1 ) w 0 (t, ψ 2 ) E0 + w + (t, ψ 1 ) w + (t, ψ 2 ) E+ 2C 4 κ(ε) max{γ 1, r 1 }(e γcut 1) ψ 1 ψ C 4 κ(ε) 0 t e γ cu(s t) { w 0 (s, ψ 1 ) w 0 (s, ψ 2 ) E0 + w + (s, ψ 1 ) w + (s, ψ 2 ) E+ }ds w 0 (s, ψ 1 ) w 0 (s, ψ 2 ) E0 + w + (s, ψ 1 ) w + (s, ψ 2 ) E+ 2C 4 κ(ε)(min{γ, r}) 1 ψ 1 ψ 2 0 (e γ cut 1)e γ 2t, γ 2 = γ cu + 2C 4 κ(ε). 99

102 I 1 C 4 κ(ε)(min{λ +, r}) 1 ψ 1 ψ = C 4 κ(ε)(min{λ +, r}) 1 ψ 1 ψ 2 0 (λ γ 2 ) 1. ε γ γ cu 2C 4 κ(ε) > 0 e (γ C 4κ(ε))s + e (γ γcu 2C 4κ(ε))s ds γ max{γ, r} > 2 max{c 1, C 2 (r)} max{κ 0 (ε), κ + (ε)} (8.13) T C 0,1 (E 0 E +, Z h ) (u 0 +u + +u h ) = 0 X (8.8) h (8.8) (u 0 +u + +u h ) = 0 X u 0 = N1(u ε 0 + u + + u h ), u + = N2(u ε 0 + u + + u h ), u h = h(u 0 + u + ), u 0 (0) = 0, u + (0) = 0, u h (0) = 0 N ε 0(0, 0, h(0, 0)) = N ε +(0, 0, h(0, 0)) = h(0, 0) = 0. (8.13) γ cu = max{r, γ } < γ 100

103 N C 2 (X, Y ) γ cu < γ ε h (i) : h C 1,1 (E 0 E +, Z h ). (ii) h w (0, 0) = 0, w E, = 0, +, (i) : h(w0 0 + w+), 0 wj 0 E 0 w0 0 w + (w 0 (t, w + ), w + (t, w + )) ẇ 1 = L 1 w 0 + N ε 1(w 0 + w + + h(w 0, w + )), ẇ 2 = L 2 w + + N ε 2(w 0 + w + + h(w 0, w + )) (8.14) w (0) = w 0 := w (0, w w h(w w 0 +)), = 0, + (w 0 0, w 0 +) 101

104 T (1) (T (1) ψ (1) )(w w 0 +) = 0 e L hs N (1) (w 0 (s, w w h) + w 0 (s, w w h) + h, ψ (1) ) ds, N (1) (w 0 + w + + h, ψ (1) ) = ψ (1) P hn v (w 0 + w + + v) + P hn w 0 (w 0 + w + + h) + P hn w + (w 0 + w + + h) ( w 0 ( w 0 0 v=h (s, w w v) + ψ (1) w 0 v (s, w0 0 + w v) w + (s, w 0 w w+ 0 + v) + ψ (1) w + v (s, w0 0 + w+ 0 + v) ) v=h ) v=h K(ε) K(ε) 0 as ε 0 K(ε) < γ γ ε T (1) C 1 (E 0 E +, Z h ) K(ε) N (1) ψ (1), P h N, P h N v, w, P h N w, w, w 0 C 1, C 2 (r), C 3, r, γ w, ( = 0, + ) v T (1) ε (T (1) ) (j) ψ Lip ψ Lip, (j = 0, 1) 102

105 σ E 0 a > 0 w0 0 + aσ E 0 ζ(w0 0 + ; a, σ) := {h( w0 0 + aσ) + ) h(w0 0 + )}/a, θ(w 0 + w + + h; a, σ) := {P h N(w w h + ) P h N(w 0 + w + + h)}/a, h + := h(w 0 (t, (w aσ) + w 0 +) + w + (t, w aσ + w 0 +)), w + := w (t, (w aσ) + w h + ), = 0, +. ζ(w w 0 + ; a, σ) = 0 e L hs {θ(w 0 + w + + h; a, σ) + σn (1) (w 0 + w + + h, ζ/σ) σn (1) (w 0 + w + + h, ζ/σ)} ds. N C 2 (X; Y ) h, a 0 m(a) := sup θ(w 0 + w + + h; a, σ) σn (1) (w 0 + w + + h, ζ/σ) X 0. t [0, ) C 5 (a) G(a) := C 3 0 sup w 0 j <ε ζ(w w 0 +; a, σ) σψ (1) (w w 0 +) X e γs σn (1) 1 (w 0 + w + + h, ζ/σ) σn (1) 1 (w 0 + w + + h, ψ (1) ) X ds + C 3 γ m(a) C 5 (a)g(a) + C 3 γ m(a). G(a) 0 as a 0 103

