δf = δn I [ ( FI (N I ) N I ) T,V δn I [ ( FI N I ( ) F N T,V ( ) FII (N N I ) + N I ) ( ) FII T,V N II T,V T,V ] ] = 0 = 0 (8.2) = µ (8.3) G

Similar documents
(Jackson model) Ziman) (fluidity) (viscosity) (Free v

iBookBob:Users:bob:Documents:CurrentData:flMŠÍ…e…L…X…g:Statistics.dvi

untitled

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

untitled

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

ver.1 / c /(13)

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3


B

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

30

// //( ) (Helmholtz, Hermann Ludwig Ferdinand von: ) [ ]< 35, 36 > δq =0 du

TOP URL 1

Note.tex 2008/09/19( )

untitled

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

December 28, 2018

4.6 (E i = ε, ε + ) T Z F Z = e βε + e β(ε+ ) = e βε (1 + e β ) F = kt log Z = kt log[e βε (1 + e β )] = ε kt ln(1 + e β ) (4.18) F (T ) S = T = k = k

2000年度『数学展望 I』講義録

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

201711grade1ouyou.pdf

70 : 20 : A B (20 ) (30 ) 50 1

薄膜結晶成長の基礎2.dvi

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat


( ) ,

I ( ) 2019

70 5. (isolated system) ( ) E N (closed system) N T (open system) (homogeneous) (heterogeneous) (phase) (phase boundary) (grain) (grain boundary) 5. 1

master.dvi

LLG-R8.Nisus.pdf

3章 問題・略解

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

main.dvi

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

( ) ( )

The Physics of Atmospheres CAPTER :

3 3.1 R r r + R R r Rr [ ] ˆn(r) = ˆn(r + R) (3.1) R R = r ˆn(r) = ˆn(0) r 0 R = r C nn (r, r ) = C nn (r + R, r + R) = C nn (r r, 0) (3.2) ( 2.2 ) C

main.dvi

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

CVMに基づくNi-Al合金の

0201


#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =


1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

現代物理化学 1-1(4)16.ppt

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

3.2 [ ]< 86, 87 > ( ) T = U V,N,, du = TdS PdV + µdn +, (3) P = U V S,N,, µ = U N. (4) S,V,, ( ) ds = 1 T du + P T dv µ dn +, (5) T 1 T = P U V,N,, T

SO(2)

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

1 2 2 (Dielecrics) Maxwell ( ) D H

TOP URL 1

Mott散乱によるParity対称性の破れを検証

知能科学:ニューラルネットワーク

知能科学:ニューラルネットワーク

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

第86回日本感染症学会総会学術集会後抄録(I)

main.dvi

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100


PDF

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

数学Ⅱ演習(足助・09夏)

85 4

現代物理化学 2-1(9)16.ppt

Microsoft Word - 章末問題

数学の基礎訓練I

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0


H21環境地球化学6_雲と雨_ ppt

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Ł\”ƒ-2005

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

A

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

I

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

第90回日本感染症学会学術講演会抄録(I)

keisoku01.dvi

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

( )

Part () () Γ Part ,

Mathematical Logic I 12 Contents I Zorn

Transcription:

8 ( ) 8. 1 ( ) F F = F I (N I, T, V I ) + F II (N II, T, V II ) (8.1) F

δf = δn I [ ( FI (N I ) N I 8. 1 111 ) T,V δn I [ ( FI N I ( ) F N T,V ( ) FII (N N I ) + N I ) ( ) FII T,V N II T,V T,V ] ] = 0 = 0 (8.2) = µ (8.3) G F G(N, T, p) = F (N, T, V ) + pv (8.4) T, p N ( ) ( ) ( ) ( ) ( ) G F F V V = + + p N T,p N T,p V N,T N T,p N T,p (8.5) p = ( F/ V ) N,T ( ) G = µ (8.6) N T,p µ G = µn (8.7) 1 T, p N 2 G 2 G(αN, T, p) = αg(n, T, p) (8.8)

112 8. α 1 G(αN, T, p) G(αN, T, p) = αn G(N, T, p) α αn = N (8.9) α=1 α N µn G (8.7) i G = i µ i N i (8.10) N i x i G = i µ i x i (8.11) G 8. 2 T p n m f = 2 m + n (8.12) mn 1 m 2 + mn m (8.13) i

j µ (j) i 8. 3 113 µ (1) 1 = µ (2) 1 = = µ (m) 1 = µ 1 µ (1) 2 = µ (2) 2 = = µ (m) 2 = µ 2 µ (1) n = µ (2) n = = µ (m) n = µ n (8.14) n(m 1) f f = 2 + mn m n(m 1) = 2 m + n (8.15) f = 0 1 m + n 8. 3 I II (E I 0 < E II 0 ) (K I > K II ) 8.1 I II I II (phase transition) T tr G I (T tr ) = G II (T tr ) (8.16)

114 8. Phase I Free Energy Ttr Phase II Temperature 8.1 (I) (II) G G = H T tr S = 0 (8.17) H II H I = T tr (S II S I ) (8.18) S II S I > 0 I II II I (latent heat) 1 (first-order transition) 2 (second-order transition) 1 1 2 2 II

