(a) (b) (c) (d) 1: (a) (b) (c) (d) (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4

Similar documents
k = The Last Samurai Tom Cruise [1] Oracle Ken Watanabe (I) has a Bacon number of 2. 1: 6(k 6) (small world p


a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

DEIM Forum 2009 C8-4 QA NTT QA QA QA 2 QA Abstract Questions Recomme

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

ver Web

1 2 LDA Local Density Approximation 2 LDA 1 LDA LDA N N N H = N [ 2 j + V ion (r j ) ] + 1 e 2 2 r j r k j j k (3) V ion V ion (r) = I Z I e 2 r

数学Ⅱ演習(足助・09夏)


,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

第90回日本感染症学会学術講演会抄録(I)

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo


陦ィ邏・2

Ł\”ƒ-2005

1: Sheldon L. Glashow (Ouroboros) [1] 1 v(r) u(r, r ) ( e 2 / r r ) H 2 [2] H = ( dr ψ σ + (r) 1 2 ) σ 2m r 2 + v(r) µ ψ σ (r) + 1 dr dr ψ σ + (r)ψ +

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

8 (2006 ) X ( ) 1. X X X 2. ( ) ( ) ( 1) X (a) (b) 1: (a) (b)

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

Undulator.dvi

1 12 *1 *2 (1991) (1992) (2002) (1991) (1992) (2002) 13 (1991) (1992) (2002) *1 (2003) *2 (1997) 1

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg (

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

LLG-R8.Nisus.pdf

prime number theorem

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

T g T 0 T 0 fragile * ) 1 9) η T g T g /T *1. τ τ η = Gτ. G τ

H.Haken Synergetics 2nd (1978)

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

meiji_resume_1.PDF

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i



n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m


Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

sakigake1.dvi

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

第121回関東連合産科婦人科学会総会・学術集会 プログラム・抄録

p1_5.pmd

Part () () Γ Part ,

eto-vol2.prepri.dvi

SO(2)


linearal1.dvi

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

Chern-Simons Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q

2011de.dvi

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+



DVIOUT-fujin

Transcription:

1 vertex edge 1(a) 1(b) 1(c) 1(d) 2

(a) (b) (c) (d) 1: (a) (b) (c) (d) 1 2 6 1 2 6 1 2 6 3 5 3 5 3 5 4 4 (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4

1: Zachary [11] [12] [13] World-Wide Web [14] [15] [16] [17] i k i k i k i (k i 1)/2 q i i q i C i = q i k i (k i 1)/2 (1) i 3 k 1 = 3 2, 3, 4 (2, 3), (3, 4), (4, 2) 1 5 3: 2 4 3 q 1 = 1 C 1 = 1/3 N i = 1, 2, 3,..., N N N A A ij i j 1 0 3

0 1 1 1 0 1 0 0 0 0 1 0 0 1 1 1 0 1 0 0 0 0 1 0 0 (2) 1(c) 1(d) i j A ij = 1 1(a) 1 2 1 4(a) 1 4(b) 4 5 µ 200 σ 15 n(k) e (k µ)2 /(2σ 2 ) (3) n(k) = λ k e λ /k! λ µ = λ σ = λ k n(k) k γ (4) (3) (4) (4) (4) 2 2 γ (3) σ (4) 4 Barabási-Albert [13]

10 9 8 11 7 6 12 5 13 4 14 3 15 2 16 1 17 30 18 29 28 192021 22 23 24 25 2627 12 14 15 16 17 18 19 11 9 8 7 20 22 23 24 25 26 27 6 5 4 3 2 29 1 30 10 13 21 28 (a) (b) 4: 30 50 (a) (b) 300 250 200 150 100 50 (a) 0 0 100 200 300 400 500 600 300 250 200 150 100 50 (b) 0 0 100 200 300 400 500 600 5: 1000 200 000 (a) (b)

4 Watts-Strogatz [18] 3 4 5 universality universal gravity T c (T T c ) γ γ (T c T ) β β (T T c ) γ (T c T ) β Z 2 Z 2

2 4 5

(a) (b) 6: Barabási-Albert m = 2 (a) m = 2 (b) m = 2 (5) 4 Barabási-Albert [13] Watts-Strogatz [18] 4.1 Barabási-Albert Barabási-Albert [13] (i) m 6(a) m 1,2,3 (ii) (a) n m m i = 1, 2,..., N k i N m p i = k i N i=j k j (5) (b) N 1 (5) preferential attachment