106 ψ (1) h(w0 0 + w+) 0 w0 0 ψ (1) (w0 0 + w+) 0 h w 0 0 (w w 0 +) = ψ (1) (w w 0 +). (ii); w (s, h(0, 0)) = 0, ( = 0, + ), DN(0) = 0 ψ (1) T (1) h w 0 0 (0, 0) = 0. w + N C k (X; Y ), k = 1, 2, h C k 1 b (E 0 E +, Z h ) γ cu < γ h C k (E 0 E +, Z h ), k 2 (8.8) w 0 (t) + w + (t) E 0 E + ẇ 0 = L 0 w 0 + N ε 1(w 0 + w + + h(w 0, w + )), ẇ + = L + w + + N ε 2(w 0 + w + + h(w 0, w + )), (8.15) (8.10) u t u 0 (t) = w 0 (t) + O(e µt ), u + (t) = w + (t) + O(e µt ), u h (t) = h(u 0 (t), u + (t)) + O(e µt ) 104

107 µ (8.15) v(t) := u h (t) h(u 0 (t) + u + (t)) X h v = u h D u0 h(u 0 + u + ) u 0 D u+ h(u 0 + u + ) u + = L h u h + P h N(u 0 + u + + u h ) D u0 h(u 0 + u + )(L 0 u 0 + N0(u ε 0 + u + + u h )) D u+ h(u 0 + u + )(L 0 u 0 + N+(u ε 0 + u + + u h )) L h [h(u 0 + u + )] + L h [h(u 0 + u + )] (8.16) (8.17) w h = h(w 0 + w + ) t L h w h + P h N(w 0 + w + + h(w 0 + w + )) = D w0 h(w 0 + w + )(L 0 w 0 + N0(w ε 0 + w + )) +D w0 h(w 0 + w + )(L 0 w 0 + N0(w ε 0 + w + )). Lw h = L h h(w 0, w + ) L h h(u 0 + u + ) (8.10) L h h(u 0 + u + ) = P h N(u 0 + u + + h(u 0 + u + )) +D u0 h(u 0 + u + )(L 0 u 0 + N0(u ε 0 + u + )) +D u0 h(u 0 + u + )(L 0 u 0 + N0(u ε 0 + u + )). (8.16) v v = L h v + Q(u 0 + u + + v), 105

108 Q(u 0 + u + + v) = D u0 h(u 0 + u + ){N ε (u 0 + u + + h(u 0 + u + )) N ε (u 0 + u + + (v + h(u 0 + u + )))} +D u+ h(u 0 + u + ){N+(u ε 0 + u + + h(u 0 + u + )) N+(u ε 0 + u + + (v + h(u 0 + u + )))} +P h N(u 0 + u + + (v + h(u 0 + u + ))) P h N(u 0 + u + + h(u 0 + u + )). h C k (E 0 E +, Z h ), k 2 u, ũ E, ( = 0, + ) u h X h δ(0) = 0 δ(ε) Q(u 0 + u + + v)) Y δ(ε) v Xh. v(t) Xh C 3 v(0) Xh e γt + C 3 δ(ε) t 0 e γ(t s) v(s) Xh ds. v(t) Xh C 3 v(0) Xh e (γ C 3δ(ε))t. (8.18) u 3 h(u 0 + u + ) Xh C 3 u 3 (0) h(u 0 (0) + u + (0)) Xh e (γ C 3δ(ε))t φ := u w, ( = 0, +), φ v { φ = L φ + R (φ 0 + φ + + v), = 0, +, v = L h v + Q( (φ 0 + w 0 ) + (φ + + w + ) + v ), (8.19) R (φ 0 + φ + + v) = N ε ( (w 0 + φ 0 ) + (w + + φ + ) + (v + h(w 0 + φ 0 + w + + φ + ) ) ) N ε (w 0 + w + + h(w 0 + w + )), = 0,

