(a) (b) (c) (d) 1: (a) (b) (c) (d) (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4

Similar documents
untitled

k = The Last Samurai Tom Cruise [1] Oracle Ken Watanabe (I) has a Bacon number of 2. 1: 6(k 6) (small world p


a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

1 2 : etc = x(t + 1) = 1 ax(t) 2 + y(t) y(t + 1) = bx(t) x y 2006 p.2/58

DEIM Forum 2009 C8-4 QA NTT QA QA QA 2 QA Abstract Questions Recomme

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

抄録/抄録1    (1)V

ver Web

d (i) (ii) 1 Georges[2] Maier [3] [1] ω = 0 1

L. S. Abstract. Date: last revised on 9 Feb translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, L. Onsager and S.

大学院共通授業科目 トポロジー理工学特別講義 I ネットワークトポロジー 複雑ネットワークの統計的性質 北海道大学 工学研究科 応用物理学専攻 矢久保 考介

(Onsager )

金融機関の資産取引ネットワーク


1 2 LDA Local Density Approximation 2 LDA 1 LDA LDA N N N H = N [ 2 j + V ion (r j ) ] + 1 e 2 2 r j r k j j k (3) V ion V ion (r) = I Z I e 2 r

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T


数学Ⅱ演習(足助・09夏)


2/24

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

第90回日本感染症学会学術講演会抄録(I)

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo


陦ィ邏・2

Ł\”ƒ-2005

MAIN.dvi

1: Sheldon L. Glashow (Ouroboros) [1] 1 v(r) u(r, r ) ( e 2 / r r ) H 2 [2] H = ( dr ψ σ + (r) 1 2 ) σ 2m r 2 + v(r) µ ψ σ (r) + 1 dr dr ψ σ + (r)ψ +

Vol. 47 No. 3 Mar. 2006,, SNS: Social Networking Services Web SNS SNS mixi link community 3 Zipf SNS Structural Analy

1. 1 H18 p.2/37

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

8 (2006 ) X ( ) 1. X X X 2. ( ) ( ) ( 1) X (a) (b) 1: (a) (b)

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

untitled

D-brane K 1, 2 ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane

untitled

Twist knot orbifold Chern-Simons

Undulator.dvi

1 12 *1 *2 (1991) (1992) (2002) (1991) (1992) (2002) 13 (1991) (1992) (2002) *1 (2003) *2 (1997) 1

会報35号表紙.pdf

1 : ( ) ( ) ( ) ( ) ( ) etc (SCA)

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg (

Z: Q: R: C: sin 6 5 ζ a, b

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

(extended state) L (2 L 1, O(1), d O(V), V = L d V V e 2 /h 1980 Klitzing

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

LLG-R8.Nisus.pdf

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

prime number theorem

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

T g T 0 T 0 fragile * ) 1 9) η T g T g /T *1. τ τ η = Gτ. G τ

H.Haken Synergetics 2nd (1978)

: , 2.0, 3.0, 2.0, (%) ( 2.

201711grade1ouyou.pdf

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

meiji_resume_1.PDF

平成 29 年度 ( 第 39 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 29 ~8 年月 73 月日開催 31 日 Riemann Riemann ( ). π(x) := #{p : p x} x log x (x ) Hadamard de

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

newmain.dvi

2 A A 3 A 2. A [2] A A A A 4 [3]


163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha


n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m



Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

sakigake1.dvi

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

2016.

第121回関東連合産科婦人科学会総会・学術集会 プログラム・抄録

p1_5.pmd

Part () () Γ Part ,

eto-vol2.prepri.dvi

SO(2)


linearal1.dvi

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

Donaldson Seiberg-Witten [GNY] f U U C 1 f(z)dz = Res f(a) 2πi C a U U α = f(z)dz dα = 0 U f U U P 1 α 0 a P 1 Res a α = 0. P 1 Donaldson Seib

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

Chern-Simons Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q

0201

2011de.dvi

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+

untitled



DVIOUT-fujin

Transcription:

1 vertex edge 1(a) 1(b) 1(c) 1(d) 2

(a) (b) (c) (d) 1: (a) (b) (c) (d) 1 2 6 1 2 6 1 2 6 3 5 3 5 3 5 4 4 (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4

1: Zachary [11] [12] [13] World-Wide Web [14] [15] [16] [17] i k i k i k i (k i 1)/2 q i i q i C i = q i k i (k i 1)/2 (1) i 3 k 1 = 3 2, 3, 4 (2, 3), (3, 4), (4, 2) 1 5 3: 2 4 3 q 1 = 1 C 1 = 1/3 N i = 1, 2, 3,..., N N N A A ij i j 1 0 3

