xia1.dvi

Size: px
Start display at page:

Download "xia1.dvi"

Transcription

1 Journal of Differential Equations (994), 0, Arnold diffusion and oscillatory solutions in the planar three-body problem Zhihong Xia Center for Dynamical Systems and Nonlinear Studies Georgia Institute of Technology, Atlanta, Georgia Abstract () (V.I.Arnold, 964, Dokl. Acad. Nauk SSSR 56, 9) (2) (escape) (3) (pseudo Arnold difusion) (4). [2] n (Weinstein[20], Arnold[4]) 2 n [2] Holmes and Marsden[9] Lim[0] [2] ( [2], Holmes and Marsden[9], Robinson[7] ) Xia[2]

2 6 Sitnikov Sitnikov[9] m 3 =0 Alekseev[] m 3 > 0 McGehee[] Moser[3] Sitnikov Easton and McGehee[8] - - Easton[6] - Robinson[6] Easton[7] KAM 7 ( S 3 ) S 3 S 3 S 3 S 3 S 3 (exact) KAM S 3 S 3 (pseudo Arnold difusion) 7 2. m,m 2 m 3 3 2

3 r, r 2, r 3 m,m 2 m 3 h C Robinson[6] Easton[6] [6] q R 2 m m 2 Q R 2 m m 2 m 3 q = r 2 r, Q = ( r 3 m r + m 2 r 2 m + m 2 ) = Mμ r 3. M = m + m 2 + m 3 μ = m + m 2 p R 2 P R 2 q Q Q = k P, Ṗ = Mk Q 3 Q + O( Q 3 ), q = k2 p, ṗ = μk 2 q 3 q + O( Q 3 ), () k = m 3 μm k 2 = m m 2 μ ω( α) t ( )q Q P m 3 Q = α = Mμ Q = αx 2 s Q = αx 2 s P = k αys + k αx 2 ρis. is s ρ m 3 m 3 () s q = zs p = k 2 μ ws, q p z w( ) ẋ = 2 x3 y, ẏ = μx 4 + O(x 6 ), ż = μ w + O(x 4 ), ẇ = μ 2 z 3 z + O(x 4 ), ṡ = x 4 ρis, ρ = O(x 6 ). (2) C = m 3 ρ + k2 2 2μi (zw wz), h = 2 m 3y k3 2 μ 2 ww + m m 2 z + O(x 2 ). 3

4 (2) s s m 3 0 ρ ρ C m 3 =0 ρ m m 2 z =0 Levi-Civita z =2μξ 2, w = μh ηξ, K =4(ξξ + ηη)μξξ, K ẋ = 2 Kx3 y, ẏ = Kμx 4 + O(x 6 ), ξ = η + O(x 4 ), η = ξ + O(x 4,y 2 ), ρ = O(x 6 ). (3) h = H = 2 m 3y 2 k2 3(ξξ + ηη)+o(x2 ), C = m 3 ρ + k2 2 μ hi (ξη ηξ). x =0 H = h<0 y x =0 y S 3 Hopf ω ( α ) t ( ) x(t) y(t) ω ( α ) x =0 y =0 3 S 3 W s (S 3 )( W u (S 3 )) x>0 S 3 (normally hyperbolic) (3) x y x 3 W s (S 3 ) W u (S 3 ) Robinson 2.(Robinson[6]). (a) (3) {x 0} S 3 (x =0 )C W s (S 3 ) {x>0} W u (S 3 ) {x>0} (b) π : S 3 S 3 / = S 2 S 3 / = S 2 Hopf α : W u (S 3 ) S 2 W u (S 3 ) S 3 α π ω : W s (S 3 ) S 2 α ω C ( {x >0} ) 4

5 (graph transform) Robinson[6] 3. H ε (q, p, x, y) =F (q, p)+g(x, y)+εh (q, p, x, y, t). (4) (q, p, x, y) 2(n +) M q p x =(x,x 2,...,x n ) y =(y,y 2,...,y n ) ε H t 2π - (θ,θ 2,...,θ n,i,i 2,...,I n ) (4) H 0 = F (q, p)+g(x, y) =F (q, p)+ H ε = H 0 (q, p, I)+εH (q, p, θ, I, t). n G i (I i ), i= (5) H θ,θ 2,...,θ n t 2π Ω i (I i )= G i(i i ) I i 0, (4) (5) {(q, p, θ, I, t) t = t 0 [0, 2π)} Σ t 0 Π :Σ t 0 Σ t 0 Σ t 0 Π Σ t 0 ε =0 (5) F (q, p) (q 0,p 0 ) γ =(q(t), p(t)) H 0 Σ t 0 n T (h,h 2,...,h n ) n I i = h i =, i =, 2,...,n t = t 0, θ i [0, 2π), i =, 2,...,n q = q 0, p = p 0. (6) T (h,h 2,...,h n ) (n +) I i = h i i =, 2,...,n t = t 0, θ i S q = q(s), p = p(s), s R, n T (h,h 2,...,h n ) 5

6 ε 0 Σ t 0 p = p 0,q = q 0 2n 2 N 0 ε 0 N 0 Σ t 0 N ε N ε N Σ t 0 2- N ε 2- KAM(Kolmogorov-Arnold-Moser) N ε Ω i (I i )= G i (I i )/ I i 0 T (h,h 2,...,h n ) T ε (h,h 2,...,h n ) T ε (h,h 2,...,h n ) T ε (h,h 2,...,h n ) ε ε =0 2 ε 0 (Arnold[4], Weinstein[20]) 2 [2,2,9] T ε (h,h 2,...,h n ) λ (tangle) T ε (h,h 2,..., h n ) Tε,T2 ε,...,tk ε i<k Tε i i+ Tε T ε i+ Tε i λ i j k Tε i T ε j T ε j T ε i (erratic) H 0 KAM ε KAM ε 0 6