8. 4 115 Fe bcc fcc Debye 8. 4 C p H T H(T ) = H 0 + C p (T )dt (8.19) T 0 H 0 T 0 T 0 S T C p (T ) S(T ) = S 0 + dt (8.20) T 0 T S f 2ncal/K/mol 8.4nJ/K/mol Richards rule n 1 NaCl n = 2 (9 11J/K/n-mol) ( 14J/K/n-mol) ( 30 J/K/n-mol)

116 8. 8. 5 8.2 2 2 I (undercooled or supercooled liquid) (metastable equilibrium) Fe-Fe 3 C Tm[I] Ttr Tm[II] 8.2 T tr I II T m[i] I T m[ii] II 8. 6 H 2 O 8.3 H,O 2 H 2 + 1/2O 2 H 2 O

8. 6 117 1 22.064 [MPa] 611 [Pa] 273.16 647.10 8.3 H 2O - (p T diagram) f = 3 m (8.21) 1 m = 1 f = 2 2 2 2 2 - f = 3 2 = 1 1 3 m = 3 f = 0 3 (triple point) 2 3 (critical point) A,B 2 2

118 8. (Clausius-Clapeyron) dp dt = S V (8.22) dg = SdT + V dp (8.23) 2 S A dt + V A dp = S B dt + V B dp (8.24) dp/dt p T p T 8. 7 8. 7. 1 1 (homogeneous nucleation) σ (driving force) r (embryo) (droplet model) G = G v 4πr 3 /3 + 4πr 2 σ (8.25) G v (II ) (I ) G v = G I G II = H T S (8.26)

8. 7 119 4e -10 G * r * 5e -07 Gsurface r -4e -10 Gtotal Gvolume 8.4 H S T H tr = H II H I = H T = T tr G = 0 S = H tr T tr (8.27) S, H tr G v = H tr + T H tr T tr = H tr T T tr (8.28) 8.4 (critical radius) r dg/dr = 0 r = 2σ G v = 2σT tr H tr T (8.29) (8.28) (energy barrier or activation barrier G ) G = 16π 3 σ 3 G 2 v = 16π 3 σ 3 T 2 tr (H tr T ) 2 (8.30) Cu Cu 1356 1.44 10 2 erg/cm 2 1.88 10 10 erg/cm 3 8.4 100K

120 8. (over heating) I Z N n I = N nz (8.31) ) Nn exp ( G kt (8.32) G d ( ) I exp ( G + G d ) kt (8.33) exp ( 1/T T 2) exp ( 1/T ) TTT (Time- Temperature-Transformation diagram) 8.5 (amorphous) 8. 7. 2 (inhomogeneous nucleation) 8.6 (substrate:s) (crystal:c) (liquid:l) (contact angle)θ

8. 7 121 Temperature: T T m time: t 8.5 1 TTT T m (melting temperature) liquid σ ls σ lc θ crystal σ cs substrate 8.6 σ ls = σ cs + cos θσ lc (8.34) G hetero = G homo f(θ) = ( G v 4πr 3 /3 + 4πr 2 σ lc ) 2 3 cos θ + cos 3 θ 4 (8.35) (Appendix )

122 8. θ (wet) 8. 7. 3 (Jackson model) smooth surface facet rough surface non-facet Jackson N N A one layer Z S ( N NA N ) Z S (8.36) N A ɛ ( H = N A 1 N ) A Z s ɛ (8.37) N N N A W = N! N A!(N N A )! (8.38) S = k B ln W (Stirling s approximation) ln N! = N ln N N γ = N A /N S = k B N {(1 γ) ln(1 γ) + γ ln γ} (8.39) Z c L 0

8. 7 123 0.4 α=4 0.2 0-0. 2-0. 4 α=3 0.2 0.4 0.6 0.8 1 γ α=2 α=1 8.7 L 0 = Z c ɛ (8.40) G Nk B T tr = αγ(1 γ) + {(1 γ) ln(1 γ) + γ ln γ} (8.41) α = L 0 k B T tr Z s Z c (8.42) α 8.7 α 2 KurzFisher) W. Kurz and D. J. Fisher, Fundamentals of Solidification, Trans Tech Publications, 1984, Switzerland. Chalmers) Bruce Chalmers, Principles of Solidification, John Wiley & Sons, Inc., 1964, New York. 1971 Flemings) Merton C. Flemings, Solidification Processing, McGraw-Hill, 1974, New York.

124 8.. 1 A G interface = A lc σ lc + A cs σ cs A cs σ ls (43) G interface = A lc σ lc + πr 2 (σ cs σ ls ) (44) R = r sin θ σ lc = σ cs + σ ls cos θ (45) G interface = A lc σ lc πr 2 cos θσ ls (46) G interface = G volume + G interface = v c G v + (A lc πr 2 cos θ)σ ls v c (47) v c = πr3 (2 3 cos θ + cos 3 θ) 3 (48) A lc = 2πr 2 (1 cos θ) (49) G hetero = G homo f(θ) = ( G v 4πr 3 /3 + 4πr 2 σ lc ) 2 3 cos θ + cos 3 θ 4 (50) f(θ) = 2 3 cos θ + cos3 θ 4 = (2 + cos θ)(1 cos θ)2 4 (51)