非可換Lubin-Tate理論の一般化に向けて

Similar documents
wiles05.dvi

Langlands 1 1. Langlands p GL n Langlands [HT] The local Langlands conjecture is one of those hydra-like conjectures which seems to grow as it gets pr

Q p G Qp Q G Q p Ramanujan 12 q- (q) : (q) = q n=1 (1 qn ) 24 S 12 (SL 2 (Z))., p (ordinary) (, q- p a p ( ) p ). p = 11 a p ( ) p. p 11 p a p

1. Γ, R 2,, M R. M R. M M Map(M, M) 3, Aut R (M). ρ : Γ Aut R (M) Γ. M R n, R, R ρ : Γ Aut R (M) GL n (R) := {g M n (R) det(g) R } 4. ρ Γ R R M.,,.,,

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2

II (No.2) 2 4,.. (1) (cm) (2) (cm) , (

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+

17 Θ Hodge Θ Hodge Kummer Hodge Hodge

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

( ) 1., ([SU] ): F K k., Z p -, (cf. [Iw2], [Iw3], [Iw6]). K F F/K Z p - k /k., Weil., K., K F F p- ( 4.1).,, Z p -,., Weil..,,. Weil., F, F projectiv

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

all.dvi

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)

生活設計レジメ


I II III 28 29

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

Dynkin Serre Weyl

16 B

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

p-sylow :

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

?


64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1

.5.1. G K O E, O E T, G K Aut OE (T ) (T, ρ). ρ, (T, ρ) T. Aut OE (T ), En OE (F ) p..5.. G K E, E V, G K GL E (V ) (V, ρ). ρ, (V, ρ) V. GL E (V ), En

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.


Z: Q: R: C:

平成 19 年度 ( 第 29 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 19 ~8 年月 72 月日開催 30 日 ) R = T, Fermat Wiles, Taylor-Wiles R = T.,,.,. 1. Fermat Fermat,. Fermat, 17

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

直交座標系の回転

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

( ),, ( [Ka93b],[FK06]).,. p Galois L, Langlands p p Galois (, ) p., Breuil, Colmez([Co10]), Q p Galois G Qp 2 p ( ) GL 2 (Q p ) p Banach ( ) (GL 2 (Q




微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

TOP URL 1

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

i


Wide Scanner TWAIN Source ユーザーズガイド

(1) (2) (3) (4) 1

* n x 11,, x 1n N(µ 1, σ 2 ) x 21,, x 2n N(µ 2, σ 2 ) H 0 µ 1 = µ 2 (= µ ) H 1 µ 1 µ 2 H 0, H 1 *2 σ 2 σ 2 0, σ 2 1 *1 *2 H 0 H

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C


重力方向に基づくコントローラの向き決定方法

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

Note.tex 2008/09/19( )

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

2

第1部 一般的コメント

u Θ u u u ( λ + ) v Θ v v v ( λ + ) (.) Θ ( λ + ) (.) u + + v (.),, S ( λ + ) uv,, S uv, SH (.8) (.8) S S (.9),

newmain.dvi

meiji_resume_1.PDF

untitled

表1票4.qx4

福祉行財政と福祉計画[第3版]

all.dvi

1 G K C 1.1. G K V ρ : G GL(V ) (ρ, V ) G V 1.2. G 2 (ρ, V ), (τ, W ) 2 V, W T : V W τ g T = T ρ g ( g G) V ρ g T W τ g V T W 1.3. G (ρ, V ) V W ρ g W

第1章 国民年金における無年金

,2,4



untitled

2 Riemann Im(s) > 0 ζ(s) s R(s) = 2 Riemann [Riemann]) ζ(s) ζ(2) = π2 6 *3 Kummer s = 2n, n N ζ( 2) = 2 2, ζ( 4) =.3 2 3, ζ( 6) = ζ( 8)

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

橡ミュラー列伝Ⅰ.PDF

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

量子力学 問題

6.1 (P (P (P (P (P (P (, P (, P.

