sp3.dvi

Similar documents
<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

[1] 1.1 x(t) t x(t + n ) = x(t) (n = 1,, 3, ) { x(t) : : 1 [ /, /] 1 x(t) = a + a 1 cos πt + a cos 4πt + + a n cos nπt + + b 1 sin πt + b sin 4πt = a

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63>

main.dvi

画像工学特論

SFGÇÃÉXÉyÉNÉgÉãå`.pdf


chap1.dvi

数値計算:フーリエ変換

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,

Microsoft Word - 信号処理3.doc

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

QMI_09.dvi

QMI_10.dvi

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

main.dvi


Part () () Γ Part ,

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) N 1 µ = lim xk( t1) N k = 1 N autocorrelation function N 1 R( t1, t1


ds2.dvi

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

振動と波動

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y


,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f


2009 IA I 22, 23, 24, 25, 26, a h f(x) x x a h

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

x i [, b], (i 0, 1, 2,, n),, [, b], [, b] [x 0, x 1 ] [x 1, x 2 ] [x n 1, x n ] ( 2 ). x 0 x 1 x 2 x 3 x n 1 x n b 2: [, b].,, (1) x 0, x 1, x 2,, x n

II 2 II

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

. (.8.). t + t m ü(t + t) + c u(t + t) + k u(t + t) = f(t + t) () m ü f. () c u k u t + t u Taylor t 3 u(t + t) = u(t) + t! u(t) + ( t)! = u(t) + t u(

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

構造と連続体の力学基礎

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

Note.tex 2008/09/19( )

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

power.tex

(5 B m e i 2π T mt m m B m e i 2π T mt m m B m e i 2π T mt B m (m < 0 C m m (6 (7 (5 g(t C 0 + m C m e i 2π T mt (7 C m e i 2π T mt + m m C m e i 2π T

I 1

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +


z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

CDMA (high-compaciton multicarrier codedivision multiple access: HC/MC-CDMA),., HC/MC-CDMA,., 32.,, 64. HC/MC-CDMA, HC-MCM, i

-- Blackman-Tukey FFT MEM Blackman-Tukey MEM MEM MEM MEM Singular Spectrum Analysis Multi-Taper Method (Matlab pmtm) 3... y(t) (Fourier transform) t=

dx dt = f x,t ( ) t

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1.

2 1 (10 5 ) 1 (10 5 ) () (1) (2) (3) (4) (1) 2 T T T T T T T T? *

(9 30 ) (10 7 ) (FP) (10 14 ) (10 21 ) (2

DVIOUT

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

Chap11.dvi


2011de.dvi


Z: Q: R: C: sin 6 5 ζ a, b

DVIOUT-講

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

201711grade1ouyou.pdf

impulse_response.dvi

i

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (


) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2


phs.dvi

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

Z: Q: R: C: 3. Green Cauchy

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

untitled

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

i

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

Grushin 2MA16039T

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

v_-3_+2_1.eps

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

Transcription:

3 15 5 22

1 2 1.1... 2 1.2... 4 1.3... 5 1.4... 8 1.5 (Matlab )... 11 2 15 2.1... 15 2.2... 16 2.3... 17 3 19 3.1... 19 3.2... 2 3.3... 21 3.4... 22 3.5... 23 3.6... 24 3.7... 25 3.8 Daubechies... 26 4 29 4.1... 29 4.2... 34 4.3 ( )... 35 4.4... 39 4.5... 41 1

1 1.1 x(t) (non-stationary process) (time variant process) x(t) t t t [t T/2, t + T/2] T T t ±ω x(t) =sin(ω t) t = x(t) [ T/2, T/2] x T/2 (t) x(t) 1, T P T/2 (t) = 2 t T 2, others x T/2 (t) =x(t)p T/2 (t) F x T/2 (t) =x(t)p T/2 (t) (1.1) X T/2 (ω) =F[x T/2 (t)] = F[x(t)] F[P T/2 (t)] P T/2 (t) F[P T/2 (t)] = T sinc(tω/2) = (2/ω)sin(Tω/2) x(t) F[x(t)] ±ω (δ(ω ω )+δ(ω + ω )) X T/2 (ω) X T/2 (ω) = F[x(t)] F[P T/2 (t)] = (δ(ω ω )+δ(ω + ω )) T sinc(tω/2) = T sinc(t (ω ω )/2) + T sinc(t (ω + ω )/2) (1.2) sinc sinc T T 2

