2

Similar documents
x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

A


r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 +

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

main.dvi



.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x


2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

Z: Q: R: C:

mugensho.dvi

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

09 II 09/12/ (3D ) f(, y) = 2 + y 2 3D- 1 f(0, 0) = 2 f(1, 0) = 3 f(0, 1) = 4 f(1, 1) = 5 f( 1, 2) = 6 f(0, 1) = z y (3D ) f(, y) = 2 + y

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy



, ( ) 2 (312), 3 (402) Cardano

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

1

°ÌÁê¿ô³ØII

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z


II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b)

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

Z: Q: R: C: 3. Green Cauchy

日本内科学会雑誌第102巻第4号

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )


I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

Gmech08.dvi

2014 S hara/lectures/lectures-j.html r 1 S phone: ,

all.dvi

untitled

notekiso1_09.dvi

x y x-y σ x + τ xy + X σ y B = + τ xy + Y B = S x = σ x l + τ xy m S y = σ y m + τ xy l σ x σ y τ xy X B Y B S x S y l m δu δv [ ( σx δu + τ )

Fubini

II 2 II

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

all.dvi

29

ii

さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a

i

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

i

2011de.dvi

応力とひずみ.ppt

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

No. No. 4 No f(z) z = z z n n sin x x dx = π, π n sin(mπ/n) x m + x n dx = m, n m < n e z, sin z, cos z, log z, z α 4 4 9


v er.1/ c /(21)

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq


TOP URL 1

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

DVIOUT

2000年度『数学展望 I』講義録

f(x) = e x2 25 d f(x) 0 x d2 dx f(x) 0 x dx2 f(x) (1 + ax 2 ) 2 lim x 0 x 4 a 3 2 a g(x) = 1 + ax 2 f(x) g(x) 1/2 f(x)dx n n A f(x) = Ax (x R

2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0

Tips KENZOU PC no problem 2 1 w = f(z) z 1 w w z w = (z z 0 ) b b w = log (z z 0 ) z = z 0 2π 2 z = z 0 w = z 1/2 z = re iθ θ (z = 0) 0 2π 0

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2


zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

phs.dvi

Transcription:

p1 i 2 = 1 i 2 x, y x + iy 2 (x + iy) + (γ + iδ) = (x + γ) + i(y + δ) (x + iy)(γ + iδ) = (xγ yδ) + i(xδ + yγ) i 2 = 1 γ + iδ 0 x + iy γ + iδ xγ + yδ xδ = γ 2 + iyγ + δ2 γ 2 + δ 2 p7 = x 2 +y 2 z z p13 (x, y) (r, θ) x = rcosθ y = rsinθ z == r(cosθ + isinθ) r r z θ z argz 1

2

p1 i 2 = 1 i 2 α, β α + iβ 2 (α + iβ) + (γ + iδ) = (α + γ) + i(β + δ) (α + iβ)(γ + iδ) = (αγ βδ) + i(αδ + βγ) i 2 = 1 γ + iδ 0 α + iβ γ + iδ = αγ + βδ γ 2 + δ 2 αδ + iβγ γ 2 + δ 2 p7 = α 2 +β 2 a a p13 (α, β) (r, ϕ) α = rcosϕ β = rsinϕ a == r(cosϕ + isinϕ) r r a ϕ a arga p1 i 2 := 1 2 3

(x 1 + iy 1 ) + (x 2 + iy 2 ) := (x 1 + x 2 ) + i(y 1 + y 2 ) (x 1 + iy 1 )(x 2 + iy 2 ) := (x 1 x 2 y 1 y 2 ) + i(y 1 x 2 + x 1 y 2 ) p1 2 x,y (x,y) x + iy +i 1 2 0+i0,1+i0 0,1 4

5

p25 f f(z + h) f(z) (z) = lim h 0 h [ ε > 0, δ > 0, h + ik{0 < h + ik < δ}, {u(x + h, y + k) + iv(x + h, y + k)} {u(x, y) + iv(x, y)} {a + ib} < ε] h + ik D = {x + iy x + iy < 10} u(x, y) + iv(x, y) = x 2 y 2 + i2xy 1 + i1 2 + i2 ε > 0 δ > 0 0 < h + ik < δ h + ik {{1 + h}2 {1 + k} 2 + i2{1 + h}{1 + k}} {1 2 1 2 + i2 1 1} {2 + i2} < ε h + ik {{1 + h}2 {1 + k} 2 + i2{1 + h}{1 + k}} {1 2 1 2 + i2 1 1} {2 + i2} < 100 h + ik 0 < h + ik < 1 {0 < 0.5 + i{ 0.5} < 1 {{1 + 0.5}2 {1 0.5} 2 + i2{1 + 0.5}{1 0.5}} {1 2 1 2 + i2 1 1} {2 + i2} < 100 0.5 + i{ 0.5} 0 < 0.1 + i0.2 < 1 {{1 + 0.1}2 {1 + 0.2} 2 + i2{1 + 0.1}{1 + 0.2}} {1 2 1 2 + i2 1 1} {2 + i2} < 100} 0.1 + i0.2 {{1 + h}2 {1 + k} 2 + i2{1 + h}{1 + k}} {1 2 1 2 + i2 1 1} {2 + i2} < 200 h + ik [ ] 6