5(a) (b) hub k n(k) k 3 (6) (4) γ = 3 k (5) [19] p i = k i + a N i=j (k j + a) (7) a (6) n(k) k 3+a/m (8) γ 3 2 γ 3 m a 0 (6) t m t = 0 1 1 t N(t) = m + t m(m 1)/2 m E(t) = m(m 1)/2 + mt i = 1, 2,..., N(t) k i (t) t N(t) [ ] m(m 1) k j (t) = 2 + mt 2mt (9) 2 j=1 (5) p i (t) k i(t) 2mt (10) i t + 1 m mp i k i

dk i dt = mp i = k i 2t (11) ( ) 1/2 t k i (t) = m (12) t i t i i i m k i (t i ) = m (12) t ki n(k) k (12) t i = t(m/k) 2 t k m [ ( m ) ] 2 N(t) N(t i ) = t t i = t 1 k (13) n(k) (13) k (6) (5) n(k) = 2m2 t k 3 (14) p i = k i + a N i=j (k j + a) (15) a (14) n(k) k 3+a/m (16) γ 3 2 γ 3 m a 0 p i p i = 1 N 1 t (17) (11)

(a) (b) 7: Watts-Strogatz (a) m N (b) dk i dt = m t (18) k i = m + m log t t i (19) k i = m[1 + log(t/t i )] n(k) exp( k/m) (20) 4.2 Watts-Strogatz Watts-Strogatz m N 7(a) Nm/2 pnm/2 7(b) p = 0 p = 1 p = 0 7(a) m/2 1 x x/(m/2)

N/2 N/(m/2) L 1 N/2 N x=1 x m/2 2N m (21) m m(m 1)/2 m 2 m 3 m/2 m/2 1 1 [ ( m )] 2 (m 2) + 2 1 m 2 = 3 m(m 2) (22) 8 C = 3(m 2) 4(m 1) (23) p = 1 Watts-Strogatz N N(N 1)/2 Nm/2 m/(n 1) C = m N 1 (24) 8 l N(l) m N(l) m(m 1) l 1 m l (25)

8: N(l) N(l 1) m N L N m L (26) L ln N (27) p = 0 O(N 1 ) p = 1 O(N 0 ) p = 0 p = 1 O(N 1 ) p O(N 0 ) O(N 1 ) 5 4 [20] 3

[21 25] [26 29] [26] (i) (ii) q H = i j (A ij γp ij )δ(σ i, σ j ) (28) q (28) σ i 1 q δ(σ i, σ j ) σ i = σ j 1 A ij A p ij i j γ [26] (28) A ij > γp ij i j [26]

4 6 communicability [30, 31] 6.1 Communicability 1 9(a) 2 9(b) 3 9(a) 9(b) 1 Estrada communicability [30,31] G ij = n=0 1 n! (An ) ij (29) A 1 (A n ) ij i j n (A n ) ij = i 1,i 2,...,i n 1 A ii1 A i1 i 2 A i2 i 3 A in 1 j (30) (a) (b) 9: (a) 2 (b) 3

(a) (b) 10: (a) (b) A 1 i i 1 i 2 i n 1 j (29) i j 1/n! 1/n! (29) G ij = ( e A) ij (31) G ij (β) = n β n n! (An ) ij = ( e βa) ij (32) β A 10(a) H (32) communicability [30,31] λ µ ψ µ N N N µ = 1, 2,..., N (31) G ij = N ψ µ (i)ψ µ (j)e λµ (33) µ=1 ψ µ (i) ψ µ i A H = A λ 1 λ 1 λ 2 λ 2 10(b)

