main.dvi

Similar documents
main.dvi

main.dvi

dfilterh.dvi

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63>

sikepuri.dvi

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

V s d d 2 d n d n 2 n R 2 n V s q n 2 n Output q 2 q Decoder 2 R 2 2R 2R 2R 2R A R R R 2R A A n A n 2R R f R (a) 0 (b) 7.4 D-A (a) (b) FET n H ON p H

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

main.dvi

高等学校学習指導要領

高等学校学習指導要領

( ) : 1997

Gmech08.dvi

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

35

知能科学:ニューラルネットワーク

知能科学:ニューラルネットワーク

Gmech08.dvi

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

1 7 ω ω ω 7.1 0, ( ) Q, 7.2 ( Q ) 7.1 ω Z = R +jx Z 1/ Z 7.2 ω 7.2 Abs. admittance (x10-3 S) RLC Series Circuit Y R = 20 Ω L = 100

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

Z: Q: R: C: sin 6 5 ζ a, b

Chap9.dvi

85 4

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

SO(2)

Gmech08.dvi

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou


A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

29

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

Part () () Γ Part ,

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

『共形場理論』

untitled

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

R = Ar l B r l. A, B A, B.. r 2 R r = r2 [lar r l B r l2 ]=larl l B r l.2 r 2 R = [lar l l Br ] r r r = ll Ar l ll B = ll R rl.3 sin θ Θ = ll.4 Θsinθ

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1.

phs.dvi

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

all.dvi

TOP URL 1

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

0 s T (s) /CR () v 2 /v v 2 v = T (jω) = + jωcr (2) = + (ωcr) 2 ω v R=Ω C=F (b) db db( ) v 2 20 log 0 [db] (3) v R v C v 2 (a) ω (b) : v o v o =

keisoku01.dvi

TOP URL 1

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

30


LLG-R8.Nisus.pdf

chap1.dvi

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

4.6 (E i = ε, ε + ) T Z F Z = e βε + e β(ε+ ) = e βε (1 + e β ) F = kt log Z = kt log[e βε (1 + e β )] = ε kt ln(1 + e β ) (4.18) F (T ) S = T = k = k

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1.500 m X Y m m m m m m m m m m m m N/ N/ ( ) qa N/ N/ 2 2

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

III,..

untitled

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

untitled

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

Microsoft Word - 章末問題

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

Tricorn

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

untitled

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

he T N/ N/

訂正目次.PDF

A

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%


振動と波動

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

: , 2.0, 3.0, 2.0, (%) ( 2.

ディジタル信号処理

Transcription:

5 IIR IIR z 5.1 5.1.1 1. 2. IIR(Infinite Impulse Response) FIR(Finite Impulse Response) 3. 4. 5. 5.1.2 IIR FIR 5.1 5.1 5.2

104 5. IIR 5.1 IIR FIR IIR FIR H(z) = a 0 +a 1 z 1 +a 2 z 2 1+b 1 z 1 +b 2 z 2 H(z) =h 0 + h 1z 1 + h 2z 2 + z 1 z = h 3z 3, z 1 0 z =0 z =0 y(n) = b 1y(n 1) b 2y(n 2)+ a 0x(n)+a 1x(n 1) + a 2x(n 2) y(n) = h 0x(n) +h 1x(n 1) + h 2x(n 2) + h 3x 3(n 3) 5.1 IIR

5.2 105 5.2 FIR 5.2 5.2.1 1 N (Low Pass Filter: LPF) H a (jω) 2 1 = 1+(jω/jω c ) 2N (5.1) ω =2πf (5.2) 5.3 ω = ω c 1/2 3dB H a (jω) 2 ω =0 2N 1 ω =0 N ω c 5.4 ω c N 2 H a (jω) 2 jω s

106 5. IIR 5.3 5.4 N ( ) 2N s 1+ =0 (5.3) jω c s 1 2N N N = s k = ω c e j2πk/2n, k =0, 1,..., 2N 1 (5.4) N = s k = ω c e jπ/2n e j2πk/2n, k =0, 1,..., 2N 1 (5.5) s k ( ) 2N sk = 1 (5.6) jω c N =2 N =3 5.5 5.6 H a (s) 2 H a (s) s N =3 5.6.1

5.2 107 5.5 5.6

108 5. IIR 5.7 H a (s) 5.7 H a(s) 2 H a(s) H a (s) = a k = b k, R[s k ] < 0 (5.7) s s k s s k k Φ k Φ Φ s = H a (s) =0 s = 5.2.2 1 N H a (jω) 2 1 = 1+ɛ 2 VN 2 (jω/jω (5.8) c) V N (x) = cos(ncos 1 x) (5.9) V N (x) N 5.8