109 η { F η (R, E) := η (γ, γ) T 0,, T + w C 0 (R, E); w Fη := sup e ηt w(t) E < t [0, ) φ 0 F η (R, E 0 ), φ + F η (R, E + ) (T 0 φ 0 )(t) := (T + φ + )(t) := t t e L 0(t s) R 0 (φ 0 + φ + + v) ds, e L +(t s) R + (φ 0 + φ + + v) ds }. T [T(φ 0 + φ + )](t) = (T 0 φ 0 )(t) + (T + φ + )(t) φ 0, φ + T (8.19) F η (R, E) T F η (R, E) N0, ε N+ ε R 0 (φ 0 + φ + ) E0 κ 0 (ε){(1 + p 1 )( φ 0 E0 + φ + E+ ) + v Xh }, R + (φ 0 + φ + ) E+ κ + (ε){(1 + p 1 )( φ 0 E0 + φ + E+ ) + v Xh }, 107

110 (8.18) T 0 φ 0 Fη κ 0 (ε) sup e ηt e L0(t s) R 0 (φ 0 + φ + + v) ds t 0 t E0 κ 0 (ε)c 2 (r)(1 + p 1 ) { } sup e ηt e r(s t) ( φ 0 E0 + φ + E+ + v Xh )} ds t 0 t κ 0 (ε)c 2 (r)(1 + p 1 ) { } sup e ηt e r(s t) ηs e ηs ( φ 0 E0 ) + φ + E+ + v Xh ) ds t 0 t κ 0 (ε)c 2 (r)(1 + p 1 ) sup e {( φ ηt 0 Fη (R,E 0 ) + φ + Fη (R,E + ) + v Fη (R,X h )) t 0 t } e r(s t) ηs ds κ 0(ε)C 2 (r)(1 + p 1 ) ( φ 0 Fη (R,E η r 0 ) + φ + Fη (R,E + ) + v Fη (R,X h )) < γ < η < γ (8.18) T + φ + Fη κ + (ε) sup e ηt e L +(t s) R 0 (φ 0 + φ + + v) ds t 0 t E+ κ + (ε)c 1 (1 + p 1 ) { } sup e ηt e γ (s t) ( φ 0 E0 + φ + E+ + v Xh )} ds t 0 t κ + (ε)c 1 (1 + p 1 ) sup e {( φ ηt 0 Fη (R,E 0 ) + φ + Fη (R,E + ) + v Fη (R,X h )) t 0 t } e γ (s t) ηs ds κ +(ε)c 1 (1 + p 1 ) ( φ η γ 0 Fη (R,E 0 ) + φ + Fη (R,E + ) + v Fη (R,X h )) < 108

111 T F η (R, E) T ε φ 0, φ + φ 0, φ +, v(0) = ṽ(0) v(t), ṽ(t) X h Q(φ 0 + φ + + v) Q( φ 0 + φ + + ṽ) Y max{ v Xh, ṽ Xh } D φ0 h(φ 0 + φ + ) D φ0 h( φ 0 + φ + ) Xh + max{ v Xh, ṽ Xh } D φ+ h(φ 0 + φ + ) D φ+ h( φ 0 + φ + ) Xh + P h N(φ 0 + φ + + v + h(φ 0 + φ + )) P h N(φ 0 + φ + + h(φ 0 + φ + )) P h N( φ 0 + φ + + ṽ + h( φ 0 + φ + )) + P h N( φ 0 + φ + + h( φ 0 + φ + )) Xh 2p 2 κ(ε) max{ v Xh, ṽ Xh }( φ 0 φ 0 E0 + φ + φ + E+ ) +κ h (ε)[2(1 + p 1 )( φ 0 φ 0 E0 + φ + φ + E+ ) + v ṽ Xh ]. κ(ε) = max{κ 0 (ε), κ + (ε)}, p 2 = max{ D u0 h(u 0 + u + ) Lip, D u+ h(u 0 + u + ) Lip } φ = φ 0 + φ + E := E 0 E +, φ = φ 0 + φ + E := E 0 E + t v(t) ṽ(t) Xh κ h (ε)c 3 e γ(t s) v(s) ṽ(s) Xh ds + I 2, 0 I 2 2C 3 (1 + p 1 ) max{κ(ε), κ h (ε)} t 0 (8.18) e γ(t s) (p 2 max{ v(s) Xh, ṽ(s) Xh } + 1) φ(s) φ(s) E ds. max{ v(s) Xh, ṽ(s) Xh } C 3 v(0) Xh 109