5 T=2 T=4 T=1 Power spectrum 4 3 2 1 Power spectrum 8 6 4 2 Power spectrum 2 15 1 5.8.9.1.11.12 Frequency [Hz].8.9.1.11.12 Frequency [Hz].8.9.1.11.12 Frequency [Hz] 1.1:.1[Hz] T 1.1[Hz] T = 2, 4, 1[sec] X T/2 (ω) 2 1[Hz] T 1.1.1[Hz].1[Hz] T (Matlab ex1.m) x(t) T sinc X(ω) =F[x(t)] T ω ω 1 ω ω 1 T T T 1a.1[Hz].12[Hz] T = 2, 4, 1[sec] X T/2 (ω) 2 2 1[Hz] T 1.2 T 2 2 T = 4, 1 (Matlab ex1a.m) 3

Power spectrum 1 8 6 4 2 T=2 Power spectrum 8 6 4 2 T=4 Power spectrum 25 2 15 1 5 T=1.8.9.1.11.12 Frequency [Hz].8.9.1.11.12 Frequency [Hz].8.9.1.11.12 Frequency [Hz] 1.2:.1[Hz].12[Hz] T 1.2 P T/2 (t) t = h(t) x(t) X(t, ω) = x(t )h(t t)e iωt dt (1.3) (Short term Fourier transform) X(t, ω) (Short term Fourier spectrum) (Spectrogram) t ω X(t, ω) t t (Time-Frequency Analysis) 2 P T/2 (t) h(t) t ω h(t) h(t) H(ω) =F[h(t)] h(t) t 2 H(ω) ω 2 t 2 = ω 2 = t 2 h(t) 2 dt h(t) 2 dt ω 2 H(ω) 2 dω H(ω) 2 dω (1.4) (1.5) 4

t ω 1 2 (1.6) 1/2 h(t) h(t) =ae bt2 (1.7) H(ω) π ω2 H(ω) =a e 4b (1.8) b h(t) G(t, ω) = x(t )ae b(t t) 2 e iωt dt (1.9) (Gabor transform) g ω,t (t) e b(t t ) 2 ω 2 1.1[Hz].4[Hz].3[Hz].1[Hz] 1[Hz] h(t) T T =32, 64, 128[sec] 1.3 T =32, 64, 128[sec] (Matlab ex2.m) 1.3 x(t) x(t) R(t, τ) =E[x(t + τ/2)x (t τ/2)] (1.1) τ t x(t) E[ ] x(t) 5

Rectangle T=32[sec] Rectangle T=64[sec] Rectangle T=128[sec] Frequency [Hz].1.2.3.4 Frequency [Hz].1.2.3.4 Frequency [Hz].1.2.3.4.5 5 1 Time [sec] Blackman T=32[sec].5 5 1 Time [sec] Blackman T=64[sec].5 5 1 Time [sec] Blackman T=128[sec] Frequency [Hz].1.2.3.4 Frequency [Hz].1.2.3.4 Frequency [Hz].1.2.3.4.5 5 1 Time [sec].5 5 1 Time [sec].5 5 1 Time [sec] 1.3:.1[Hz].4[Hz].3[Hz].1[Hz] T =32, 64, 128[sec] x(t) t 1 T/2 R(τ) = lim x(t + τ/2)x (t τ/2) dt (1.11) T T T/2 t 1 (1.1) x(t + τ/2)x (t τ/2) (1.12) τ t ω W (t, ω) = x(t + τ/2)x (t τ/2)e iωτ dτ (1.13) W (t, ω) (Wigner distribution) 1 6

1 T/2 1 lim W (t, ω) dt = lim T T T/2 T T { = = T/2 lim T T/2 T/2 1 T T/2 R(τ) e iωτ dτ x(t + τ/2)x (t τ/2)e iωτ dτ dt } x(t + τ/2)x (t τ/2)dt e iωτ dτ = X(ω) 2 (1.14) x(t) x(t) ω W (t, ω) dω = = = x(t + τ/2)x (t τ/2)e iωτ dτ dω { } e iωτ dω x(t + τ/2)x (t τ/2)dτ δ(τ)x(t + τ/2)x (t τ/2)dτ = x(t) 2 (1.15) W (t, ω) x(t) ω 1,ω 2 2 ω 1,ω 2 t 1,t 2 t 1,t 2 3.1[Hz].4[Hz] 1 1[Hz].1[Hz].4[Hz].1[Hz].4[Hz] 1 W (t, ω) 1.4(a).3[Hz].1[Hz] W (t, ω) (b) (Matlab ex3.m) 7