³ÎΨÏÀ

2000年度『数学展望 I』講義録

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )


II III I ~ 2 ~

中堅中小企業向け秘密保持マニュアル


PR映画-1

- 2 -


1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

1 (1) (2)

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

Transcription:

Lubin-Tate 2012 9 18 ( ) Lubin-Tate 2012 9 18 1 / 27

( ) Lubin-Tate 2012 9 18 2 / 27

Lubin-Tate p 1 1 ( ) Lubin-Tate 2012 9 18 2 / 27

Lubin-Tate p 1 1 Lubin-Tate GL n n 1 Lubin-Tate ( ) Lubin-Tate 2012 9 18 2 / 27

Lubin-Tate p 1 1 Lubin-Tate GL n n 1 Lubin-Tate Lubin-Tate p Rapoport-Zink ( ) Lubin-Tate 2012 9 18 2 / 27

Galois ( ) Lubin-Tate 2012 9 18 3 / 27

Galois p Γ = Gal(Q p /Q p ) Galois ( ) Lubin-Tate 2012 9 18 3 / 27

Galois p Γ = Gal(Q p /Q p ) Galois 1 I Γ ( ) Gal(F p /F p ) 1 ( ) Lubin-Tate 2012 9 18 3 / 27

Galois p Γ = Gal(Q p /Q p ) Galois 1 I Γ ( ) Gal(F p /F p ) 1 Frob Gal(F p /F p ) Frobenius x x 1/p ( ) Lubin-Tate 2012 9 18 3 / 27

Galois p Γ = Gal(Q p /Q p ) Galois 1 I Γ ( ) Gal(F p /F p ) 1 Frob Gal(F p /F p ) Frobenius x x 1/p W Γ Q p Weil Frob Z Gal(F p /F p ) ( ) ( ) Lubin-Tate 2012 9 18 3 / 27

GL n ( ) Lubin-Tate 2012 9 18 4 / 27

GL n (GL n Harris-Taylor, Henniart) 2 GL n (Q p ) Frobenius Weil-Deligne ϕ: W SL 2 (C) GL n (C) ( ) Lubin-Tate 2012 9 18 4 / 27

GL n (GL n Harris-Taylor, Henniart) 2 GL n (Q p ) Frobenius Weil-Deligne ϕ: W SL 2 (C) GL n (C) H (π, V ) x V Stab H (x) = {h H hx = x} H ( ) Lubin-Tate 2012 9 18 4 / 27

GL n (GL n Harris-Taylor, Henniart) 2 GL n (Q p ) Frobenius Weil-Deligne ϕ: W SL 2 (C) GL n (C) H (π, V ) x V Stab H (x) = {h H hx = x} H Weil-Deligne ϕ Frobenius w W ϕ(w) ( ) Lubin-Tate 2012 9 18 4 / 27

GL n (GL n Harris-Taylor, Henniart) 2 GL n (Q p ) Frobenius Weil-Deligne ϕ: W SL 2 (C) GL n (C) H (π, V ) x V Stab H (x) = {h H hx = x} H Weil-Deligne ϕ Frobenius w W ϕ(w) l p Weil-Deligne l W GL n (Q l ) Grothendieck l σ Weil-Deligne WD(σ) ( ) Lubin-Tate 2012 9 18 4 / 27

GL n ( ) Lubin-Tate 2012 9 18 5 / 27

GL n (n = 1 ) Art: Q = p W ab χ: GL 1 (Q p ) = Q p C W W ab χ Art 1 C ( ) Lubin-Tate 2012 9 18 5 / 27

GL n (n = 1 ) Art: Q = p W ab χ: GL 1 (Q p ) = Q p C W W ab χ Art 1 C ( n ) GL n (Q p ) W SL 2 (C) n ( ) Lubin-Tate 2012 9 18 5 / 27

GL n (n = 1 ) Art: Q = p W ab χ: GL 1 (Q p ) = Q p C W W ab χ Art 1 C ( n ) GL n (Q p ) W SL 2 (C) n Steinberg St n ϕ: W SL 2 (C) GL n (C) ϕ W = 1 ϕ Sp n St n Ind GL n(q p ) B 1 B ( ) Lubin-Tate 2012 9 18 5 / 27