112 I 2 2C 3 (1 + p 1 ) max{κ(ε), κ h (ε)} 2C 3 (1 + p 1 ) max{κ(ε), κ h (ε)}(1 + C 3 p 2 v(0) Xh ) t 0 e γ(t s) ηs e ηs φ(s) φ(s) E ds. 2C 3 (1 + p 1 ) max{κ(ε), κ h (ε)}(1 + C 3 p 2 v(0) Xh ) φ φ Fη(R,E) t 0 e γ(t s) ηs ds γ < η < γ I 2 2C 3(1 + p 1 ) max{κ(ε), κ h (ε)} (1+C 3 p 2 v(0) Xh ) φ γ η φ Fη (R,E)(e ηt e γt ). C 6 (ε) := 2C 3(1 + p 1 ) max{κ(ε), κ h (ε)} η γ (1 + C 3 p 2 v(0) Xh ) v(t) ṽ(t) Xh C 6 (ε) φ φ Fη (R,E)(e ηt e γt ) t +κ h (ε)c 3 e γ(t s) v(s) ṽ(s) Xh 0 ds. v(t) ṽ(t) Xh C 6 (ε) φ φ Fη(R,E)(e ηt e γt )e C 3κ h (ε)t T + φ + T + φ+ E+ (t) κ(ε)(1 + p 1 )C 1 e γ (s t) { φ φ E + v ṽ Xh } ds. t 110

113 t t e γ (s t) v ṽ Xh ds C 6 (ε) φ φ Fη(R,E) t e γ (s t) (e ηs e γs )e C 3κ h (ε)s ds C 6 (ε) φ φ Fη (R,E) { e { η+c 3 κ h } (ε)}t γ η + C 3 κ h (ε) + e{ γ+c3κh(ε)}t γ γ + C 3 κ h (ε) 2C 6 (ε) φ φ e { η+c 3κ h (ε)}t Fη(R,E) η γ e γ (s t) φ φ E ds φ φ Fη (R,E) t e γ (s t) ηs ds φ φ Fη (R,E) e ηt η γ φ φ Fη (R,E) e { η+c 3κ h (ε)}t η γ φ φ Fη (R,E) e { η+c 3κ h (ε)}t η γ T + φ + T + φ+ E+ (t)e { η+c 3κ h (ε)}t κ(ε)(1 + p 1 )C 1 (2C 6 (ε) + 1) φ φ Fη (R,E) η γ (T + φ + )(t) γ < η < γ η F η (R, E + ) ε > 0 γ < η C 3 κ h (ε) < γ F η (R, E + ) F {η C3 κ h (ε)}(r, E + ). η := η C 3 κ h (ε) γ < η := η C 3 κ h (ε) < γ 111

114 T + φ + T + φ+ F η (R,E + ) (2C 6 (ε) + 1) κ(ε)(1 + p 1 )C 1 φ η γ φ F η (R,E). C 1 C 2 (r) γ r T 0 φ 0 T 0 φ0 E+ (t)e { η+c 3κ h (ε)}t κ(ε)(1 + p 1 )C 2 (r) (2C 6(ε) + 1) φ φ Fη(R,E) η r T 0 φ 0 T 0 φ0 F η (R,E 0 ) κ(ε)(1 + p 1 )C 2 (r) (2C 6(ε) + 1) φ η r φ F η (R,E) γ cu = max{r, γ } T + φ + T + φ+ F η (R,E 0 ) κ(ε)(1 + p 1 )C 1 (2C 6 (ε) + 1) η γ cu φ φ F η (R,E), (8.20) T 0 φ 0 T 0 φ0 F η (R,E 0 ) κ(ε)(1 + p 1 )C 2 (r) (2C 6(ε) + 1) η γ cu φ φ F η (R,E). (8.21) (8.20) (8.21) max{r, γ } = γ cu < C 3 κ(ε) < γ ε γ cu < η < γ η T : F η (R, E) F η (R, E) 112