h 0 h 0 y x f (z) = f x = u x + i v x {u(x + h, y) + iv(x + h, y)} {u(x, y) + iv(x, y)} [ lim =] h 0 h + i0 h ik 0 f f(z + ik) f(z) (z) = lim = i f k 0 ik y = i u y + v y {u(x, y + k) + iv(x, y + k)} {u(x, y) + iv(x, y)} [lim k 0 0 + ik u(x, y + k) u(x, y) i{v(x, y + k) v(x, y)} = lim + lim ] k 0 ik k 0 ik f(z) f x = i f y [ u x u x = v y, u y = v x (6) (x, y) = v y (x, y), u y v (x, y) = (x, y)] x [ ] 7

u v 1 1 (6) u(x + h, y + k) u(x, y) = u x h + u y k + ε 1 v(x + h, y + k) v(x, y) = v x h + v y k + ε 2 [u(x + h, y + k) u(x, y) = u u (x, y)h + x y (x, y)k + ε 1(h, k) ε > 0, δ > 0, h + ik{0 < h + ik < δ}, ε 1(h, k) h2 + k 2 < ε] h + ik 0 ε 1 /(h + ik) 0 ε 2 /(h + ik) 0 ε 1, ε 2 h + ik 0 f(z) = u(x, y) + iv(x, y) (6) f(z + h + ik) f(z) = ( u x + i v x )(h + ik) + ε 1 + iε 2 lim h+ik 0 f(z + h + ik) f(z) h + ik f(z) = u x + i v x u(x, y), v(x, y) f(z) = u(z) + iv(z) f (z) [v(x 0 + h, y 0 + k) v(x 0, y 0 ) = v x (x 0, y 0 )h + v y (x 0, y 0 )k + ε 2 (h, k) [ ] [ ] h h ε > 0, δ > 0, {0 < k k < δ}, ε 2 (h, k) [ ] h < ε] k 8

p24 The class of analytic functions is formed by the complex functions of a complex variable which possess a derivative wherever the function is defined. The term holomorphic function is used with identical meaning. The definition of the derivative can be rewritten in the form f f(z + h) f(z) (z) = lim h 0 h [ ε > 0, δ > 0, h + ik{0 < h + ik < δ}, {u(x + h, y + k) + iv(x + h, y + k)} {u(x, y) + iv(x, y)} {a + ib} < ε] h + ik The limit of the difference quotient must be the same regardless of the way in which h approaches zero. If we choose real values for h, then the imaginary part y is kept constant, and the derivative becomes a partial derivative with respect to x. We have thus 9

Ip162 1 C D f[= u(x, y) + iv(x, y)] a[= a + ib] D lim h 0,h 0 f(a + h) f(a) h = b C [ ε > 0 δ > 0 0 < h + ik < δ h + ik {u(a + k, b + l) + iv(a + k, b + l)} {u(a, b) + iv(a, b)} {α + iβ} < ε ] b f a f (a)[=] D f D D = {x + iy x + iy < 10} u(x, y) + iv(x, y) = x 2 y 2 + i2xy 1 + i1 2 + i2 ε > 0 δ > 0 0 < < δ {{1 + k}2 {1 + l} 2 + i2{1 + k}{1 + l}} {1 2 1 2 + i2 1 1} {2 + i2} < ε {{1 + k}2 {1 + l} 2 + i2{1 + k}{1 + l}} {1 2 1 2 + i2 1 1} {2+i2} < 100 0 < < 1 {0 < 0.5 + i{ 0.5} < 1 {{1 + 0.5}2 {1 0.5} 2 + i2{1 + 0.5}{1 0.5}} {1 2 1 2 + i2 1 1} {2 + i2} < 100 0.5 + i{ 0.5} 0 < 0.1 + i0.2 < 1 {{1 + 0.1}2 {1 + 0.2} 2 + i2{1 + 0.1}{1 + 0.2}} {1 2 1 2 + i2 1 1} {2 + i2} < 100} 0.1 + i0.2 {{1 + k}2 {1 + l} 2 + i2{1 + k}{1 + l}} {1 2 1 2 + i2 1 1} {2+i2} < 200 Ip162 Ip163 164 - p44 p169 f (a)[= [ ε > 0, δ > 0, {0 < < δ}, {u(a + k, b + l) + iv(a + k, b + l)} {u(a, b) + iv(a, b)} d dx+idy {u(a, b) + iv(a, b)}] {α + iβ} < ε] 10

