Abstract :

Similar documents
1 1.1 Excel Excel Excel log 1, log 2, log 3,, log 10 e = ln 10 log cm 1mm 1 10 =0.1mm = f(x) f(x) = n

untitled

Vol.9No.22012


untitled


2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0

FX ) 2

FX自己アフリエイトマニュアル

01

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)


PDF


73

関西大学インフォメーションテクノロジーセンター年報 第3号(2012)

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P


宅建練馬表478号1_4ol [更新済み].eps

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

Sturm-Liouville Green KEN ZOU Hermite Legendre Laguerre L L [p(x) d2 dx 2 + q(x) d ] dx + r(x) u(x) = Lu(x) = 0 (1) L = p(x) d2 dx

- II

1 c Koichi Suga, ISBN

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

1 u t = au (finite difference) u t = au Von Neumann


橡82-93協力員原稿>授業

17. (1) 18. (1) 19. (1) 20. (1) 21. (1) (3) 22. (1) (3) 23. (1) (3) (1) (3) 25. (1) (3) 26. (1) 27. (1) (3) 28. (1) 29. (1) 2

ジェネリック医薬品販売会社(田辺製薬販売株式会社)の設立に伴う包装変更のご案内

06地図目録.pwd

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

{ 8. { CHAPTER 8. Å (sampling time) x[k] =x(kå) u(ú) t t + Å (u[k]) x[k + 1] =A d x[k] +B d u[k] (8:) (diãerence equation) A d =e AÅ ; B d = Z Å 0 e A

Microsoft Word - 触ってみよう、Maximaに2.doc

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f


p = mv p x > h/4π λ = h p m v Ψ 2 Ψ


³ÎΨÏÀ

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

数値計算:有限要素法

09 II 09/11/ y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1 Warming Up 1 u = log a M a u = M log a 1 a 0 a 1 a r+s 0 a r

1' ド Ui:;~

名称未設定

Chap11.dvi

KENZOU Karman) x

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

[] x < T f(x), x < T f(x), < x < f(x) f(x) f(x) f(x + nt ) = f(x) x < T, n =, 1,, 1, (1.3) f(x) T x 2 f(x) T 2T x 3 f(x), f() = f(t ), f(x), f() f(t )

1 1 u m (t) u m () exp [ (cπm + (πm κ)t (5). u m (), U(x, ) f(x) m,, (4) U(x, t) Re u k () u m () [ u k () exp(πkx), u k () exp(πkx). f(x) exp[ πmxdx

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

untitled

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

A

KENZOU

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

untitled

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2


, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0


untitled

prime number theorem



Korteweg-de Vries

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

takei.dvi

(, ) (, ) S = 2 = [, ] ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) ( ) (


微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

2 p T, Q



t Z

. p.1/15

A A p.1/16

第1章 微分方程式と近似解法

0

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

2015 I ( TA)

7) ẋt) =iaω expiωt) ibω exp iωt) 9) ẋ0) = iωa b) = 0 0) a = b a = b = A/ xt) = A expiωt) + exp iωt)) = A cosωt) ) ) vt) = Aω sinωt) ) ) 9) ) 9) E = mv

木材利用における林野庁施策の動向1

Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math))


phs.dvi

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y


II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

Transcription:

17 18 3 : 3604U079-

Abstract :

1 3 1.1....................................... 4 1................................... 4 1.3.................................. 4 5.1..................................... 6................................. 6.3........................... 6 3 10 3.1..................................... 11 3................................... 11 3.3..................................... 11 3.4........................... 1 4 13 4.1..................................... 14 4...................................... 14 4.3................................. 15 4.3.1............................... 15 4.3................................ 15 4.3.3................................. 16 5 17 5.1........................... 18 5........................................ 18 6 3 6.1................................... 4 6.................................... 5 6..1.................... 5 1

6...................... 6 6.3................................ 7 6.4...................................... 8 6.5................................... 8 30 31

1 3

1.1 1. 1.3 3 4 5 6 4

5

.1. u t + u u x = 1 Re u x (.1) t x u Re 1.3 (.1) x x 1 U = x/ t x1 x 1 x x 1 = x Ut x 1 u t = u x1 t + u x x x t x1 u t = U u x x 6

x 1 / x = 1 U u x 1 x 1 x + u u x 1 x 1 x = 1 Re x ( 1 x x1 x 1 x u ), x 1 U du + u du = 1 dx 1 dx 1 Re d u dx 1 d dx 1 [ Uu + 1 u 1 Re du ] = 0 dx 1 x 1 C Uu + 1 u 1 Re du dx 1 = C (.) u = u(x 1 ) lim x 1 lim x 1 (.) u( ) = U w, du dx 1 = 0, x1 u( ) = U e, du dx 1 = 0 x1 UU w + 1 U w = C, (.3) (.3) (.4) (U w U e ) UU e + 1 U e = C (.4) U(U w U e ) + 1 (U w U e ) = 0 U = U w + U e 7