115 S : X X S : (w w v(0)) (u 0 (t) + u + (t) + v(0)) S w = w 0 + w + E + E 0 = E, u = u 0 + u + E w(0) w(0) S(w(0) + v(0)) S( w(0) + v(0)) (u(t) + v(0)) = S(w(0) + v(0)), (ũ(t) + v(0)) = S( w(0) + v(0)) w(t), w(t) w(0) = w(0) w(t; w(0)) = w(t; w(0)), t 0. φ(t) = u(t) w(t) E, φ(t) = ũ(t) w(t) E w(t) = u(t) φ(t), w(t) = ũ(t) φ(t). w(t) w(t) E u(t) ũ(t) E + φ(t) φ(t) E. 113

116 u(t) = ũ(t) w(t) w(t) E φ(t) φ(t) E. w(0) w(0) w(t) w(t) (8.12) γ > α > γ cu + 2 max{κ 0 (ε), κ + (ε)}(1 + p 1 ) max{c 1, C 2 (r)} α t e αt w(t) w(t) E. γ cu < η < γ η φ(t) F η (R, E) γ cu < α < γ α e αt φ(t) φ(t) E <. w(t) = w(t), t 0 w(0) w(0) u(t) ũ(t). (8.8) L σ = σ + σ 0 + σ + σ = σ + σ σ 114

117 γ > γ sup λ < γ, λ σ γ < inf λ, sup λ < 0 λ σ λ σ γ scu = max{γ, r, γ } γ scu < γ 8.8) : W scu loc := {u = u h + u + u 0 + u + ; u h = h(u + u 0 + u + )} u σ Dunford P u P u W scu loc h C k 1 N C k [1] Carr J, Applications of Center Manifold Theory, Springer,1981. [2] Engel J. N and Nagel R, One-Parameter Semigroups for Linear Evolution Equations, Springer, [3] Guckenheimer J and Holmes P Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, 1983 [4] Henry D, Geometric Theory of Semilinear Parabolic Equations, springer, [5] Hirsch W M, Smale S and Devaney L R, Differential Equations, Dynamical systems, and Introduction to Chaos, 3 rd ed., Academic Press,

118 [6] Haragus M and Iooss G, Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimentional Dynamical Systems, Springer, [7] Kato T, Perturbation theory for linear operators, Springer, 2 nd, springer, [8] Kuznetsov A Y, Elements of Applied bifurcation theory, 3rd ed., Springer, [9] Wiggins S, Introduction to Applied Nonlinear Dynamical Systems and Chaos 2 nd ed., Springer, [10] Adams A R and Furnier J. F. J Sobolev Spaces, 2 nd ed., Elsevier, [11] Armbruster D, Gukenheimer J, and Holmes P Heteroclinic cycles and Modulated Travelling waves in system with O(2) symmetry, Physica,29D(1988),pp [12] Armbruster D, Gukenheimer J, and Holmes P Kuramoto- Sivashinsky Dynamics on the center-unstable manifold, SIAM J. Appl. Math., 49(1989), pp [13] Dumortier F and Kokubu H, Chaotic dynamics in Z 2 - equivariant unfoldings of codimension three singularities of vector fields, Ergodic Theory and Dynamical Systems, vol. 20 (2000), [14] Elphick C, Tirapegui E, Brachet E M, Coullet P and Ioss G. A simple global characterization for normal forms of singular vector fields, Physica 29D (1987),

119 [15] Hartman P, A lemma in the theory of structural stability of differential equations, Proceedings of the American Mathematical Society, vol. 11(1960), [16] Ogawa T and Okuda T, Oscillatory dynamics in a reactiondiffusion system in the presence of 0:1:2 resonance, Networks and Heterogeneous Media, vol. 7 (2012, Dec.), no. 4, [17] Ogawa T and Sakamoto O T, Double zero degeneracy in an integro-differential reaction-diffusion system in the presence of 0:1:2 resonance: Time-periodic solutions, Heteroclinic cycles, Homoclinic orbits, preprint. [18] [19], [20],, 2001 [21]

Shunsuke Kobayashi 1 [6] [11] [7] u t = D 2 u 1 x 2 + f(u, v) + s L u(t, x)dx, L x (0.L), t > 0, Neumann 0 v t = D 2 v 2 + g(u, v), x (0, L), t > 0. x