GL n (n = 1 ) Art: Q = p W ab χ: GL 1 (Q p ) = Q p C W W ab χ Art 1 C ( n ) GL n (Q p ) W SL 2 (C) n Steinberg St n ϕ: W SL 2 (C) GL n (C) ϕ W = 1 ϕ Sp n St n Ind GL n(q p ) B 1 B ϕ: W SL 2 (C) GL n (C) ϕ SL2 (C) = 1 ( ) Lubin-Tate 2012 9 18 5 / 27

p ( ) Lubin-Tate 2012 9 18 6 / 27

p G Q p Q p Ĝ G C G ( ) Lubin-Tate 2012 9 18 6 / 27

p G Q p Q p Ĝ G C G G ( ) Lubin-Tate 2012 9 18 6 / 27

p G Q p Q p Ĝ G C G G (G ) (1) G(Q p ) L ϕ: W SL 2 (C) Ĝ(C) Ĝ(C) ϕ Π G ϕ L ( ) Lubin-Tate 2012 9 18 6 / 27

p G Q p Q p Ĝ G C G G (G ) (1) G(Q p ) L ϕ: W SL 2 (C) Ĝ(C) Ĝ(C) ϕ Π G ϕ L ( (2) S ϕ = π 0 CentĜ(C) (ϕ) ) Irr(S ϕ ) = Π G ϕ ( ) Lubin-Tate 2012 9 18 6 / 27

p G Q p Q p Ĝ G C G G (G ) (1) G(Q p ) L ϕ: W SL 2 (C) Ĝ(C) Ĝ(C) ϕ Π G ϕ L ( (2) S ϕ = π 0 CentĜ(C) (ϕ) ) Irr(S ϕ ) = Π G ϕ SL 2 U(3) Arthur ( ) Lubin-Tate 2012 9 18 6 / 27

G = GSp 4 ( ) Lubin-Tate 2012 9 18 7 / 27

G = GSp 4 G = GSp 4 Ĝ = GSpin 5 = GSp 4 Gan-Takeda ( ) Lubin-Tate 2012 9 18 7 / 27

G = GSp 4 G = GSp 4 Ĝ = GSpin 5 = GSp 4 Gan-Takeda L r : GSp 4 GL 4 ϕ: W SL 2 (C) GSp 4 (C) L r ϕ Weil-Deligne Π G ϕ G(Q p) ( ) Lubin-Tate 2012 9 18 7 / 27

G = GSp 4 G = GSp 4 Ĝ = GSpin 5 = GSp 4 Gan-Takeda L r : GSp 4 GL 4 ϕ: W SL 2 (C) GSp 4 (C) L r ϕ Weil-Deligne Π G ϕ G(Q p) (I) (r ϕ) SL2 (C) = 1 r ϕ Π G ϕ = {π} ( ) Lubin-Tate 2012 9 18 7 / 27

G = GSp 4 G = GSp 4 Ĝ = GSpin 5 = GSp 4 Gan-Takeda L r : GSp 4 GL 4 ϕ: W SL 2 (C) GSp 4 (C) L r ϕ Weil-Deligne Π G ϕ G(Q p) (I) (r ϕ) SL2 (C) = 1 r ϕ Π G ϕ = {π} (II) (r ϕ) SL2 (C) = 1 r ϕ = φ 1 φ 2 φ i φ 1 φ 2, dim φ i = 2 Π G ϕ = {π 1, π 2 } π 1, π 2 ( ) Lubin-Tate 2012 9 18 7 / 27

G = GSp 4 G = GSp 4 Ĝ = GSpin 5 = GSp 4 Gan-Takeda L r : GSp 4 GL 4 ϕ: W SL 2 (C) GSp 4 (C) L r ϕ Weil-Deligne Π G ϕ G(Q p) (I) (r ϕ) SL2 (C) = 1 r ϕ Π G ϕ = {π} (II) (r ϕ) SL2 (C) = 1 r ϕ = φ 1 φ 2 φ i φ 1 φ 2, dim φ i = 2 Π G ϕ = {π 1, π 2 } π 1, π 2 (III) r ϕ = φ (χ Sp 2 ) φ SL2 (C) = 1 φ Π G ϕ = {π 1, π 2 } π 1 π 2 ( ) Lubin-Tate 2012 9 18 7 / 27