(.3) (.) Re 1 U e U w C = U w + U e U w + 1 U w C = U wu e U w + U e u + 1 u 1 Re du = U wu e, dx 1 u (U w + U e )u + U e U w = Re du, dx 1 du dx 1 u U e + Re(U w U e ) (u U w )(u U e ) = Re du, dx 1 du Re dx 1 (u U w )(u U e ) = 0, 1 U w U e du dx 1 u U w = 1, du du dx 1 dx + 1 u U e U w u = 1 U w u U e x 1 Re(U w U e ) ( log(u U e) + log(u w u)) = x 1 + C 1 Re(U w U e ) log U w u u U e = x 1 + C 1 C 1 (.1) 8

log U w u = Re(U w U e ) (x Ut + C 1 ), u U e U w u = (u U e )e Re(U w Ue) (x Ut+C 1 ), (1 + e Re(U w Ue) (x Ut+C 1 ) )u = U w + U e e Re(U w Ue) (x Ut+C 1 ), u = U e + U w U e 1 + e Re(Uw Ue) (x Ut+C 1 ) C 1 C 1 = 0 C 1 t = 0 x = 0 (U w + U e )/ t = 0 x = 0 u(t, x) = U e + U w U e 1 + e Re(U w Ue) (x U w+ue t) (.5) 9

3 10

3.1 3. 3.3 f(x) x 1 u(x)/ x x u(x + x) x u(x + x) = u(x) + x 1! u ( x) (x) + x! = u(x) + x u x + O(( x) ) u ( x)3 (x) + 3 u x 3! x (x) + 3 u u(x + x) u(x) (x) = + O( x) x x u(x)/ x x 0 u(x x) x u(x x) = u(x) x 1! u ( x) (x) + x! = u(x) x u x + O(( x) ) u ( x)3 (x) 3 u x 3! x (x) + 3 u u(x) u(x x) (x) = + O( x) x x u(x)/ x u u(x + x) u(x x) (x) = + O(( x) ) x x 11

3.4 5 5.5 x 1

4 13

4.1 4. x i u i x u u x u i u i 1 u i x u i+1 u i u i x (u i 0 ) (u i < 0 ) u u x u u i+1 u i 1 i u i x ui+1 u i + u i 1 x ( x) u u x u i 3u i 4u i 1 + u i x u i 3u i + 4u i+1 u i+ x (u i 0 ) (u i < 0 ) u u x u u i+ + 4(u i+1 u i 1 ) + u i i 4 x + u i ( x) 3 4 ui+ 4u i+1 + 6u i 4u i 1 + u i 4( x) 4 u u x u i u i+1 + 3u i 6u i 1 + u i 6 x u i u i+ + 6u i 3u i+1 u i+ 6 x (u i 0 ) (u i < 0 ) 14

u u x u u i+ + 8(u i+1 u i 1 ) + u i i 1 x + u i ( x) 3 1 ui+ 4u i+1 + 6u i 4u i 1 + u i ( x) 4 u n f(x) x i Taylor O(( x) n ) 4.3 4.3.1 4.3. x x + x ( x ) u(x + x) = u(x) + x 1! u ( x) (x) + u ( x)3 (x) + 3 u ( x)n (x) + + x! x 3! x3 n! ( x < ξ < x + x) (n) u x n (ξ) u u x = u u i+1 u i 1 i u i x ui+1 u i + u i 1 + O( x) x ( x) O( x) u u x = u u i+ + 4(u i+1 u i 1 ) + u i i 4 x + u i ( x) 3 4 ui+ 4u i+1 + 6u i 4u i 1 + u i 4( x) 4 + O(( x) ) 15

u u x = u u i+ + 8(u i+1 u i 1 ) + u i i 1 x + u i ( x) 3 1 ui+ 4u i+1 + 6u i 4u i 1 + u i ( x) 4 + O(( x) 3 ) u x = u i+1 u i 1 + O(( x) ) x O( x) O(( x) ) O(( x) 3 ) O(( x) ) 4.3.3 u u x u u i+1 u i 1 i u i x ui+1 u i + u i 1 x ( x) 1 1 u/ x x x u u x u u i+ + 4(u i+1 u i 1 ) + u i i 4 x + u i ( x) 3 4 ui+ 4u i+1 + 6u i 4u i 1 + u i 4( x) 4 4 u/ x 4 ( x) 3 x u u x u u i+ + 8(u i+1 u i 1 ) + u i i 1 x + u i ( x) 3 1 ui+ 4u i+1 + 6u i 4u i 1 + u i ( x) 4 x 16