5.2 109 ɛ ω c N 5.8 2 V 0 (x) = 1 (5.10) V 1 (x) = cos(cos 1 x)=x (5.11) V 2 (x) = cos(2 cos 1 x) = 2 cos 2 (cos 1 x)) 1 =2x 2 1 (5.12). V n+1 =2xV n (x) V n 1 (x) (5.13) (5.9) V N (x) (5.13) cos θ = x, cos 1 x = θ (5.14) V n+1 = cos(n +1)θ = cos nθ cos θ sin nθ sin θ (5.15) sin nθ sin θ = 1 [cos(n +1)θ cos(n 1)θ] (5.16) 2 cos(n +1)θ = 2 cos θ cos nθ cos(n 1)θ (5.17) (5.13) 5.9 Vn 2 (x) 0 x 1 [0, 1]

110 5. IIR 1 <x x (5.8) H a (jω) 2 0 ω ω c 1/ 1+ɛ 2 H a (jω) 2 1 ω <ω c 5.9 3 N =3 H a (jω) 2 5.10 5.10 H a(jω) 2

5.2 111 y bω c aω c bω c N ɛ ω c α = ɛ 1 + 1+ɛ 2 (5.18) a = 1 2 (α1/n α 1/N ) (5.19) b = 1 2 (α1/n + α 1/N ) (5.20) x 2 (aω c ) 2 + y2 =1 (5.21) (bω c ) 2 θ k = kπ N,k=0, 1,, 2N 1 N (5.22) π 2N + kπ N,k=0, 1,, 2N 1 N y k = bω c sin θ k (5.23) x k = ±aω c 1 y2 k (bω c ) 2 (5.24) = ±aω c 1 sin 2 θ k (5.25) H a (s) s 1 H a (s) =h 0, R[s k ] < 0 (5.26) s s k k Φ h 0 f =0 1 N 1/ 1+ɛ 2 N 5.2.3 5.11

112 5. IIR [1, 1 δ 1 ] [0,δ 2 ] ω p ω s H a (jω) 2 1 = 1+ɛ 2 UN 2 (ω) (5.27) U(ω) 5.11 5.2.4 5.3 5.3.1 H a (s) h a (t) h a (nt ) 5.12

5.3 113 5.12 ω s H a (jω) =0, ω ω s /2 (5.28) Low-pass Filter: LPF Band-pass Filter: BPF High-pass Filter: HPF Bandelimination Filter: BEF All-pass Filter: APF (5.28) ω ω s /2 5.3.2 H a (s) h a (t) h(n) H a (s)

114 5. IIR N a k H a (s) =, R[s k ] < 0 (5.29) s s k k=1 H a (s) h a (t) N h a (t) = a k e skt,t 0 (5.30) k=1 h a (t) T N h(n) =h a (nt )= a k e sknt,n 0 (5.31) k=1 h(n) H(z) = [ N ] h(n)z n = a k e s knt z n n=0 = = n=0 k=1 [ N ] a k (e skt z 1 ) n k=1 N k=1 n=0 a k 1 e s kt z 1, e s k T z 1 < 1 (5.32) N a k N a k H a (s) = H(z) = s s k 1 e s kt z 1 (5.33) k=1 k=1 H a (s) s k H(z) e skt H a (s) R[s k ] < 0 e s kt < 1 H(z) 5.3.3 s z s R[s k ] < 0 e skt < 1 (5.34) 3.5.3

5.4 115 R[s k ]=0 e skt =1 (5.35) e j(ωt+2nπ) = e jωt (5.36) ( π +2nπ)/T ω (π +2nπ)/T, n = e jπ e jπ 5.13 5.13 (a) (b) 5.3.4

116 5. IIR 5.4 ω π/t ω π/t Ω ω 5.4.1 s-z s z s = f(z) f(e jωt )= (5.37) f() s = f(z) = 2 T 1 z 1 1+z 1 (5.38) jω =f(e jωt )=j 2 T tan(ωt 2 ) (5.39) jω e jωt Ω= 2 T tan(ωt/2) (5.40) Ω π/t ω π/t 5.14

5.4 117 5.14

118 5. IIR (5.38) s-z (pre-warping) 5.4.2 (5.38) z s = σ + jω z = 1+ T 2 s 1 T 2 s = 1+ T 2 σ + j T 2 Ω 1 T 2 σ j T 2 Ω (5.41) σ>0 z > 1 (5.42) σ =0 z =1 (5.43) σ<0 z < 1 (5.44) (5.40) 0 ω ω 0 0 ω π/t π/t ω 0 5.15 5.15

5.5 119 5.4.3 1. Ω= 2 T tan(ωt 2 ) (5.45) 2. H a (s) 3. H(z) =H a ( 2 1 z 1 ) (5.46) T 1+z 1 H(e jω ) 1. 2. LPF BPF HPF BEF 3. LPF 4. 5.4.4 1. 2. 5.5

120 5. IIR 5.6 5.6.1 H a (s) = N 1 k=0 s k s s k (5.47) H a (s) = N 1 k=0 c k s s k (5.48) H a (s) H a (s) h a (t) h a (t) = N 1 k=0 c k e s kt s k s k = δ k + jω k (5.49) (5.50) (5.49) h a (t) = = N 1 k=0 N 1 k=0 c k e δ k+jω k c k e δ kt e jω kt (5.51) e jω kt =1 h a (t) t δ k δ k > 0 (5.52) δ k =0 (5.53) δ k < 0 (5.54) δ k < 0 s

5.6 121