G = GSp 4 G = GSp 4 Ĝ = GSpin 5 = GSp 4 Gan-Takeda L r : GSp 4 GL 4 ϕ: W SL 2 (C) GSp 4 (C) L r ϕ Weil-Deligne Π G ϕ G(Q p) (I) (r ϕ) SL2 (C) = 1 r ϕ Π G ϕ = {π} (II) (r ϕ) SL2 (C) = 1 r ϕ = φ 1 φ 2 φ i φ 1 φ 2, dim φ i = 2 Π G ϕ = {π 1, π 2 } π 1, π 2 (III) r ϕ = φ (χ Sp 2 ) φ SL2 (C) = 1 φ Π G ϕ = {π 1, π 2 } π 1 π 2 (IV) r ϕ = (χ 1 Sp 2 ) (χ 2 Sp 2 ) (χ 1 χ 2 ) Π G ϕ = {π 1, π 2 } π 1 π 2 ( ) Lubin-Tate 2012 9 18 7 / 27

GU(2, D) ( ) Lubin-Tate 2012 9 18 8 / 27

GU(2, D) D Q p J = GU(2, D) GSp 4 (Q p ) Gan-Tantono ( ) Lubin-Tate 2012 9 18 8 / 27

GU(2, D) D Q p J = GU(2, D) GSp 4 (Q p ) Gan-Tantono ϕ: W SL 2 (C) GSp 4 (C) Π J ϕ L Π J ϕ = ϕ ΠJ ϕ ( ) Lubin-Tate 2012 9 18 8 / 27

GU(2, D) D Q p J = GU(2, D) GSp 4 (Q p ) Gan-Tantono ϕ: W SL 2 (C) GSp 4 (C) Π J ϕ L Π J ϕ = ϕ ΠJ ϕ L ϕ: W SL 2 (C) GSp 4 (C) L Π G ϕ (I) (IV) ( ) Lubin-Tate 2012 9 18 8 / 27

GU(2, D) D Q p J = GU(2, D) GSp 4 (Q p ) Gan-Tantono ϕ: W SL 2 (C) GSp 4 (C) Π J ϕ L Π J ϕ = ϕ ΠJ ϕ L ϕ: W SL 2 (C) GSp 4 (C) L Π G ϕ (I) (IV) (I) Π J ϕ = {ρ} ρ (II) Π J ϕ = {ρ 1, ρ 2 } ρ 1, ρ 2 (III) Π J ϕ = {ρ 1, ρ 2 } ρ 1 ρ 2 (IV) Π J ϕ = {ρ 1, ρ 2 } ρ 1, ρ 2 ( ) Lubin-Tate 2012 9 18 8 / 27

( ) Lubin-Tate 2012 9 18 9 / 27

L (I) (IV) L GL n ( ) Lubin-Tate 2012 9 18 9 / 27

GSp 2n Rapoport-Zink ( ) Lubin-Tate 2012 9 18 10 / 27

GSp 2n Rapoport-Zink X F p 1/2 n p F p E X = E[p ] n λ 0 : X = X λ 0 = λ 0 ( ) Lubin-Tate 2012 9 18 10 / 27

GSp 2n Rapoport-Zink X F p 1/2 n p F p E X = E[p ] n λ 0 : X = X λ 0 = λ 0 Nilp Ẑur p A p A ( ) Lubin-Tate 2012 9 18 10 / 27

GSp 2n Rapoport-Zink X F p 1/2 n p F p E X = E[p ] n λ 0 : X = X λ 0 = λ 0 Nilp Ẑur p A p A (Rapoport-Zink ) M: Nilp Set M(A) = {(X, λ, ρ)}/ = X A p λ X ρ: X Fp A/pA X A A/pA = p m ρ 1 (λ mod p) ρ Q p λ 0 M Ẑur p Rapoport-Zink ( ) Lubin-Tate 2012 9 18 10 / 27