7 (escape) 4. (reduction) m m 2 m 3 m m 2 s = e iθ, z = re iφ, θ, r, φ μ = m + m 2 = (2) x ẋ = 2 x3 y, ẏ = x 4 + x 6 ρ 2 + m 2 g (x, r, φ)+o(m 3,m 2 2), ρ = m 2 g 2 (x, r, φ)+o(m 3,m 2 2), θ = x 4 ρ, ż = w x 4 ρzi, ẇ = z 3 z x 4 ρwi + O(m 3 ). (7) g (x, r, φ) g 2 (x, r, φ) g (x, r, φ) =x 4 +2x 6 r cos φ + x 4 + x 6 r cos φ (x 4 2x 2 r cos φ +) 3/2, g 2 (x, r, φ) = x 6 r sin φ + x 6 r sin φ (x 4 2x 2 r cos φ +) 3/2. θ θ m 3 =0 m m 2 a( e r = 2 ) +ecos(φ + θ), φ + θ = φ 0 + θ 0 + a 3/2 (t +2esin t)+o(e 2 ). ( ) ( ) /2 a = 2h e = +2 hc 2 m 2 ( m 2 ) m 3 2( m 2 ) 3. h C a = h = 2 m 2( m 2 ) 7

8 e =0 2hC 2 + m 3 2 ( m 2) 3 =0 Jacobi 2 y2 + 2 x4 ρ 2 U ρ = J. (8) J Jacobi U m m 2 ) U = x 4 + m 2 x ( 2 x 2 r cos φ + + O(m 2 ( 2x 2 r cos φ + x 4 ) 3/2 2 ). e 0 m 3 0 (8) J J w = Re iφ, 2 R2 r = m 2 ( m 2 ) h + O(m 3 )= 2 + O(m 3), Rr sin(φ φ) =m 2 ( m 2 ) C + O(m 3 )= e 2 + O(m 3 ). r R 2 φ Φ r = r(φ, Φ,e)=+O(m 3,e), R = R(φ, Φ,e)=+O(m 3,e). t φ dφ dt = x4 ρ + O(m 3,e), (7) dx dφ = x 4 ρ + O(m 3,e), dy dφ = x4 + x 6 ρ 2 + m 2 g (x, r, φ) + O(m x 4 3,m 2 2 ρ,e), dj dφ = m 2eF (x, y, J, Φ,φ)+O(m 3,m 2 2,e2 ), dφ dφ =+O(m 3,m 2,e). 2 x3 y (9) F x, y, J, Φ φ F (9) m 2,e m 3 ue (φ ψ)i = e φi + R 2 r sin(φ φ)ie Φi. (0) 8

9 u u = e + O(m 3 ) u ( 0 m 3 e ) ψ ψ Φ x, y, J ψ φ dx dφ = 2 x3 y x 4 ρ + O(m 3,e), dy dφ = x4 + x 6 ρ 2 + m 2 g (x, r, φ) x 4 + O(m ρ 3,m 2 2,e), dj dφ = 2m ( ) 2ex 4 sin φ cos ψ x ρ ( 2x 2 cos φ + x 4 ) 5/2 + O(m 3,m 2 2,e 2 ), dψ dφ = x 4 ρ + O(e, m 3). () ψ (0) 0 m 3 e m 3 = e =0 ψ () 5. m 3 = e =0 r = dx dφ = x 4 ρ, dy dφ = x4 + x 6 ρ 2 + m 2 g (x, r, φ) + O(m 2 x 4 2 ρ ), dj dφ =0, dψ dφ = x 4 ρ. 2 x3 y ρ = ρ 0 m 2x 2 ( ) x 2 cos φ + + O(m 2 x 4 ρ 0 ( 2x 2 cos φ + x 4 ) 2), 3/2 ρ 0 = ± x 4 (y 2 2x 2 2J), x 4 (2) (3) ± m 3 J x y ψ m 2 =0 ρ = J 9

10 dx dφ = 2 x3 y +x 4 J, dy dφ = x4 + x 6 ρ 2 +x 4 J, dj dφ =0, dψ dφ = +x 4 J. (4) H(x, y, J) = 2 y2 + 2 x4 J 2 x 2. H(x, y, J) ( ) Figure J H(x, y, J) x y Figure (4) x y (0, 0) x 3 x 3 (0, 0) φ x = ξ(φ) y = η(φ) η(0) = 0 ξ(φ(t)) η(φ(t)) ξ(t, ρ) = 2 (3t ) 2/3 ( ), 2/3 + 9t2 + ρ 6 + 3t 9t2 + ρ 6 ρ 2 ± 2ξ η(t, ρ) = 2 (t) ξ 4 (t)ρ 2 for x 0, 2ξ 2 (t) ξ 4 (t)ρ 2 for x 0. (5) 0

11 ± ρ x 2 J ξ(0) = 2 J J = ± 2 x x = O x y (4) (2) m 2 J ψ φ 0 [0, 2π) Σ φ 0 φ = φ 0 Π Σ φ 0 ( ) O Π McGehee [] Robinson 2.[6] W s (O) W u (O) x>0 Xia[2] J W s (O) W u (O) m 2 e m 3 2 Σ φ 0=0 x 2 Σ φ 0=π x m 3 m m 2 m 3 ω m 3 α ( ) (Fig.2 ) p p γ γ p γ (ξ(φ),η(φ)), <φ< p γ (ξ(φ + π),η(φ + π)) <φ< Xia[2] J m 2 γ γ m 2 J Figure 2 R p 2 W s (O) W u (O) (Fig.3 ) Π q R k = k(q) Π k (q) R ( ) k>0 q R D Π(q) =Π k (q) for all q D.