11

p26 = lim h 0 f(z + h) f(z) h f (z) p51 h 0 0 p52 u(x, y) = u(x 0, y 0 ) + a(x x 0 ) + b(y y 0 ) + o() a = u x (x 0, y 0 ), b = u y (x 0, y 0 ) α = a + ib f(z) = f(z 0 ) + α(z z 0 ) + o( z z 0 ), α = df dz (z 0) u(x, y) = u(x 0, y 0 ) + a(x x 0 ) b(y y 0 ) + o( x x 0 2 + y y 0 2 ), v(x, y) = v(x 0, y 0 ) + b(x x 0 ) + a(y y 0 ) + o( x x 0 2 + y y 0 2 ) p54 f(z) 12

p201 f(z) z f(z + h) f(z) lim = f (z) h 0 h f(z + h) = f(z) + hf (z) + o(h) h 0 f (z) K K f(z) = u + vi z = x + yi f (z) = p + qi h = dz = dx + idy (1), ( h = dx 2 + dy 2 ) u,v x,y u x = v y = p, u y = v x = q f (z) = u x + iv x = i() f(z) u v u x = v y, u y = v x (2) (2) Cauchy-Riemann u,v x,y (2) h = dx + idy (2) du = u x dx + u y dy + o( h ), dv = v x dx + v y dy + o( h ), du + idv = (u x + iv x )(dx + idy) + o( h ) 13

p33 30 p85 u(x, y) = x 2 y 2, v(x, y) = 2xy 30 p89 f(z) f(z 0 ) lim z z 0 z z 0 f z 0 f (z 0 ) A 30 p91 {u(x, y)+iv(x, y)} {u(x 0, y 0 )+iv(x 0, y 0 )} = (a+ib){(x x 0 )+i(y y 0 )}+(){(x x 0 )+i(y y 0 )} u(x, y) u(x 0, y 0 ) = a(x x 0 ) b(y y 0 ) + z z 0 ɛ 0 x x 0 y y 0 0 ɛ 1, ɛ 2 0 30 p92 {u(x, y 0 ) + iv(x, y 0 )} {u(x 0, y 0 ) + iv(x 0, y 0 )} lim = lim x x 0 (x + iy 0 ) (x 0 + iy 0 ) u(x, y 0 ) u(x 0, y 0 ) x x 0 x x 0 +i lim x x 0 v(x, y 0 ) v(x 0, y 0 ) x x 0 14

30 p97 D D f D f(z) f (z) = u x + i v x f (z) p23 1 f(x) x a A lim f(x) = A x a ε > 0 δ > 0 x a < δ x a x f(x) A < ε p25 f (z) = lim h 0 f(z + h) f(z) h [ ε > 0 δ > 0 h 0 < δ h 0 h f(z + h) f(z) f (z) < ε ] h 15

f(z + δ) f(z) δ = f f(z + h) f(z) (z) = lim ( ) h 0 h {u(x + h, y + k) + iv(x + h, y + k)} {u(x, y) + iv(x, y)} ( ) h + ik [f {u(x + h, y + k) + iv(x + h, y + k)} {u(x, y) + iv(x, y)} (z) = lim ] h 0 h + ik q : lim f(x) = b ( ) x a q : ɛ > 0, δ > 0, x(0 < x a < δ), f(x) b < ɛ ( ) [ ɛ > 0, δ > 0, h(0 < h < δ), {u(x + h, y + k) + iv(x + h, y + k)} {u(x, y) + iv(x, y)} f (z) < ɛ] h + ik 1 f(z + δ) f(z) δ P51 52 = [ lim h 0,h 0 f(a + h) f(a) lim = b C ( 1.1) h 0,h 0 h {u(x + h, y + k) + iv(x + h, y + k)} {u(x, y) + iv(x, y)} ( ) h + ik {u(a + k, b + l) + iv(a + k, b + l)} {u(a, b) + iv(a, b)} ] 2 f R n A R m a Ā, b Rm x a f(x) b ε > 0 δ > 0 x a < δ x A f(x) b < ε lim f(x) = b x a [ ε > 0 δ > 0 0 < h + ik < δ h + ik {u(a + k, b + l) + iv(a + k, b + l)} {u(a, b) + iv(a, b)} {α + iβ} < ε ] 16