GSp 2n Rapoport-Zink M deg ρ n = 2 M red P 1 ( ) Lubin-Tate 2012 9 18 11 / 27

GSp 2n Rapoport-Zink M deg ρ n = 2 M red P 1 M J = QIsog(X, λ 0 ) J = GU(n, D) M J (X, λ, ρ) h = (X, λ, ρ h) ( ) Lubin-Tate 2012 9 18 11 / 27

GSp 2n Rapoport-Zink M deg ρ n = 2 M red P 1 M J = QIsog(X, λ 0 ) J = GU(n, D) M J (X, λ, ρ) h = (X, λ, ρ h) p Sh GSp 2n n Sh ss Sh Fp Sh Sh ss Shss Sh Sh ss M Sh Sh ss = k i=1 M/Γ i (Γ i J) ( ) Lubin-Tate 2012 9 18 11 / 27

GSp 2n Rapoport-Zink M M Q ur p ( ) Lubin-Tate 2012 9 18 12 / 27

GSp 2n Rapoport-Zink M M Q ur p Rapoport-Zink {M K } K M Rapoport-Zink K GSp 2n (Z p ) p K ( ) Lubin-Tate 2012 9 18 12 / 27

GSp 2n Rapoport-Zink M M Q ur p Rapoport-Zink {M K } K M Rapoport-Zink K GSp 2n (Z p ) p K M GSp2n (Z p ) = M ( ) Lubin-Tate 2012 9 18 12 / 27

GSp 2n Rapoport-Zink M M Q ur p Rapoport-Zink {M K } K M Rapoport-Zink K GSp 2n (Z p ) p K M GSp2n (Z p ) = M K K m = Ker(GSp 2n (Z p ) GSp 2n (Z/p m Z)) K m = p m ( ) Lubin-Tate 2012 9 18 12 / 27

GSp 2n Rapoport-Zink M M Q ur p Rapoport-Zink {M K } K M Rapoport-Zink K GSp 2n (Z p ) p K M GSp2n (Z p ) = M K K m = Ker(GSp 2n (Z p ) GSp 2n (Z/p m Z)) K m = p m Rapoport-Zink J M K ( ) Lubin-Tate 2012 9 18 12 / 27

GSp 2n Rapoport-Zink M M Q ur p Rapoport-Zink {M K } K M Rapoport-Zink K GSp 2n (Z p ) p K M GSp2n (Z p ) = M K K m = Ker(GSp 2n (Z p ) GSp 2n (Z/p m Z)) K m = p m Rapoport-Zink J M K G = GSp 2n (Q p ) {M K } K g G M K M g 1 Kg Hecke ( ) Lubin-Tate 2012 9 18 12 / 27

GSp 2n Rapoport-Zink Sh [ss] Sh Qur p Sh K, Qur p K Sh [ss] K Sh [ss] K M K Sh Sh [ss] K, Q ur p ( ) Lubin-Tate 2012 9 18 13 / 27

GSp 2n Rapoport-Zink Sh [ss] Sh Qur p Sh K, Qur p K Sh [ss] K Sh [ss] K M K Rapoport-Zink l l p H i RZ := lim K Hi c(m K Qur p Q ac p, Q l ) W G J Sh Sh [ss] K, Q ur p ( ) Lubin-Tate 2012 9 18 13 / 27

GSp 2n Rapoport-Zink Sh [ss] Sh Qur p Sh K, Qur p K Sh [ss] K Sh [ss] K M K Rapoport-Zink l l p H i RZ := lim K Hi c(m K Qur p Q ac p, Q l ) W G J Sh Sh [ss] K, Q ur p HRZ i G J ( ) Lubin-Tate 2012 9 18 13 / 27

GL n ( ) Lubin-Tate 2012 9 18 14 / 27

GL n Rapoport-Zink X F p 1/n 1 p ( ) Lubin-Tate 2012 9 18 14 / 27

GL n Rapoport-Zink X F p 1/n 1 p Lubin-Tate Lubin-Tate H i LT G = GL n (Q p ), J = D n D n Q p inv D n = 1/n ( ) Lubin-Tate 2012 9 18 14 / 27