12 Π R Π D (shift) D (Moser[3] ) Figure Π I D S = N Z ( ) I Π S τ τ : S I σ S Πτ = τσ. φ 0 =0 Σ φ 0 p x x ε>0 k p ε p 2k t φ n p n I 5. ( nnnn, nnn ) γ n n p n p n p n Π p n W s (p n ) W u (p n ) 5. I n p n p 0 O W s (O) W u (O) (C ) W s (p n ) W u (O) W u (O) W s (O) W s (O) W u (p n ) λ (inclination lemma) n W u (p n ) W s (p n ) n p n Π p n n Π (Π n = Π ) (2) ψ 2

13 Ω n Ω n = {(x, y, J, ψ, φ) (x, y)=p n (J); φ =0;ψ S ; J T R}. T T =( 2+δ, 2+δ 2 ) δ 2 >δ > 0 δ δ 2 Ω n Π Π n Π Ω n δ 2 >δ > 0 Π n J T ψ S Ω n 5.. n δ 2 >δ > 0 ε>0 C J = ( 2+δ, 2+δ 2 ) 0 <m 2 ε 0 Ω n Π f n (C) Π n (J) =J, Πn (ψ) =ψ + f n (J); J T df n (J)/dJ 0. (4) Π n (J) =J Π n (ψ) = 2nπ 0 +x 4 dφ + ψ, J x γ n n m 2 γ n v =( x 2 ρ 2 )s yρis. (6) v m 2 =0 dv dφ = 2m 2x 2 ρg 2 (x, r, φ)s + m 2 (ρg (x, r, φ)+yg 2 (x, r, φ))is x 4 + O(m 2 ρ 2). (7) α S v x v = v e αi dα dφ = 2m 2x 2 ρ 2 yg 2 (x, r, φ)+m 2 ( x 2 ρ 2 )(ρg (x, r, φ)+yg 2 (x, r, φ)) (y 2 ρ 2 +( x 2 ρ 2 ) 2 )( x 4 ρ) = m 2( + x 2 )x 4 y sin φ + m 2 ( x 2 ρ 2 )ρx 4 ( + 2x 2 cos φ) (y 2 ρ 2 +( x 2 ρ 2 ) 2 )( x 4 ρ) m 2x 4 [( + x 2 ρ 2 )y sin φ +( x 2 ρ 2 )p( x 2 cos φ)] ( 2x 2 cos φ + x 4 ) 3/2 (y 2 ρ 2 +( x 2 ρ 2 ) 2 )( x 4 ρ) + O(m2 2). + O(m 2 2) (8) 3

14 m 2 =0 α m 2 Δα(γ) γ α Δα(γ) γ m 2 α Δα(γ) ( 2m2 x 2 ρ 2 yg 2 (x, r, φ)+m 2 ( x 2 ρ 2 ) ) (ρg (x, r, φ)+yg 2 (x, r, φ)) Δα(γ) = (y 2 ρ 2 +( x 2 ρ 2 ) 2 )( x 4 dφ + O(m 2 ρ) 2). p = J x y γ m 2 Fig. x y x = ξ(t, ρ),y = η(t, ρ) ξ(t, ρ) =ξ( t, ρ) η(t, ρ) = η( t, ρ) Δα(γ) = θ m 2 ( + ξ 2 ρ 2 )ξ 4 η sin(t θ) +m 2 ( ξ 2 ρ 2 )ρξ 4 ( + 2ξ 2 cos(t θ))dt m 2 ξ 4 ( + ξ 2 ρ 2 )η sin(t θ) + dt ( 2ξ 2 cos(t θ)+ξ 4 ) 3/2 m 2 ξ 4 ( ξ 2 ρ 2 )ρ( ξ 2 cos(t θ)) dt + O(m 2 ( 2ξ 2 cos(t θ)+ξ 4 ) 3/2 2 ). θ(t, ρ) = t 0 (9) ξ 4 (t, ρ)ρdt. (20) ξ = 2 J 2 2t 2 / J 7 (9) J = 2 δ 2 >δ > 0 J T =( 2+δ, 2+δ 2 ) Δα(γ) 0 δ 2 >δ > 0 Δα(γ) J J T c 0 Δα(γ) c log(j 2) Δψ(γ n ) γ n ψ Π n (ψ) = ψ +Δψ(γ n ) Δψ(γ n )= 2nπ 0 2nπ x 4 ρ dφ = 0 x 4 ρ dφ mod(2π), x 4 ρ x γ n Δθ(γ n ) γ n θ 2nπ x 4 ρ Δθ(γ) = 0 x 4 ρ dφ. x γ n Δψ(γ n )=Δθ(γ n ) γ n γ x 4 ρ Δψ(γ n )=Δθ(γ n )= x 4 ρ dφ + ε n, 4

15 n ε n 0 x γ α ( (6)) x = y =0 α = θ Δψ(γ n )=Δθ(γ n )=Δα(γ)+ε n + O(m 2 2 ). δ 2 >δ > 0 m 2 > 0 n Δψ(γ n )(J) J J ( 2+δ, 2+δ 2 ) m 3 e 3 x = y =0 ( ψ φ : ) {x = y =0} {x = y =0} J T J J = J T J 6. m 3 e 0 <m 3 e Ω n m 3 e 6.. e>0 Ω n Ω e n Ω e n Π n. Ω n Ω n Ω n Ω e n Π n Π n 2- ω Ω e n ω n ω n Ω n Π n 2- ω n Π n Ω e n Π n Ω e n KAM(Kolmogorov-Arnold-Moser) Ω e n Ωe n J ψ Π n Π n (J) =J + O(m 3,e), Πn (ψ) =ψ + f n (J)+O(m 3,e). J T Ω n T J e >0 m 3 > 0 T e J T e J 5