Shunsuke Kobayashi 1 [6] [11] [7] u t = D 2 u 1 x 2 + f(u, v) + s L u(t, x)dx, L x (0.L), t > 0, Neumann 0 v t = D 2 v 2 + g(u, v), x (0, L), t > 0. x Shunsuke Kobayashi [6] [] [7] u t = D 2 u x 2 + fu, v + s L ut, xdx, L x 0.L, t > 0, Neumann 0 v t = D 2 v 2 + gu, v, x 0, L, t > 0. x2 u u v t, 0 = t, L = 0, x x. v t, 0 = t, L = 0.2 x x ut, x R vt, x

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

ver.1 / c /(13)

ver.1 / c /(13) 1 -- 11 1 c 2010 1/(13) 1 -- 11 -- 1 1--1 1--1--1 2009 3 t R x R n 1 ẋ = f(t, x) f = ( f 1,, f n ) f x(t) = ϕ(x 0, t) x(0) = x 0 n f f t 1--1--2 2009 3 q = (q 1,..., q m ), p = (p 1,..., p m ) x = (q,

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

xia2.dvi

xia2.dvi Journal of Differential Equations 96 (992), 70-84 Melnikov method and transversal homoclinic points in the restricted three-body problem Zhihong Xia Department of Mathematics, Harvard University Cambridge,

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

sakigake1.dvi

sakigake1.dvi (Zin ARAI) arai@cris.hokudai.ac.jp http://www.cris.hokudai.ac.jp/arai/ 1 dynamical systems ( mechanics ) dynamical systems 3 G X Ψ:G X X, (g, x) Ψ(g, x) =:Ψ g (x) Ψ id (x) =x, Ψ gh (x) =Ψ h (Ψ g (x)) (

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha 63 KdV KP Lax pair L, B L L L / W LW / x W t, t, t 3, ψ t n / B nψ KdV B n L n/ KP B n L n KdV KP Lax W Lax τ KP L ψ τ τ Chapter 7 An Introduction to the Sato Theory Masayui OIKAWA, Faculty of Engneering,

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

* 1 2014 7 8 *1 iii 1. Newton 1 1.1 Newton........................... 1 1.2............................. 4 1.3................................. 5 2. 9 2.1......................... 9 2.2........................

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

Morse ( ) 2014

Morse ( ) 2014 Morse ( ) 2014 1 1 Morse 1 1.1 Morse................................ 1 1.2 Morse.............................. 7 2 12 2.1....................... 12 2.2.................. 13 2.3 Smale..............................

More information

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2. A A 1 A 5 A 6 1 2 3 4 5 6 7 1 1.1 1.1 (). Hausdorff M R m M M {U α } U α R m E α ϕ α : U α E α U α U β = ϕ α (ϕ β ϕβ (U α U β )) 1 : ϕ β (U α U β ) ϕ α (U α U β ) C M a m dim M a U α ϕ α {x i, 1 i m} {U,

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA  appointment Cafe D 1W II K200 : October 6, 2004 Version : 1.2, kawahira@math.nagoa-u.ac.jp, http://www.math.nagoa-u.ac.jp/~kawahira/courses.htm TA M1, m0418c@math.nagoa-u.ac.jp TA Talor Jacobian 4 45 25 30 20 K2-1W04-00

More information

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

1   nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC 1 http://www.gem.aoyama.ac.jp/ nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC r 1 A B B C C A (1),(2),, (8) A, B, C A,B,C 2 1 ABC

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v 12 -- 1 4 2009 9 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 c 2011 1/(13) 4--1 2009 9 3 x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

ohp_06nov_tohoku.dvi

ohp_06nov_tohoku.dvi 2006 11 28 1. (1) ẋ = ax = x(t) =Ce at C C>0 a0 x(t) 0(t )!! 1 0.8 0.6 0.4 0.2 2 4 6 8 10-0.2 (1) a =2 C =1 1. (1) τ>0 (2) ẋ(t) = ax(t τ) 4 2 2 4 6 8 10-2 -4 (2) a =2 τ =1!! 1. (2) A. (2)