GL n Rapoport-Zink X F p 1/n 1 p Lubin-Tate Lubin-Tate HLT i G = GL n (Q p ), J = D n D n Q p inv D n = 1/n ( Lubin-Tate Harris-Taylor) π GL n (Q p ) ϕ Π GL n ϕ = {π} Weil-Deligne Π D n ϕ = {ρ} π ρ Jacquet-Langlands σ : W GL n (Q l ) WD(σ) = ϕ l { Hom GLn (Q p )(HLT i, π) = σ ( ) 1 n 2 ρ (i = n 1) 0 (i n 1) ( ) Lubin-Tate 2012 9 18 14 / 27

GSp 4 ( ) Lubin-Tate 2012 9 18 15 / 27

GSp 4 G = GSp 4 (Q p ), J = GU(2, D) ϕ: W SL 2 (C) GSp 4 (C) L Π G ϕ ρ Π J ϕ Hi RZ [ρ] := Hom J(H i RZ, ρ)g-sm W G HRZ i [ρ] cusp HRZ i [ρ] ( ) Lubin-Tate 2012 9 18 15 / 27

GSp 4 G = GSp 4 (Q p ), J = GU(2, D) ϕ: W SL 2 (C) GSp 4 (C) L Π G ϕ ρ Π J ϕ Hi RZ [ρ] := Hom J(H i RZ, ρ)g-sm W G HRZ i [ρ] cusp HRZ i [ρ] L r : GSp 4 GL 4 (I) (r ϕ) SL2 (C) = 1 r ϕ (II) (r ϕ) SL2 (C) = 1 r ϕ = φ 1 φ 2 φ i φ 1 φ 2, dim φ i = 2 (III) r ϕ = φ (χ Sp 2 ) φ SL2 (C) = 1 φ (IV) r ϕ = (χ 1 Sp 2 ) (χ 2 Sp 2 ) (χ 1 χ 2 ) ( ) Lubin-Tate 2012 9 18 15 / 27

GSp 4 ϕ SL2 (C) = 1 ϕ SL2 (C) = 1 (I), (II) ( ) Lubin-Tate 2012 9 18 16 / 27

GSp 4 ϕ SL2 (C) = 1 ϕ SL2 (C) = 1 (I), (II) A ϕ (I) (II) ρ Π J ϕ (1) i 3 H i RZ [ρ] cusp = 0 (2) HRZ 3 [ρ] cusp = π Π G σ π π ϕ σ π W l π Π G WD(σ π ) = r ϕ ϕ ϕ (II) WD(σ π ) φ 1, φ 2 i ( 1)i HRZ i Kottwitz ( ) Lubin-Tate 2012 9 18 16 / 27

GSp 4 ϕ SL2 (C) 1 ϕ SL2 (C) 1 (III), (IV) ( ) Lubin-Tate 2012 9 18 17 / 27

GSp 4 ϕ SL2 (C) 1 ϕ SL2 (C) 1 (III), (IV) A ϕ (III) r ϕ = φ (χ Sp 2 ) ρ Π J ϕ (1) i 3 H i RZ [ρ] cusp = 0 (2) HRZ 3 [ρ] cusp = σ π π π Π G π WD(σ π) = φ ( ) Lubin-Tate 2012 9 18 17 / 27

GSp 4 ϕ SL2 (C) 1 ϕ SL2 (C) 1 (III), (IV) A ϕ (III) r ϕ = φ (χ Sp 2 ) ρ Π J ϕ (1) i 3 H i RZ [ρ] cusp = 0 (2) HRZ 3 [ρ] cusp = σ π π π Π G π WD(σ π) = φ B ϕ (III) (IV) π Π G ϕ π HRZ 4 ( ) Lubin-Tate 2012 9 18 17 / 27