16 T j Ω n ( ) (stochasitic layer) e T J 2 W s (p n ) T J 2 W u (p n ) T J e T e J 2 W s (T e J ) 2 W u (T e J ) W s (p n ) W u (p n ) Σ s 0 W s (T J ) W u (T J ) W s (T J ) W u (T J2 ) J J 2 J J 2 W s (T e J ) W u (T e J 2 ) 6.. n m 2 δ 2 >δ > 0 e 0 > 0 ε > 0 J T =( 2+δ, 2+δ 2 ) T J TJ e 0 <e<e 0 0 <m 3 <ε TJ e W s (TJ e ) W u (TJ e ) ε >0 J J 2 ε J,J 2 T W u (T J ) W s (T J2 ) S = {x = y =0,J R,ψ S } p n p n 6.2. [5] 7. S = {x = y =0;J R; ψ S ; φ =0}. 6

17 S m 3 J T S Π 2. x>0 q S q W u (q) x >0 Σ φ 0 φ0 =0 S W s (S) W u (q) W s (S) m 3 = e =0 J T W u (q) W s (S) q W u (q) W s (S) q S q W s (q ) D S S d d(q) =q W u (q) W s (S) d q q q q q d W u (q) W s (S) ( ) p 7.. D 0 S D 0 = {x = y =0;J T ( 2+δ, 2+δ 2 ); ψ S ; φ =0}.. δ 2 >δ,ε,ε 2, ε 3 J T,0 <m 2 ε, 0 m 3 ε 2 0 e ε 3 d D 0 D 0 D 2. m 3 = e =0 d D 0 3. d D. Xia[2] m 3 = e =0 q S J m 2 x y δ 2 >δ > 0 ε > 0 J ( 2+δ, 2+δ 2 ) 0 <m 2 ε W s (q) W u (q) x y W u (q) W s (S) m 3 e J T W u (q) W s (S) m 3 = e =0 d d(j) =J d(ψ) =ψ + +x 4 J dφ. x γ 5. +x 4 J dφ =Δα(γ)+O(m2 2), Δα(γ) J δ δ 2 J T m 2 d D 0 7

18 d ω ω Σ 0 Π ω S ω ω d ω = ω D d q D D d D D d n Π n D d(d) d 2 : D d(d) n Π n Π d d 2 ω d =(d ) d 2 ω d ω = ω d (exact) KAM D S d m 3 = e =0 D J = J e m 3 D 0 2. C J 2 W s (C J ) 2 W u (C J ) Σ 0 Π d 2 W s (C J ) W u (C J ) d (C J ) 2 Σ 0 D 0 C J 7.. δ 2 >δ,ε,ε 2 ε 3 7. C J D 0 ε 2 ε 3 0 m 3 ε 2 0 <e ε 3 W s (C J ) W u (C J ) ε >0 J,J 2 T J J 2 ε J W s (C J ) J 2 W u (C J2 ) (pseudo Arnold diffusion) D 0 ( 8. ) n t lim sup max r ij = lim inf max r ij < r ij i j 7.2. t lim sup x > 0 lim inf x =0, ω 7. C J,C J2,C J3,... t 8

19 C J D 0 m 3 = e =0 J J = J H (Xia[2]) Lyapunov-Schmit ruduction e m 3 W s (C J ) W u (C J ) J e m 3 J ΔJ dj/dφ = 2m 2ex 4 ( ) sin φ cos ψ O(m 2 x 4 ρ ( 2x 2 cos φ + x 4 ) 5/2 2 e, m 3,e 2 ). m 2 e J ΔJ γ D 0 p J φ =0 ψ ψ 0 0 2m 2 ex 4 ( ) sin φ cos ψ 3 ΔJ = + dφ x 4 ρ ( 2x 2 cos φ + x 4 ) 5/2 0 2m 2 ex 4 sin φ cos(ψ ψ 0 ) = cosψ 0 ( x 4 ρ ) 3 + dφ ( 2x 2 cos φ + x 4 ) 5/2 (2) 0 2m 2 ex 4 sin φ sin(ψ ψ 0 ) +sinψ 0 ( x 4 ρ ) 3 + dφ ( 2x 2 cos φ + x 4 ) 5/2 = A cos ψ 0 + B sin ψ 0. γ A B γ (5) 0 2m 2 eξ 4 ( ) sin φ cos(ψ ψ 0 ) 3 A = + dφ +Jx 4 ( 2ξ 2 cos φ + ξ 4 ) 5/2 +O(m 2 2e), 0 2m 2 eξ 4 ( ) (22) sin φ sin(ψ ψ 0 ) 3 B = + dφ +Jx 4 ( 2ξ 2 cos φ + ξ 4 ) 5/2 +O(m 2 2e). J = 2 2 δ 2 >δ > 0 J T =( 2+δ, 2+δ 2 ) A B J 2 c 2 0 B c 2 (J 2) 2 9

20 D 0 S 7. C J D 0 J = h(ψ) C J h(ψ) ψ 2π J = h (ψ) d J = h(ψ) 7. d S q d W u (q) W s (S) q m 2 e d d :(J, ψ) (J + A cos(ψ + b)+b sin(ψ + b),ψ+ b). b p 0 ψ b = 0 h(ψ) h (ψ) x 4 ρ dφ = 2 Δα(γ)+o(m2 2e) 0. h (ψ) =h(ψ b)+a cos ψ + B sin ψ + o(m 2 e). J = h 2 (ψ) d 2 J = h(ψ) 7. h 2 (ψ) =h(ψ + b)+a cos ψ B sin ψ + o(m 2 e). d h 2 (ψ) =h (ψ) h(ψ b) h(ψ + b)+2b sin ψ =0. (23) h(ψ) ψ 2π h(ψ) cosine (23) h(ψ) = a n cos(nψ). n=0 2a n sin(nb)sin(nψ) =0, for n 2a sin b sin ψ +2bsin ψ =0. m 2 n a n a = B/sin b = 0 h(ψ) =a 0 + B cos ψ sin b + h.o.t. γ J 5 O γ <φ< x = ξ(φ + π) y = η(φ + π) 20