0 1 1 1 0 1 0 0 0 0 1 0 0 1 1 1 0 1 0 0 0 0 1 0 0 (2) 1(c) 1(d) i j A ij = 1 1(a) 1 2 1 4(a) 1 4(b) 4 5 µ 200 σ 15 n(k) e (k µ)2 /(2σ 2 ) (3) n(k) = λ k e λ /k! λ µ = λ σ = λ k n(k) k γ (4) (3) (4) (4) (4) 2 2 γ (3) σ (4) 4 Barabási-Albert [13]

10 9 8 11 7 6 12 5 13 4 14 3 15 2 16 1 17 30 18 29 28 192021 22 23 24 25 2627 12 14 15 16 17 18 19 11 9 8 7 20 22 23 24 25 26 27 6 5 4 3 2 29 1 30 10 13 21 28 (a) (b) 4: 30 50 (a) (b) 300 250 200 150 100 50 (a) 0 0 100 200 300 400 500 600 300 250 200 150 100 50 (b) 0 0 100 200 300 400 500 600 5: 1000 200 000 (a) (b)

4 Watts-Strogatz [18] 3 4 5 universality universal gravity T c (T T c ) γ γ (T c T ) β β (T T c ) γ (T c T ) β Z 2 Z 2

2 4 5

(a) (b) 6: Barabási-Albert m = 2 (a) m = 2 (b) m = 2 (5) 4 Barabási-Albert [13] Watts-Strogatz [18] 4.1 Barabási-Albert Barabási-Albert [13] (i) m 6(a) m 1,2,3 (ii) (a) n m m i = 1, 2,..., N k i N m p i = k i N i=j k j (5) (b) N 1 (5) preferential attachment

5(a) (b) hub k n(k) k 3 (6) (4) γ = 3 k (5) [19] p i = k i + a N i=j (k j + a) (7) a (6) n(k) k 3+a/m (8) γ 3 2 γ 3 m a 0 (6) t m t = 0 1 1 t N(t) = m + t m(m 1)/2 m E(t) = m(m 1)/2 + mt i = 1, 2,..., N(t) k i (t) t N(t) [ ] m(m 1) k j (t) = 2 + mt 2mt (9) 2 j=1 (5) p i (t) k i(t) 2mt (10) i t + 1 m mp i k i

dk i dt = mp i = k i 2t (11) ( ) 1/2 t k i (t) = m (12) t i t i i i m k i (t i ) = m (12) t ki n(k) k (12) t i = t(m/k) 2 t k m [ ( m ) ] 2 N(t) N(t i ) = t t i = t 1 k (13) n(k) (13) k (6) (5) n(k) = 2m2 t k 3 (14) p i = k i + a N i=j (k j + a) (15) a (14) n(k) k 3+a/m (16) γ 3 2 γ 3 m a 0 p i p i = 1 N 1 t (17) (11)

(a) (b) 7: Watts-Strogatz (a) m N (b) dk i dt = m t (18) k i = m + m log t t i (19) k i = m[1 + log(t/t i )] n(k) exp( k/m) (20) 4.2 Watts-Strogatz Watts-Strogatz m N 7(a) Nm/2 pnm/2 7(b) p = 0 p = 1 p = 0 7(a) m/2 1 x x/(m/2)

N/2 N/(m/2) L 1 N/2 N x=1 x m/2 2N m (21) m m(m 1)/2 m 2 m 3 m/2 m/2 1 1 [ ( m )] 2 (m 2) + 2 1 m 2 = 3 m(m 2) (22) 8 C = 3(m 2) 4(m 1) (23) p = 1 Watts-Strogatz N N(N 1)/2 Nm/2 m/(n 1) C = m N 1 (24) 8 l N(l) m N(l) m(m 1) l 1 m l (25)

8: N(l) N(l 1) m N L N m L (26) L ln N (27) p = 0 O(N 1 ) p = 1 O(N 0 ) p = 0 p = 1 O(N 1 ) p O(N 0 ) O(N 1 ) 5 4 [20] 3

[21 25] [26 29] [26] (i) (ii) q H = i j (A ij γp ij )δ(σ i, σ j ) (28) q (28) σ i 1 q δ(σ i, σ j ) σ i = σ j 1 A ij A p ij i j γ [26] (28) A ij > γp ij i j [26]

4 6 communicability [30, 31] 6.1 Communicability 1 9(a) 2 9(b) 3 9(a) 9(b) 1 Estrada communicability [30,31] G ij = n=0 1 n! (An ) ij (29) A 1 (A n ) ij i j n (A n ) ij = i 1,i 2,...,i n 1 A ii1 A i1 i 2 A i2 i 3 A in 1 j (30) (a) (b) 9: (a) 2 (b) 3