.5 (a).5 (b).4.4.3.3.2.2 Frequency [Hz].1.1 Frequency [Hz].1.1.2.2.3.3.4.4.5 2 4 6 8 1 Time [sec].5 2 4 6 8 1 Time [sec] 1.4: (a).1[hz].4[hz] (b).1[hz].4[hz].3[hz].1[hz] 1.4 x(t) W (t, ω) 2 Φ(t, ω) 2 C(t, ω) =W (t, ω) Φ(t, ω) = W (t,ω )Φ(t t,ω ω ) dt dω (1.16) (Cohen s class) 2 Φ(t, ω) W (t, ω) Φ(t, ω) =δ(t)δ(ω) (1.16) C(t, ω), W(t, ω), Φ(t, ω) 2 M(θ, τ) = 1 2π A(θ, τ) = 1 2π φ(θ, τ) = 1 2π (1.16) C(t, ω)e iθt e iωτ dt dω (1.17) W (t, ω)e iθt e iωτ dt dω (1.18) Φ(t, ω)e iθt e iωτ dt dω (1.19) M(θ, τ) =A(θ, τ)φ(θ, τ) (1.2) A(θ, τ) x(t) W (t, ω) 2 (1.13) A(θ, τ) = x(t + τ/2)x (t τ/2)e iθt dt (1.21) 8

A(θ, τ) x(t) A(θ, τ) 2 φ(θ, τ) 2 C(t, ω) = A(θ, τ)φ(θ, τ)e iθt e iωτ dθ dτ (1.22) h(t) x(t )h(t t) R(t, τ) = x(t + τ/2)h(t t + τ/2)x (t τ/2)h (t t τ/2)dt (1.23) x(t) x(t )h(t t) (1.23) x(t )h(t t) X(t, ω) 2 X(t, ω) 2 (1.23) R(t, τ) X(t, ω) 2 = R(t, τ)e iωτ dτ (1.24) h(t) Φ( t, ω) C(t, ω) C(t, ω) 2 Φ(t, ω) φ(θ, τ) - (Chui - Williams distribution) φ(θ, τ) ( (2π) 2 θ 2 τ 2 ) φ(θ, τ) =exp, σ > (1.25) σ t 1 t 2 ω 1 ω 2 x(t) A(θ, τ) (θ, τ) (ω 1 ω 2,t 1 t 2 ) (ω 2 ω 1,t 2 t 1 ) C(t, ω) A(θ, τ) φ(θ, τ) 2 φ(θ, τ) =1 - (1.25) θ τ φ(θ, τ) 4 T = 124/8[msec] 9

(a) Rectangle window (b) Blackman window 5 5 1 1 Frequency [Hz] 15 2 25 Frequency [Hz] 15 2 25 3 3 35 35 4 2 4 6 8 Time [sec] 4 2 4 6 8 Time [sec] 1.5: 1[sec] ( 8[kHz]) 1.4 (a) (b) 1[Hz] 2[Hz] 15[Hz] 3[Hz] 1

1.5 (Matlab ) 1 Matlab 1.1 1.5 function ex1 % 1 set(, DefaultAxesFontName, TimesNewRoman ); set(, DefaultAxesFontSize,8); set(, DefaultTextFontSize,8); LL=[2 4 1]; for k=1:3 subplot(1,3,k) sub1(ll(k)) title([ T= num2str(ll(k))]) end set(gcf, PaperUnits, centimeters ) set(gcf, PaperPosition,[ 6 16 5]) print -depsc ex1.eps function sub1(l) N=2^14; x=zeros(1,n); y=sin((1:l)*(2*pi*.1)); x(1:length(y))=y; xx=fftshift(fft(x)); px=abs(xx).^2/l; f=[-n/2:n/2-1]/n; plot(f,px, Linewidth,.2) axesresize([1.8]) xlim([.8.12]); ylim([ max(px)]); xlabel( Frequency [Hz] ); ylabel( Power spectrum ); --------------------------------------------------------- function ex1a % 1a set(, DefaultAxesFontName, TimesNewRoman ); set(, DefaultAxesFontSize,8); set(, DefaultTextFontSize,8); LL=[2 4 1]; for k=1:3 subplot(1,3,k) sub1(ll(k)) title([ T= num2str(ll(k))]) end set(gcf, PaperUnits, centimeters ) set(gcf, PaperPosition,[ 6 16 5]) print -depsc ex1a.eps function sub1(l) N=2^14; x=zeros(1,n); y=sin((1:l)*(2*pi*.1))+sin((1:l)*(2*pi*.12)); x(1:length(y))=y; xx=fftshift(fft(x)); 11