21 ΔJ(γ) γ J π 2m 2 ex 4 ( ) sin φ cos ψ 3 ΔJ(γ) = + dφ x 4 ρ ( 2x 2 cos φ + x 4 ) 5/2 (24) = A cos ψ 0 + B sin ψ 0. x ψ γ ψ 0 φ =0 ψ γ A = B = 0 2m 2 eξ 4 ( sin φ cos(ψ ψ 0 ) + +Jx 4 +o(m 2 e), 0 2m 2 eξ 4 ( sin φ sin(ψ ψ 0 ) + +Jx 4 +o(m 2 e). ) 3 dφ ( + 2ξ 2 cos φ + ξ 4 ) 5/2 ) 3 dφ ( + 2ξ 2 cos φ + ξ 4 ) 5/2 J = 2 (5) A(J) =A( J) B(J) =B( J) A(J) B(J) A(J) B(J) C J d, d d 2 W s (q) W u (S) p p p d, d d 2 J = h (ψ) d C J h (ψ) h (ψ) = h(ψ b)+a cos ψ + B sin ψ + O(m 2 2 e) = a 0 + B sin b cos(ψ b)+a cos ψ + B sin ψ + O(m2 2e). b γ ψ b = π x 4 ρ dφ = 0 +Jξ 4 (φ) dφ + O(m2 2,e,m 3 ), J = h 2 (ψ) d 2 C J h 2 (ψ) =a 0 + B sin b cos(ψ + b)+acos ψ B sin ψ + O(m2 2 e). 2 J = h (ψ) J = h 2 (ψ) C J B B sin b/ sin b 2 h (ψ) h 2 (ψ) e m 3 J 2 B b B c 2 (J 2) 2 b c log(c 2) δ 2 >δ > 0 J T =( 2+δ, 2+δ 2 ) B B sin b/ sin b W s (C J ) W u (C J ) 2 (25)

22 Arnold[2] (obstructing set) M X Ω x M M x M N Ω M Ω 8.. () C J S d U Σ φ 0 3 q C J W s (C J ) Ω = φ 0 U(φ) U C J W u (C J ) q Ω q W u (C J ) (2) C J,C J2,C J3, i =, 2, 3,... C Ji C Ji+ C Ji C Ji+ Σ φ 0 U Σ φ 0 3 i C Ji Ω = φ 0 U(φ) U Ω j W u (C Jj ) W u (C Ji ). q W s (C J ) q C J S φ q(φ) q q W u (q ) Ω q W u (C J ) S 2. (Robinson[6]) (graph transform) U C S S S S q ε>0 W u (S ) q U n Π n (U) C U ε q W u (S ) n Π n (U) Ω Ω q W u (q ) W u (C J ) Ω q W u (C J ) W u (C J ) q,q 2,...,q k q W s (q ),d(q )=q 2,d(q 2 )=q 3,...,d(q k )=d(q k ) q W u (q k ) q = d (q ) q W u (q ) Ω q W u (C J ) d n Π n (U) W s (q 2 ) U W s (q 2 ) U i =, 2,...,k W s (q i ) q W u (q k ) Ω q W u (C J ) U q W u (C J ) C J d q U q W s (C J ) C J q,q 2,...,q k q W s (q ),d(q )=q 2,...,d(q k )=q k q W u (q k ) U W s (C J ) W s (C J ) 7. 22

23 7.2 d C J U W s (C J ) 3 C J,C J2,C J3,... q,q 2,q 3,... U q W u (q ) q U U q U q 2 q 2 U 2 U q 2 U 2 q 3 U 2 W s (q 3 ) q 3 U U U U 2 U 23, q q q φ lim sup x > 0 lim inf x =0. q,q 2,q 3, q ω q TJ e Ω n J T =( 2+δ, 2+δ 2 ) e = m 3 =0 TJ e S e>0 TJ e S s s S S s s 2 TJ e S s 2 α s s δ 2 >δ > 0,ε > 0,e 0 > 0 0 <e<e 0 0 m 3 <ε J T =( 2+δ, 2+δ 2 ) s s 2 Σ φ 0. J ψ S J = h(ψ) s h(ψ) s 2 J = h( ψ) e = m 3 =0 W u (s ) Σφ=0 {(x, y) =p; φ =0} Σ φ=π {(x, y) =p; φ = π} W s (s 2 ) J ψ e e J ψ γ γ s s 2 J C = h (ψ) d J = h(ψ) h (ψ) =h(ψ b)+a cos ψ + B sin ψ + h.o.t. A, B b d 2 s 2 J = h ( ψ) =h( ψ b)+a cos( ψ)+b sin( ψ)+h.o.t. 23