(a) (b) 10: (a) (b) A 1 i i 1 i 2 i n 1 j (29) i j 1/n! 1/n! (29) G ij = ( e A) ij (31) G ij (β) = n β n n! (An ) ij = ( e βa) ij (32) β A 10(a) H (32) communicability [30,31] λ µ ψ µ N N N µ = 1, 2,..., N (31) G ij = N ψ µ (i)ψ µ (j)e λµ (33) µ=1 ψ µ (i) ψ µ i A H = A λ 1 λ 1 λ 2 λ 2 10(b)

12 10 8 6 4 2 (a) 40 35 30 25 20 15 10 5 (b) 0 4 3 2 1 0 1 2 3 4 0 10 8 6 4 2 0 2 4 6 8 10 11: (a)zachary [11] (b) [16] i j ψ 2 (i) ψ 2 (j) ψ 3 (i) ψ 3 (j) λ 3 i j ψ 2 (i) ψ 2 (j) ψ 3 (i) ψ 3 (j) (33) ψ µ (i) ψ µ (j) G ij = G ij ψ 1 (i)ψ 1 (j)e λ 1 = µ ++/ ψµ (i)ψ µ (j) e λµ µ + / + ψµ (i)ψ µ (j) e λµ. (34) i j G ij communicability network 6.2 [32] 11

2: [11] [16] [17] [12] / 34/78 297/2148 2114/2203 40421/175692 10 15 888 2678 ( ) ( 0) ( 0) ( 268) ( 844) 29.4% 5.1% 29.3% 4.5% 0 0 412 5 ( ) ( 0) ( 0) ( 265) ( 5) 0% 0% 6.9% 0% 12: 11(b) 2 2 [32] 12 12

(a) (b) 13: (a)zachary 12 (b) 12 13 [32] 7 [1], 2005 [2], 2010 [3] A.-L. Barabási Linked: The New Science of Networks (Perseus Publishing, 2002) [4] M. Newman, A.-L. Barabási, D.J. Watts The Structure and Dynamics of Networks (Princeton University Press, 2006) [5] M. Newman Networks: An Introduction (Oxford University Press, 2010) [6] R. Cohen, S. Havlin Complex Networks: Structure, Robustness and Function (Cambridge University Press, 2010) [7] E. Estrada The Structure of Complex Networks: Theory and Applications (Oxford University Press, 2012)

[8] R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74 (2002) 47 [9] S.N. Dorogovtsev, J.F.F. Mendes, Adv. Phys. 51 (2002) 1079 [10] M.E.J. Newman, SIAM review 45 (2003) 167 [11] W.W. Zachary, J. Anthoropological Res. 33 (1977) 452 [12] M.E.J. Newman, Proc. Natl. Acad. Sci. USA 98 (2001) 404 [13] A.-L. Barabási, R. Albert, Science 286 (1999) 509 [14] R. Albert, H. Jeong, A.-L. Barabási, Nature 401 (1999) 130 [15] V. Batagelj, A. Mrvar, http://vlado.fmf.uni-lj.si/pub/networks/data/ [16] D.J. Watts and S.H. Strogatz, Nature 393 (1998) 440 [17] H. Jeong, S. Mason, A.-L. Barabási, Z.N. Oltvai, Nature 441 (2001) 411 [18] D.J. Watts, S.H. Strogatz, Nature 393 (1998) 440 [19] S.N. Dorogovtsev, J.F.F. Mendes, A.N. Samukhin, Phys. Rev. Lett. 85 (2000) 4633 [20] S.N. Dorogovtsev, A.V. Goltsev, J.F.F. Mendes, Rev. Mod. Phys. 80 (2008) 1275 [21] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang, Phys. Rep. 424 (2006) 175 [22] G. Szabó, G. Fáth, Phys. Rep. 446 (2007) 97 [23] K. Szhajd-Weron, Acta Physica Polonica B 36 (2005) 2537 [24] A. Grabowski, R.A. Kosiński, Physica A 361 (2006) 651 [25] Q. Li, L.A. Braunstein, H. Wang, J. Shao, H.E. Stanley, S. Havlin, J. Stat. Phys. 151 (2013) 92 [26] J. Reichardt, S. Bornholdt, Phys. Rev. Lett. 93 (2004) 218701; Phys. Rev. E 74 (2006) 016110 [27] I. Ispolatov, I. Mazo, A. Yuryev, J. Stat. Mech. (2006) P09014 [28] S.W. Son, H. Jeong, J.D. Noh, Eur. Phys. J. B 50 (2006) 431 [29] P. Ronhovde, Z. Nussinov, Phys. Rev. E 81 (2010) 046114 [30] E. Estrada, N. Hatano, Phys. Rev. E 77 (2008) 036111; ibid. 78 (2008) 026102; Appl. Math. Comp. 214 (2009) 500 [31] E. Estrada, N. Hatano, M. Benzi, Phys. Rep. 514 (2012) 89 [32] B. Ruben, N. Hatano, in preparation