{u(x, y 0 ) + iv(x, y 0 )} {u(x 0, y 0 ) + iv(x 0, y 0 )} u(x, y 0 ) u(x 0, y 0 ) v(x, y 0 ) v(x 0, y 0 ) lim = lim +i lim ( ) x x 0 (x + iy 0 ) (x 0 + iy 0 ) x x 0 x x 0 x x 0 x x 0 {u(x 0 + h, y 0 ) + iv(x 0 + h, y 0 )} {u(x 0, y 0 ) + iv(x 0, y 0 )} [ lim =] h 0 (x 0 + h + iy 0 ) (x 0 + iy 0 ) R n x f {u(x + h, y) + iv(x + h, y)} {u(x, y) + iv(x, y)} [ lim =] h 0 h + i0 x = x 1 x 2.. x n ( ) f(x) lim x a,x a g(x) = 0 ( ) f o(g){x a} h = dx + idy ( h = dx 2 + dy 2 ) ( ) du = u x dx + u y dy + o( h ) ( ) f(h) [ lim h 0,h 0 h (h) = 0] f(h) [ lim dx+idy 0,dx+idy 0 dx2 + dy 2 (h) = 0] q : lim f(x) = b ( ) x a q : ɛ > 0, δ > 0, x(0 < x a < δ), f(x) b < ɛ ( ) [ ɛ > 0, δ > 0, h(0 < h 0 < δ), f(h) 0 < ɛ] h (h) f(h) [ ε > 0, δ > 0, dx + idy{0 < dx + idy 0 < δ}, 0 < ε] dx2 + dy 2 (h) [ ] [ ] h h [ ε > 0, δ > 0, {0 < k k < δ}, ε 1 (h, k) < ε] h2 + k 2 f(z + h) f(z) = (a + bi)h + o(h) (h 0) ( 1.8) u(x + k, y + l) u(x, y) = ak bl + o(h) (h 0) ( 1.9) f(h) [ lim h 0,h 0 h(h) = 0] 17

q : lim f(x) = b ( ) x a q : ɛ > 0, δ > 0, x(0 < x a < δ), f(x) b < ɛ ( ) [ ɛ > 0, δ > 0, h(0 < h 0 < δ), f(h) 0 < ɛ] h(h) 1 R n U f au n c = (c 1, c 2,, c n ) f(a + h) f(a) = ch + o( h ) {h 0} ( 5.3) f(h) [ lim h 0,h 0 h(h) = 0] [ ] [ ] h h [ ε > 0, δ > 0, {0 < k k < δ}, ε 1 (h, k) [ ] h < ε] k Ip162 1 C D f a D f(a + h) f(a) lim = b C h 0,h 0 h {u(a + k, b + l) + iv(a + k, b + l)} {u(a, b) + iv(a, b)} [ lim = b C] h 0,h 0 b f a f (a) D f D P163 164 30P91 f(z) = u(x, y) + iv(x, y)(z = x + yi) h = k + li u(x + k, y + l) u(x, y) f (z) = a + ib = - p44 q : lim f(x) = b x a q: 0 < x a < δ x f(x) b < ɛ 18

ɛ > 0, δ > 0 : 0 < x a < δ = f(x) b < ɛ q q : ɛ > 0, δ > 0, x(0 < x a < δ), f(x) b < ɛ f(a + h) f(a) [ lim = b C (1.1)] h 0,h 0 h f(a + h) f(a) [q : ɛ > 0, δ > 0, x(0 < h 0 < δ), b < ɛ] h {u(a + k, b + l) + iv(a + k, b + l)} {u(a, b) + iv(a, b)} [ lim = b C] h 0,h 0 [q : ɛ > 0, δ > 0, h(0 < h < δ), {u(a + k, b + l) + iv(a + k, b + l)} {u(a, b) + iv(a, b)} b < ɛ] p169 f(z + δ) f(z) δ = {u(x + h, y + k) + iv(x + h, y + k)} {u(x, y) + iv(x, y)} h + ik 19