24 2 h ( b)+b 0 C J h ( b)+b 0 W u (s ) W s (s 2 ) p Σ 0 p p 2 (Fig.3 ) ε>0 p p p ε d d 2 d,p d 2,p W u (q) W s (S) p p J = h 2(ψ) d,p s J = h 2 (ψ) =h(ψ 2b)+2B sin(ψ b)+o(ε)+h.o.t. d 2,p s 2 J = h 2 ( ψ) =h( ψ 2b)+2B sin( ψ b)+o(ε)+h.o.t. 2 h 2(0) 0 h ( 2b)+2B cos( b)+o(ε) 0, ε h ( 2b)+2Bcos( b) 0 J T =( 2+δ, 2+δ 2 ) h ( 2b)+ 2B cos( b) 0 p 2 p 2 p 4 p 2 p ε h ( 4b)+2B cos( 3b)+2B cos( b) 0. h ( 4b)+2B cos( 3b)+2B cos( b) 0. k =, 2, 3,... h ( 2kb) h ((2k 2)b)+2B cos((2k )b) 0. b/2π h (ψ) h (ψ + b) h (ψ b)+2b cos ψ =0, for all ψ S. (26) s s 2 b h(ψ) h(ψ) = a n cos nψ + b n sin nψ. k=0 24

25 (26) a n b n n 0, a n = b n =0 b =0,a = B/sin b ( s m 3.) s J = h(ψ) =a 0 + B cos ψ. sin b 7. s = s 2 S d s s 2 Σφ 0 6. TJ e S s 2. W u (TJ) e C s W s (TJ e) C s 2 s s 2 TJ e Σφ 0 References. V.M. Alekseev, Quasirandom dynamical systems, I, II, III, Math. USSR-Sb. 5 (968), 73-28; 6 (968), ; 7 (969), V.I. Arnold, Instability of dynamical systems with several degrees of freedom, Dokl. Akad. Nauk SSSR 56 (964), V.I. Arnold(Ed), Dynamical Systems III, Encyclopaedia of Mathematical Sciences, Vol.3, Springer-Verlag, New York, V.I. Arnold, Sur une propriété topologique des applications globalement canonique de la mécanique classique, C. R. Acad. Sci. Paris 26 (965), B.V. Chirikov, A universal instability of many dimensional oscillator systems, Phys. Rep. 52 (979), R. Easton, Parabolic orbits for the planar three-body problem, J. Differential Equations 52 (984), R. Easton, Capture orbits and Melnikov integrals in the planar 3-body problem, Celestial Mech., toappear. 8. R. Easton and R. McGehee, Homoclinic phenomena for orbits doubly asymptotic to an invariant three-sphere, Indiana Univ. Math. J. 28 (979), P. Holmes and J. Marsden, Melnikov method and Arnold diffusion for the perturbation of integrable Hamiltonian systems, J. Math. Phys. 23 (982), C. Lim, A combinatorial perturbation method and Arnold s whiskered tori in vortex dynamics, preprint. 25

26 . R. McGehee, A stable manifold theorem for degenerate fixed points with applications to celestial mechanics, J. Differential Equations 4 (973), V.K. Melnikov, On the stability of the center for time periodic perturbations, Trans. Moscow Math. Soc. 2 (963),. 3. J. Moser, Stable and Random Motions in Dynamical Systems, Annals of Mathematics Studies, Vol.77, Princeton Univ. Press, Princeton, NJ, N.N. Nekhoroshev, An exponential estimate of the time of stability of nearly integrable Hamiltonian systems, Russian Math. Surveys 32 (977), H. Poincaré, Les méthodes nouvelles de la mécanique céleste III, Gauthier-Villars, Paris, C. Robinson, Homoclinic orbits and oscillation for the planar three-body problem, J. Differential Equations 52 (984), C. Robinson, Horseshoes for autonomous Hamiltonian systems using Melnikov integrals, Ergodic Theory & Dynamical Systems 8 (988), D. Saari and Z. Xia, The existence of oscillatory and super-hyperbolic motions in Newtonian systems, J. Differential Equations 82 (989), K. Sitnikov, The existence of oscillatory motion in the three-body problem, Dokl. Akad. Nauk USSR 33 (960), A. Weinstein, Lagrangian submanifolds and Hamiltonian systems, Ann. of Math. 98 (973), Z. Xia, Melnikov method and transversal homoclinic orbits in the restricted three-body problem, J. Differential Equations 96 (992), Z. Xia, Arnold duffusion in the elliptic restricted three-body problem, J. Dynamics and Diff. Equations 5 (993),

xia2.dvi

xia2.dvi Journal of Differential Equations 96 (992), 70-84 Melnikov method and transversal homoclinic points in the restricted three-body problem Zhihong Xia Department of Mathematics, Harvard University Cambridge,

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

ver.1 / c /(13)

ver.1 / c /(13) 1 -- 11 1 c 2010 1/(13) 1 -- 11 -- 1 1--1 1--1--1 2009 3 t R x R n 1 ẋ = f(t, x) f = ( f 1,, f n ) f x(t) = ϕ(x 0, t) x(0) = x 0 n f f t 1--1--2 2009 3 q = (q 1,..., q m ), p = (p 1,..., p m ) x = (q,

More information

sakigake1.dvi

sakigake1.dvi (Zin ARAI) arai@cris.hokudai.ac.jp http://www.cris.hokudai.ac.jp/arai/ 1 dynamical systems ( mechanics ) dynamical systems 3 G X Ψ:G X X, (g, x) Ψ(g, x) =:Ψ g (x) Ψ id (x) =x, Ψ gh (x) =Ψ h (Ψ g (x)) (

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

note1.dvi

note1.dvi (1) 1996 11 7 1 (1) 1. 1 dx dy d x τ xx x x, stress x + dx x τ xx x+dx dyd x x τ xx x dyd y τ xx x τ xx x+dx d dx y x dy 1. dx dy d x τ xy x τ x ρdxdyd x dx dy d ρdxdyd u x t = τ xx x+dx dyd τ xx x dyd

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................