5 17

5.1 1 1 x ( ) x x WEST EAST x U w x U e U w > U e U w > U e WEST U e t = 0 x = 0 U w U e 5. Re U w U e x t t WEST EAST x x x x = 0 x u 1.5 initial exact center upwind 1 0.5 0-0.5 0 0.5 1 1.5.5 3 5.1: Re = 100, U w =, U e = 0, 0.5 x 3, x = 0.01, t = 1, t = 0.001 18

5.1 1.5 initial exact center upwind 1 0.5 0-0.5 0 0.5 1 1.5.5 3 5.: Re = 100, U w =, U e = 0, 0.5 x 3, x = 0.01, t =, t = 0.001 5. 5.1 4.5 4 3.5 3.5 1.5 1 0.5 initial exact center upwind 0-0.5 0 0.5 1 1.5.5 3 5.3: Re = 500, U w =, U e = 0, 0.5 x 3, x = 0.01, t =, t = 0.001 5.3 5. 19

4.5 4 3.5 3.5 1.5 1 0.5 initial exact center upwind 0-1 0 1 3 4 5 6 5.4: Re = 500, U w =, U e = 0, 0.5 x 6, x = 0.01, t = 4, t = 0.001 5.4 5.3 6 5 4 initial exact center upwind 3 1 0-0.5 0 0.5 1 1.5 5.5: Re = 1000, U w =, U e = 0, 0.5 x, x = 0.01, t =, t = 0.001 5.5 5.3 0

.5 initial exact center upwind 1.5 1 0.5 0-0.5 0 0.5 1 1.5.5 3 5.6: Re = 100, U w =, U e = 0, 0.5 x 3, x = 0.0, t =, t = 0.001 5.6 5. 1.5 initial exact center 1 0.5 0-0.5 0 0.5 1 1.5 5.7: Re = 100, U w =, U e = 0, 0.5 x, x = 0.01, t = 1, t = 0.004 5.7 1

.5 initial exact center upwind 1.5 1 0.5 0-0.5 0 0.5 1 1.5 5.8: Re = 150, U w =, U e = 0, 0.5 x, x = 0.01, t = 1, t = 0.004 5.8

6 3

6.1 5.1 Re = 100, U w =, U e = 0, 0.5 x 3, x = 0.01, t = 1, t = 0.001 ( ) (1 ) 5. 5.1 u > 0 5.3 x 5.1 5.4 5. 5.3 5.5 5.6 5. 3 4 4

6. 6..1 u t = u u x + 1 Re u x (6.1) t = n t x i = i x u n i (6.1) u n+1 i u n i t = u un i u n i 1 x + 1 Re un i+1 u n i + u n i 1 ( x) (6.) u n i 0 C D C = u t x, (6.3) D = 1 Re t ( x) (6.4) (6.) (6.3) (6.4) u n+1 i u n i = C(u n i u n i 1) + D(u n i+1 u n i + u n i 1) u n+1 i = ( C D + 1)u n i + (C + D)u n i 1 + Du n i+1 (6.5) ( [3] [6] [11]) : C D+1 C + D D (6.) 6.1 u(x) = k a k u(x + k x) 5

a k 0 0 D 1 C, (6.6) 0 C 1 (6.7) 6..1 D 1 0 1 C 6..1: 1 6.. u n+1 i u n i t = u un i+1 u n i 1 x + 1 Re un i+1 u n i + u n i 1 ( x) (6.8) u n i 0 (6.3) (6.4) u n+1 i u n i = C (un i+1 u n i 1) + D(u n i+1 u n i + u n i 1) u n+1 i = (1 D)u n i + ( ) C + D u n i 1 + ( C ) + D u n i+1 (6.9) 6

: C/ + D C/ + D 1 D (6.8) 6.. C D 1, (6.10) D C D (6.11) D 1 0 1 C 6.3 6..: 5.1 5.4 D C 0 C U w t/ x 6..3 7

D 1 0 1 C C,D 6.3.: C D Re = 100 U w = U e = 0 0.5 x < x = 0.01 t = 1 t = 0.004 5.7 Re = 150 U w = U e = 0 0.5 x < x = 0.01 t = 1 t = 0.004 5.8 Re = 100 U w = U e = 0 x = 0.01 0.5 x < 100 t = 0.001 t 500 ( 50000 ) 6.4 6.5 3 3 8

3 4 9

30

[1] : (1994) [] :, (1995) [3] :, vol.34,no.6(199) [4] :, (1991) [5] :, (1993) [6], :, vol.3,no.10(1990) [7] :, (1994) [8] C.A.J. :, (1993) [9] : (005) http: //www.geocities.jp/hydrodynamism/index.html [10] :, (005) [11] :, (1979) 31