- p44 q : lim f(x) = b x a q: 0 < x a < δ x f(x) b < ɛ ɛ > 0, δ > 0 : 0 < x a < δ = f(x) b < ɛ q q : ɛ > 0, δ > 0, x(0 < x a < δ), f(x) b < ɛ [f f(z + h) f(z) (z) = lim ] h 0 h f(z + h) f(z) [q : ɛ > 0, δ > 0, h(0 < h 0 < δ), f (z) < ɛ] h {u(x + h, y + k) + iv(x + h, y + k)} {u(x, y) + iv(x, y)} [ lim = f (z) + ] h 0 h + ik [q : ɛ > 0, δ > 0, h(0 < h < δ), {u(x + k, y + l) + iv(x + k, y + l)} {u(x, y) + iv(x, y)} f (z) < ɛ] p169 f(z + δ) f(z) δ = {u(x + h, y + k) + iv(x + h, y + k)} {u(x, y) + iv(x, y)} h + ik 20

p28 p26 d ( dz f(z)) d [ {u(x, y) + iv(x, y)}] dx + idy d [ {u(a, b) + iv(a, b)}] dx + idy p50 d dz (f(z)g(z)) z (f(z)) p4 dz = dx + idy 21

22

P51 52 2 f R n A R m a Ā, b Rm x a f(x) b ɛ > 0 δ > 0 x a < δ x A f(x) b < ɛ lim f(x) = b x a ( ɛ > 0)( δ > 0)( x A)( x a < δ = f(x) b < ɛ) [ ɛ > 0, δ > 0, x{0 < x a < δ}, f(x) b < ɛ] [ ɛ > 0 δ > 0 0 < h 0 < δ {a + h} D f(a+h) f(a) h b < ɛ ] P120 n c=[,,,] 30p34 ɛ δ 0 < x a < δ = f(x) A < ɛ lim f(x) = A x a 23

Ip162 1 C D u(x, y) + iv(x, y) a + ib D α + iβ ε > 0, δ > 0, {0 < < δ}, {u(a + k, b + l) + iv(a + k, b + l)} {u(a, b) + iv(a, b)} α + iβ = {u + iv} (a + ib) {α + iβ} < ε D u(x, y) + iv(x, y) D D = {x + iy x + iy < 10} u(x, y) + iv(x, y) = x 2 y 2 + i2xy 1 + i1 2 + i2 ε > 0 δ > 0 0 < < δ {{1 + k}2 {1 + l} 2 + i2{1 + k}{1 + l}} {1 2 1 2 + i2 1 1} {2 + i2} < ε ε = 100 δ = 1 0 < 0.5 + i{ 0.5} < 1 {{1 + 0.5}2 {1 0.5} 2 + i2{1 + 0.5}{1 0.5}} {1 2 1 2 + i2 1 1} {2 + i2} < 100 0.5 + i{ 0.5} ε = P162 P51 52 120 163 30 P89 1 C D u(x, y) + iv(x, y) {a + ib} D α + iβ ɛ > 0 δ > 0 0 < k+il < δ {{a+ib}+{k+il}} {u(a + k, b + l) + iv(a + k, b + l)} {u(a, b) + iv(a, b)} D {α + iβ} < ɛ α + iβ = {u + iv} (a + ib) D u(x, y) + iv(x, y) D D = {x + iy x + iy < 10} u(x, y) + iv(x, y) = x 2 y 2 + i2xy 1 + i1 ɛ > 0 δ > 0 0 < k+il < δ {{1+i1}+{k+il}} D {{1 + k}2 {1 + l} 2 + i2{1 + k}{1 + l}} {1 2 1 2 + i2 1 1} {2+i2} < ɛ ɛ = 100 δ = 1 OK 0 < 0.5 + i{ 0.5} < 1 {{1 + 0.5}2 {1 0.5} 2 + i2{1 + 0.5}{1 0.5}} {1 2 1 2 + i2 1 1} {2 + i2} < 100 0.5 + i{ 0.5} ɛ = 24

25

P15 [6] 26

P162 1 C D u(x, y) + iv(x, y) {a + ib} D α + iβ { ɛ > 0}{ δ > 0}{ {{a + ib} + {}} D} {u(a + k, b + l) + iv(a + k, b + l)} {u(a, b) + iv(a, b)} {0 < < δ = α + iβ = {u + iv} (a + ib) {α + iβ} < ɛ} D u(x, y) + iv(x, y) D D = {x + iy x + iy < 10} u(x, y) + iv(x, y) = x 2 y 2 + i2xy 1 + i1 ɛ > 0 0 < < δ {{1 + k}2 {1 + l} 2 + i2{1 + k}{1 + l}} {1 2 1 2 + i2 1 1} {2 + i2} < ɛ δ ɛ = 100 δ = 1 OK 0 < 0.5 + i{ 0.5} < 1 {{1 + 0.5}2 {1 0.5} 2 + i2{1 + 0.5}{1 0.5}} {1 2 1 2 + i2 1 1} {2 + i2} < 100 0.5 + i{ 0.5} ɛ = 27