More information

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

1   nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC 1 http://www.gem.aoyama.ac.jp/ nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC r 1 A B B C C A (1),(2),, (8) A, B, C A,B,C 2 1 ABC

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0 1 2003 4 24 ( ) 1 1.1 q i (i 1,,N) N [ ] t t 0 q i (t 0 )q 0 i t 1 q i (t 1 )q 1 i t 0 t t 1 t t 0 q 0 i t 1 q 1 i S[q(t)] t1 t 0 L(q(t), q(t),t)dt (1) S[q(t)] L(q(t), q(t),t) q 1.,q N q 1,, q N t C :

More information

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull Feynman Encounter with Mathematics 52, 200 9 [] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull. Sci. Math. vol. 28 (2004) 97 25. [2] D. Fujiwara and

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

chap10.dvi

chap10.dvi . q {y j } I( ( L y j =Δy j = u j = C l ε j l = C(L ε j, {ε j } i.i.d.(,i q ( l= y O p ( {u j } q {C l } A l C l

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

Shunsuke Kobayashi 1 [6] [11] [7] u t = D 2 u 1 x 2 + f(u, v) + s L u(t, x)dx, L x (0.L), t > 0, Neumann 0 v t = D 2 v 2 + g(u, v), x (0, L), t > 0. x

Shunsuke Kobayashi 1 [6] [11] [7] u t = D 2 u 1 x 2 + f(u, v) + s L u(t, x)dx, L x (0.L), t > 0, Neumann 0 v t = D 2 v 2 + g(u, v), x (0, L), t > 0. x Shunsuke Kobayashi [6] [] [7] u t = D 2 u x 2 + fu, v + s L ut, xdx, L x 0.L, t > 0, Neumann 0 v t = D 2 v 2 + gu, v, x 0, L, t > 0. x2 u u v t, 0 = t, L = 0, x x. v t, 0 = t, L = 0.2 x x ut, x R vt, x

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb r 1 r 2 r 1 r 2 2 Coulomb Gauss Coulomb 2.1 Coulomb 1 2 r 1 r 2 1 2 F 12 2 1 F 21 F 12 = F 21 = 1 4πε 0 1 2 r 1 r 2 2 r 1 r 2 r 1 r 2 (2.1) Coulomb ε 0 = 107 4πc 2 =8.854 187 817 10 12 C 2 N 1 m 2 (2.2)

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

四変数基本対称式の解放

四変数基本対称式の解放 The second-thought of the Galois-style way to solve a quartic equation Oomori, Yasuhiro in Himeji City, Japan Jan.6, 013 Abstract v ρ (v) Step1.5 l 3 1 6. l 3 7. Step - V v - 3 8. Step1.3 - - groupe groupe

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d ) 23 M R M ϕ : R M M ϕt, x) ϕ t x) ϕ s ϕ t ϕ s+t, ϕ 0 id M M ϕ t M ξ ξ ϕ t d ϕ tx) ξϕ t x)) U, x 1,...,x n )) ϕ t x) ϕ 1) t x),...,ϕ n) t x)), ξx) ξ i x) d ϕi) t x) ξ i ϕ t x)) M f ϕ t f)x) f ϕ t )x) fϕ

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m 2009 10 6 23 7.5 7.5.1 7.2.5 φ s i m j1 x j ξ j s i (1)? φ i φ s i f j x j x ji ξ j s i (1) φ 1 φ 2. φ n m j1 f jx j1 m j1 f jx j2. m j1 f jx jn x 11 x 21 x m1 x 12 x 22 x m2...... m j1 x j1f j m j1 x

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

DVIOUT-fujin

DVIOUT-fujin 2005 Limit Distribution of Quantum Walks and Weyl Equation 2006 3 2 1 2 2 4 2.1...................... 4 2.2......................... 5 2.3..................... 6 3 8 3.1........... 8 3.2..........................

More information

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco post glacial rebound 3.1 Viscosity and Newtonian fluid f i = kx i σ ij e kl ideal fluid (1.9) irreversible process e ij u k strain rate tensor (3.1) v i u i / t e ij v F 23 D v D F v/d F v D F η v D (3.2)

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

ohp_06nov_tohoku.dvi

ohp_06nov_tohoku.dvi 2006 11 28 1. (1) ẋ = ax = x(t) =Ce at C C>0 a0 x(t) 0(t )!! 1 0.8 0.6 0.4 0.2 2 4 6 8 10-0.2 (1) a =2 C =1 1. (1) τ>0 (2) ẋ(t) = ax(t τ) 4 2 2 4 6 8 10-2 -4 (2) a =2 τ =1!! 1. (2) A. (2)

More information

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j 6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

1 : ( ) ( ) ( ) ( ) ( ) etc (SCA)

1 : ( ) ( ) ( ) ( ) ( ) etc (SCA) START: 17th Symp. Auto. Decentr. Sys., Jan. 28, 2005 Symplectic cellular automata as a test-bed for research on the emergence of natural systems 1 : ( ) ( ) ( ) ( ) ( ) etc (SCA) 2 SCA 2.0 CA ( ) E.g.

More information

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W 003 7 14 Black-Scholes [1] Nelson [] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-Wu Nelson e-mail: takatoshi-tasaki@nifty.com kabutaro@mocha.freemail.ne.jp

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3 II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )

More information

Chebyshev Schrödinger Heisenberg H = 1 2m p2 + V (x), m = 1, h = 1 1/36 1 V (x) = { 0 (0 < x < L) (otherwise) ψ n (x) = 2 L sin (n + 1)π x L, n = 0, 1, 2,... Feynman K (a, b; T ) = e i EnT/ h ψ n (a)ψ

More information

215 11 13 1 2 1.1....................... 2 1.2.................... 2 1.3..................... 2 1.4...................... 3 1.5............... 3 1.6........................... 4 1.7.................. 4

More information

1 Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier analog digital Fourier Fourier Fourier Fourier Fourier Fourier Green Fourier