More information

08-Note2-web

08-Note2-web r(t) t r(t) O v(t) = dr(t) dt a(t) = dv(t) dt = d2 r(t) dt 2 r(t), v(t), a(t) t dr(t) dt r(t) =(x(t),y(t),z(t)) = d 2 r(t) dt 2 = ( dx(t) dt ( d 2 x(t) dt 2, dy(t), dz(t) dt dt ), d2 y(t) dt 2, d2 z(t)

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

II 1 II 2012 II Gauss-Bonnet II

II 1 II 2012 II Gauss-Bonnet II II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

43433 8 3 . Stochastic exponentials...................................... 3. Girsanov s theorem......................................... 4 On the martingale property of stochastic exponentials 5. Gronwall

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

Gelfand 3 L 2 () ix M : ϕ(x) ixϕ(x) M : σ(m) = i (λ M) λ (L 2 () ) ( 0 ) L 2 () ϕ, ψ L 2 () ((λ M) ϕ, ψ) ((λ M) ϕ, ψ) = λ ix ϕ(x)ψ(x)dx. λ /(λ ix) ϕ,

Gelfand 3 L 2 () ix M : ϕ(x) ixϕ(x) M : σ(m) = i (λ M) λ (L 2 () ) ( 0 ) L 2 () ϕ, ψ L 2 () ((λ M) ϕ, ψ) ((λ M) ϕ, ψ) = λ ix ϕ(x)ψ(x)dx. λ /(λ ix) ϕ, A spectral theory of linear operators on Gelfand triplets MI (Institute of Mathematics for Industry, Kyushu University) (Hayato CHIBA) chiba@imi.kyushu-u.ac.jp Dec 2, 20 du dt = Tu. (.) u X T X X T 0 X

More information

dynamics-solution2.dvi

dynamics-solution2.dvi 1 1. (1) a + b = i +3i + k () a b =5i 5j +3k (3) a b =1 (4) a b = 7i j +1k. a = 14 l =/ 14, m=1/ 14, n=3/ 14 3. 4. 5. df (t) d [a(t)e(t)] =ti +9t j +4k, = d a(t) d[a(t)e(t)] e(t)+ da(t) d f (t) =i +18tj

More information

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1  appointment Cafe David K2-2S04-00 : C 2S III IV K200 : April 16, 2004 Version : 1.1 TA M2 TA 1 10 2 n 1 ɛ-δ 5 15 20 20 45 K2-2S04-00 : C 2S III IV K200 60 60 74 75 89 90 1 email 3 4 30 A4 12:00-13:30 Cafe David 1 2 TA 1 email appointment Cafe

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

23 7 28 i i 1 1 1.1................................... 2 1.2............................... 3 1.2.1.................................... 3 1.2.2............................... 4 1.2.3 SI..............................

More information

untitled

untitled 20010916 22;1017;23;20020108;15;20; 1 N = {1, 2, } Z + = {0, 1, 2, } Z = {0, ±1, ±2, } Q = { p p Z, q N} R = { lim a q n n a n Q, n N; sup a n < } R + = {x R x 0} n = {a + b 1 a, b R} u, v 1 R 2 2 R 3

More information

( ) Loewner SLE 13 February

( ) Loewner SLE 13 February ( ) Loewner SLE 3 February 00 G. F. Lawler, Conformally Invariant Processes in the Plane, (American Mathematical Society, 005)., Summer School 009 (009 8 7-9 ) . d- (BES d ) d B t = (Bt, B t,, Bd t ) (d

More information

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0, .1.1 Y K L Y = K 1 3 L 3 L K K (K + ) 1 1 3 L 3 K 3 L 3 K 0 (K + K) 1 3 L 3 K 1 3 L 3 lim K 0 K = L (K + K) 1 3 K 1 3 3 lim K 0 K = 1 3 K 3 L 3 z = f(x, y) x y z x-y-z.1 z = e x +xy y 3 x-y ( ) z 0 f(x,

More information

KENZOU

KENZOU KENZOU 2008 8 2 3 2 3 2 2 4 2 4............................................... 2 4.2............................... 3 4.2........................................... 4 4.3..............................

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k 7 b f n f} d = b f n f d,. 5,. [ ] ɛ >, n ɛ + + n < ɛ. m. n m log + < n m. n lim sin kπ sin kπ } k π sin = n n n. k= 4 f, y = r + s, y = rs f rs = f + r + sf y + rsf yy + f y. f = f =, f = sin. 5 f f =.

More information