12 10 8 6 4 2 (a) 40 35 30 25 20 15 10 5 (b) 0 4 3 2 1 0 1 2 3 4 0 10 8 6 4 2 0 2 4 6 8 10 11: (a)zachary [11] (b) [16] i j ψ 2 (i) ψ 2 (j) ψ 3 (i) ψ 3 (j) λ 3 i j ψ 2 (i) ψ 2 (j) ψ 3 (i) ψ 3 (j) (33) ψ µ (i) ψ µ (j) G ij = G ij ψ 1 (i)ψ 1 (j)e λ 1 = µ ++/ ψµ (i)ψ µ (j) e λµ µ + / + ψµ (i)ψ µ (j) e λµ. (34) i j G ij communicability network 6.2 [32] 11

2: [11] [16] [17] [12] / 34/78 297/2148 2114/2203 40421/175692 10 15 888 2678 ( ) ( 0) ( 0) ( 268) ( 844) 29.4% 5.1% 29.3% 4.5% 0 0 412 5 ( ) ( 0) ( 0) ( 265) ( 5) 0% 0% 6.9% 0% 12: 11(b) 2 2 [32] 12 12

(a) (b) 13: (a)zachary 12 (b) 12 13 [32] 7 [1], 2005 [2], 2010 [3] A.-L. Barabási Linked: The New Science of Networks (Perseus Publishing, 2002) [4] M. Newman, A.-L. Barabási, D.J. Watts The Structure and Dynamics of Networks (Princeton University Press, 2006) [5] M. Newman Networks: An Introduction (Oxford University Press, 2010) [6] R. Cohen, S. Havlin Complex Networks: Structure, Robustness and Function (Cambridge University Press, 2010) [7] E. Estrada The Structure of Complex Networks: Theory and Applications (Oxford University Press, 2012)

[8] R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74 (2002) 47 [9] S.N. Dorogovtsev, J.F.F. Mendes, Adv. Phys. 51 (2002) 1079 [10] M.E.J. Newman, SIAM review 45 (2003) 167 [11] W.W. Zachary, J. Anthoropological Res. 33 (1977) 452 [12] M.E.J. Newman, Proc. Natl. Acad. Sci. USA 98 (2001) 404 [13] A.-L. Barabási, R. Albert, Science 286 (1999) 509 [14] R. Albert, H. Jeong, A.-L. Barabási, Nature 401 (1999) 130 [15] V. Batagelj, A. Mrvar, http://vlado.fmf.uni-lj.si/pub/networks/data/ [16] D.J. Watts and S.H. Strogatz, Nature 393 (1998) 440 [17] H. Jeong, S. Mason, A.-L. Barabási, Z.N. Oltvai, Nature 441 (2001) 411 [18] D.J. Watts, S.H. Strogatz, Nature 393 (1998) 440 [19] S.N. Dorogovtsev, J.F.F. Mendes, A.N. Samukhin, Phys. Rev. Lett. 85 (2000) 4633 [20] S.N. Dorogovtsev, A.V. Goltsev, J.F.F. Mendes, Rev. Mod. Phys. 80 (2008) 1275 [21] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang, Phys. Rep. 424 (2006) 175 [22] G. Szabó, G. Fáth, Phys. Rep. 446 (2007) 97 [23] K. Szhajd-Weron, Acta Physica Polonica B 36 (2005) 2537 [24] A. Grabowski, R.A. Kosiński, Physica A 361 (2006) 651 [25] Q. Li, L.A. Braunstein, H. Wang, J. Shao, H.E. Stanley, S. Havlin, J. Stat. Phys. 151 (2013) 92 [26] J. Reichardt, S. Bornholdt, Phys. Rev. Lett. 93 (2004) 218701; Phys. Rev. E 74 (2006) 016110 [27] I. Ispolatov, I. Mazo, A. Yuryev, J. Stat. Mech. (2006) P09014 [28] S.W. Son, H. Jeong, J.D. Noh, Eur. Phys. J. B 50 (2006) 431 [29] P. Ronhovde, Z. Nussinov, Phys. Rev. E 81 (2010) 046114 [30] E. Estrada, N. Hatano, Phys. Rev. E 77 (2008) 036111; ibid. 78 (2008) 026102; Appl. Math. Comp. 214 (2009) 500 [31] E. Estrada, N. Hatano, M. Benzi, Phys. Rep. 514 (2012) 89 [32] B. Ruben, N. Hatano, in preparation