1 Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier analog digital Fourier Fourier Fourier Fourier Fourier Fourier Green Fourier Fourier Fourier Fourier etc * 1 Fourier Fourier Fourier (DFT Fourier (FFT Heat Equation, Fourier Series, Fourier Transform, Discrete Fourier Transform, etc Yoshifumi TAKEDA 1 Abstract Suppose that u is

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

2 2.1 d q dt i(t = d p dt i(t = H p i (q(t, p(t H q i (q(t, p(t 1 i n (1 (1 X H = ( H H p k q k q k p k (2 ϕ H (t = (q 1 (t,, q n (t, p 1 (t,, p n (t

2 2.1 d q dt i(t = d p dt i(t = H p i (q(t, p(t H q i (q(t, p(t 1 i n (1 (1 X H = ( H H p k q k q k p k (2 ϕ H (t = (q 1 (t,, q n (t, p 1 (t,, p n (t (Clebsch parametrization, Helicity 1 Langer-Perline rylinski vortex Chern-Simons Atiyah-ott symplectic symplectic reduction Jackiw Jackiw Marsden- Weinstein ( Marsden-Weinstein Poisson Poisson Clebch parametrization

More information

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ SO(3) 71 5.7 5.7.1 1 ħ L k l k l k = iϵ kij x i j (5.117) l k SO(3) l z l ± = l 1 ± il = i(y z z y ) ± (z x x z ) = ( x iy) z ± z( x ± i y ) = X ± z ± z (5.118) l z = i(x y y x ) = 1 [(x + iy)( x i y )

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

Dynkin Serre Weyl

Dynkin Serre Weyl Dynkin Naoya Enomoto 2003.3. paper Dynkin Introduction Dynkin Lie Lie paper 1 0 Introduction 3 I ( ) Lie Dynkin 4 1 ( ) Lie 4 1.1 Lie ( )................................ 4 1.2 Killing form...........................................

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1 1 I 1.1 ± e = = - =1.602 10 19 C C MKA [m], [Kg] [s] [A] 1C 1A 1 MKA 1C 1C +q q +q q 1 1.1 r 1,2 q 1, q 2 r 12 2 q 1, q 2 2 F 12 = k q 1q 2 r 12 2 (1.1) k 2 k 2 ( r 1 r 2 ) ( r 2 r 1 ) q 1 q 2 (q 1 q 2

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

dynamics-solution2.dvi

dynamics-solution2.dvi 1 1. (1) a + b = i +3i + k () a b =5i 5j +3k (3) a b =1 (4) a b = 7i j +1k. a = 14 l =/ 14, m=1/ 14, n=3/ 14 3. 4. 5. df (t) d [a(t)e(t)] =ti +9t j +4k, = d a(t) d[a(t)e(t)] e(t)+ da(t) d f (t) =i +18tj

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1) 1. 1.1...,. 1.1.1 V, V x, y, x y x + y x + y V,, V x α, αx αx V,, (i) (viii) : x, y, z V, α, β C, (i) x + y = y + x. (ii) (x + y) + z = x + (y + z). 1 (iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx i B5 7.8. p89 4. ψ x, tψx, t = ψ R x, t iψ I x, t ψ R x, t + iψ I x, t = ψ R x, t + ψ I x, t p 5.8 π π π F e ix + F e ix + F 3 e 3ix F e ix + F e ix + F 3 e 3ix dx πψ x πψx p39 7. AX = X A [ a b c d x

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a 9 203 6 7 WWW http://www.math.meiji.ac.jp/~mk/lectue/tahensuu-203/ 2 8 8 7. 7 7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa,

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

43433 8 3 . Stochastic exponentials...................................... 3. Girsanov s theorem......................................... 4 On the martingale property of stochastic exponentials 5. Gronwall

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

II Brown Brown

II Brown Brown II 16 12 5 1 Brown 3 1.1..................................... 3 1.2 Brown............................... 5 1.3................................... 8 1.4 Markov.................................... 1 1.5

More information

II 1 II 2012 II Gauss-Bonnet II

II 1 II 2012 II Gauss-Bonnet II II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

* 1 2014 7 8 *1 iii 1. Newton 1 1.1 Newton........................... 1 1.2............................. 4 1.3................................. 5 2. 9 2.1......................... 9 2.2........................

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

1

1 1 Borel1956 Groupes linéaire algébriques, Ann. of Math. 64 (1956), 20 82. Chevalley1956/58 Sur la classification des groupes de Lie algébriques, Sém. Chevalley 1956/58, E.N.S., Paris. Tits1959 Sur la classification

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R II Karel Švadlenka 2018 5 26 * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* 5 23 1 u = au + bv v = cu + dv v u a, b, c, d R 1.3 14 14 60% 1.4 5 23 a, b R a 2 4b < 0 λ 2 + aλ + b = 0 λ =

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

Swift-Hohenberg

Swift-Hohenberg 2014 E-mail: sakamoto@meiji.ac.jp 1 1 1.1......................... 2 1.2.............................. 6 1.3 R.......... 12 2 18 2.1........................ 20 2.2.................... 23 3 24 3.1..............

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

Gmech08.dvi

Gmech08.dvi 63 6 6.1 6.1.1 v = v 0 =v 0x,v 0y, 0) t =0 x 0,y 0, 0) t x x 0 + v 0x t v x v 0x = y = y 0 + v 0y t, v = v y = v 0y 6.1) z 0 0 v z yv z zv y zv x xv z xv y yv x = 0 0 x 0 v 0y y 0 v 0x 6.) 6.) 6.1) 6.)

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

( ) (, ) ( )

( ) (, ) ( ) ( ) (, ) ( ) 1 2 2 2 2.1......................... 2 2.2.............................. 3 2.3............................... 4 2.4.............................. 5 2.5.............................. 6 2.6..........................

More information