GSp 4 ϕ SL2 (C) 1 ϕ (III) (IV) χ Sp 2 r ϕ π Π G ϕ ρ ΠJ ϕ χ π ρ H 3 RZ χ π Zel(ρ) H 4 RZ Zel Zelevinsky Zel(ρ) H 2 RZ = 0 Π J ϕ = {ρ, ρ } {ρ, Zel(ρ) } J A ( ) Lubin-Tate 2012 9 18 18 / 27

B B ϕ (III) (IV) π Π G ϕ π HRZ 4 ( ) Lubin-Tate 2012 9 18 19 / 27

B B ϕ (III) (IV) π Π G ϕ π HRZ 4 H i RZ Sh [ss] K M K Hochschild-Serre ( ) Lubin-Tate 2012 9 18 19 / 27

B B ϕ (III) (IV) π Π G ϕ π HRZ 4 H i RZ Sh [ss] K M K Hochschild-Serre Hochschild-Serre (Harris, Fargues) E i,j 2 = Ext j J-sm (H6 j RZ A GSp 4 (A,p ) J, A)( 3) = lim H i+j (Sh [ss] K, Q l) K ( ) Lubin-Tate 2012 9 18 19 / 27

B B ϕ (III) (IV) π Π G ϕ π HRZ 4 H i RZ Sh [ss] K M K Hochschild-Serre Hochschild-Serre (Harris, Fargues) E i,j 2 = Ext j J-sm (H6 j RZ A GSp 4 (A,p ) J H i (Sh [ss] ) := lim K H i+j (Sh [ss] K, Q l), A)( 3) = lim H i+j (Sh [ss] K, Q l) K ( ) Lubin-Tate 2012 9 18 19 / 27

Sh [ss] K Sh [good] K Sh [ss] K Sh[good] K Sh K ( ) Lubin-Tate 2012 9 18 20 / 27

Sh [ss] K Sh [good] K Sh [ss] K Sh[good] K Sh K IH i (Sh ) H i (Sh ) H i (Sh [good] ) H i (Sh [ss] ) ( ) Lubin-Tate 2012 9 18 20 / 27

Sh [ss] K Sh [good] K Sh [ss] K Sh[good] K Sh K IH i (Sh ) cusp = H i (Sh ) cusp = H i (Sh [good] ) cusp = H i (Sh [ss] ) cusp ( ) Lubin-Tate 2012 9 18 20 / 27

Sh [ss] K Sh [good] K Sh [ss] K Sh[good] K Sh K IH i = (Sh ) cusp H i (Sh ) cusp = H i (Sh [good] (1) (2) ) cusp = H i (Sh [ss] (3) ) cusp ( ) Lubin-Tate 2012 9 18 20 / 27

Sh [ss] K Sh [good] K Sh [ss] K Sh[good] K Sh K IH i = (Sh ) cusp H i (Sh ) cusp = H i (Sh [good] (1) (2) ) cusp = H i (Sh [ss] (3) (1) C ) cusp ( ) Lubin-Tate 2012 9 18 20 / 27

Sh [ss] K Sh [good] K Sh [ss] K Sh[good] K Sh K IH i = (Sh ) cusp H i (Sh ) cusp = H i (Sh [good] (1) (2) ) cusp = H i (Sh [ss] (3) (1) C (2) ) cusp ( ) Lubin-Tate 2012 9 18 20 / 27

Sh [ss] K Sh [good] K Sh [ss] K Sh[good] K Sh K IH i = (Sh ) cusp H i (Sh ) cusp = H i (Sh [good] (1) (2) ) cusp = H i (Sh [ss] (3) (1) C (2) ) cusp (3) Boyer GSp 4 GSp 2n, n 3 ( ) Lubin-Tate 2012 9 18 20 / 27

( ) ị 2, 3, 4 G H i RZ ( ) Lubin-Tate 2012 9 18 21 / 27

( ) ị 2, 3, 4 G H i RZ dim M = 3 HRZ i 0 0 i 6 2 = 3 1 = dim M dim M red, 4 = 3 + 1 = dim M + dim M red ( ) Lubin-Tate 2012 9 18 21 / 27

( ) ị 2, 3, 4 G H i RZ dim M = 3 HRZ i 0 0 i 6 2 = 3 1 = dim M dim M red, 4 = 3 + 1 = dim M + dim M red Lubin-Tate M ( ) Lubin-Tate 2012 9 18 21 / 27

( ) ị 2, 3, 4 G H i RZ dim M = 3 HRZ i 0 0 i 6 2 = 3 1 = dim M dim M red, 4 = 3 + 1 = dim M + dim M red Lubin-Tate M ( ) Lubin-Tate 2012 9 18 21 / 27

B ϕ (III) (IV) π Π G ϕ π HRZ 4 B ( ) Lubin-Tate 2012 9 18 22 / 27

B ϕ (III) (IV) π Π G ϕ π HRZ 4 B GSp 4 (A) Π Π IH 2 (Sh ) Π Π p = π ϕ (III) (IV) ( ) Lubin-Tate 2012 9 18 22 / 27

B ϕ (III) (IV) π Π G ϕ π HRZ 4 B GSp 4 (A) Π Π IH 2 (Sh ) Π Π p = π ϕ (III) (IV) Hochschild-Serre i + j = 2 i, j Π p Ext i J-sm (H6 j RZ, A) 6 j 5, 6 Π p Hom J (HRZ 4, A) π HRZ 4 ( ) Lubin-Tate 2012 9 18 22 / 27

A, A π, ρ ( ) Lubin-Tate 2012 9 18 23 / 27

A, A π, ρ Π GSp 4 (A) Π IH 3 (Sh ) Π Π p = π Π p 1 GSp 4 (A) Π Π p = (Π ) p Π = Π cf Arthur ( ) Lubin-Tate 2012 9 18 23 / 27

A, A π, ρ Π GSp 4 (A) Π IH 3 (Sh ) Π Π p = π Π p 1 GSp 4 (A) Π Π p = (Π ) p Π = Π cf Arthur ρ Π J Π,p = (Π J ),p Hochschild-Serre Π,p ( ) Lubin-Tate 2012 9 18 23 / 27

L Lefschetz ( ) Lubin-Tate 2012 9 18 24 / 27

L Lefschetz ( Lefschetz ) X Q ac p adic X X f : X X f : X X x X \ X x f (x) X ( 1) i Tr(f ; Hc(X i, Q l )) = # Fix(f ) i ( ) Lubin-Tate 2012 9 18 24 / 27

L Lefschetz ( Lefschetz ) X Q ac p adic X X f : X X f : X X x X \ X x f (x) X ( 1) i Tr(f ; Hc(X i, Q l )) = # Fix(f ) i M K ( ) Lubin-Tate 2012 9 18 24 / 27

ϕ: W SL 2 (C) GSp 4 (C) (I) (II) L Π G ϕ ΠJ ϕ TRSELP ρ Π J ϕ Hi RZ [ρ] G ( ) Lubin-Tate 2012 9 18 25 / 27

ϕ: W SL 2 (C) GSp 4 (C) (I) (II) L Π G ϕ ΠJ ϕ TRSELP ρ Π J ϕ Hi RZ [ρ] G g G θ HRZ [ρ](g) = 4 θ π (g) ρ Π J ϕ H RZ [ρ] = i ( 1)i H i RZ [ρ] π Π G ϕ θ HRZ [ρ], θ π G ( ) Lubin-Tate 2012 9 18 25 / 27

GL n Faltings, Strauch W H i RZ ( ) Lubin-Tate 2012 9 18 26 / 27

GL n Faltings, Strauch W H i RZ M K p p Dieudonné Hodge p Hodge L ( ) Lubin-Tate 2012 9 18 26 / 27

GL n Faltings, Strauch W H i RZ M K p p Dieudonné Hodge p Hodge L θ HRZ [ρ](g) = 4 #Π G ϕ π Π G ϕ θ π (g) ( ) Lubin-Tate 2012 9 18 26 / 27

GU(2, 1) GL 4 1/2 GU(n 1, 1) Boyer (Mantovan, Shen) H i RZ GU(2, D) GSp 4 cf Faltings ( ) Lubin-Tate 2012 9 18 27 / 27