px=abs(xx).^2/l; f=[-n/2:n/2-1]/n; plot(f,px, Linewidth,.2) axesresize([1.8]) xlim([.8.12]); ylim([ max(px)]); xlabel( Frequency [Hz] ); ylabel( Power spectrum ); --------------------------------------------------------- function ex2 % 2 set(, DefaultAxesFontName, TimesNewRoman ); set(, DefaultAxesFontSize,8); set(, DefaultTextFontSize,8); t=:999; x=chirp(t,.1,t(end),.4)+chirp(t,.3,t(end),.1); subplot(2,3,1) nfft=32; window=rectwin(nfft); stft(x,nfft,window); title([ Rectangle T= int2str(nfft) [sec] ]); subplot(2,3,2) nfft=64; window=rectwin(nfft); stft(x,nfft,window); title([ Rectangle T= int2str(nfft) [sec] ]); subplot(2,3,3) nfft=128; window=rectwin(nfft); stft(x,nfft,window); title([ Rectangle T= int2str(nfft) [sec] ]); subplot(2,3,4) nfft=32; window=blackman(nfft); stft(x,nfft,window); title([ Blackman T= int2str(nfft) [sec] ]); subplot(2,3,5) nfft=64; window=blackman(nfft); stft(x,nfft,window); title([ Blackman T= int2str(nfft) [sec] ]); subplot(2,3,6) nfft=128; window=blackman(nfft); stft(x,nfft,window); title([ Blackman T= int2str(nfft) [sec] ]); set(gcf, PaperUnits, centimeters ) set(gcf, PaperPosition,[ 6 16 1]) print -depsc ex2.eps function stft(x,nfft,window) x=[zeros(1,nfft/2) x zeros(1,nfft/2)]; [y,f,t]=specgram(x,nfft,1,window,nfft-1); zz=abs(y); zzmax=max(zz(:)); zzmin=min(zz(:)); pz=fix((zz-zzmin)/(zzmax-zzmin)*256); pz=uint8(255-pz); image(t,f,pz) 12

colormap(gray(256)); ylabel( Frequency [Hz] ); xlabel( Time [sec] ); --------------------------------------------------------- function ex3 % 3 set(, DefaultAxesFontName, TimesNewRoman ); set(, DefaultAxesFontSize,8); set(, DefaultTextFontSize,8); t=:999; subplot(1,2,1) x=chirp(t,.1,t(end),.4); wigner(x); title( (a) ) subplot(1,2,2) x=chirp(t,.1,t(end),.4) + chirp(t,.3,t(end),.1); wigner(x); title( (b) ); set(gcf, PaperUnits, centimeters ) set(gcf, PaperPosition,[ 6 16 7]) print -depsc2 ex3.eps function wigner(x) n=length(x); maxtau=n/1; % less than n x=[zeros(n,1) ; x(:) ; zeros(n,1)]; z=zeros(n,2*maxtau+1); for t=1:n for tau=-maxtau:maxtau; z(t,tau+maxtau+1) = x(t+n+ceil(tau/2))*x(t+n-ceil(tau/2)); end end zz=abs(fft(z,[],2)); zz=fftshift(zz,2) ; zzmax=max(zz(:)); zzmin=min(zz(:)); pz=fix((zz-zzmin)/(zzmax-zzmin)*256); pz=uint8(pz); f=:size(pz,2)-1; image([ 1],[-.5.5],pz) colormap(hsv(256)); ylabel( Frequency [Hz] ); xlabel( Time [sec] ); function y=shift(x,n) x=x(:) ; y=[x(n:end) x(1:n-1)]; --------------------------------------------------------- function ex4 % 4 set(, DefaultAxesFontName, TimesNewRoman ); set(, DefaultAxesFontSize,8); set(, DefaultTextFontSize,8); [x,fs,nbits]=wavread( onkai.ume.wav ); subplot(1,2,1) stft(x,124,boxcar(124),fs); title( (a) Rectangle window ) 13

subplot(1,2,2) stft(x,124,blackman(124),fs); title( (b) Blackman window ); set(gcf, PaperUnits, centimeters ) set(gcf, PaperPosition,[ 6 16 7]) print -depsc2 ex4.eps function pz=stft(x,nfft,window,fs) x=x(:); x=[zeros(nfft/2,1) ; x ; zeros(nfft/2,1)]; [y,f,t]=specgram(x,nfft,fs,window,nfft/4*3); zz=abs(y); zzmax=max(zz(:)); zzmin=min(zz(:)); pz=fix(((zz-zzmin)/(zzmax-zzmin)).^.35*255); pz=uint8(255-pz); image(t,f,pz) colormap(gray(256)); xlabel( Time [sec] ); ylabel( Frequency [Hz] ); 14

2 2.1 ψ(t) 2 a b a b { ψ a,b (t) a( ),b R }, ψ a,b (t) 1 ( ) t b ψ (2.1) a a R ψ(t) a 1/ a ψ a,b (t) 2 ψ a,b (t) x(t) W (a, b) = ψ a,b (t)x(t) dt (2.2) a, b x(t) ψ(t) (wavelet) (2.2) x(t) W (a, b) (wavelet transform) h(t) W (a, b) x(t) x(t) = W (a, b) ψ a,b (t) da db (2.3) ψ a,b (t) ψ a,b (t) 1 ψ(t) ψ(t) ψ a,b (t) ψ a,b (t) 1 a ψ ( t b a ), a( ),b R (2.4) (inverse wavelet transform) ψ(t) ψ(t) (dual wavelet) ψ(t) 15

2 ψ(t) Ψ(f) Ψ(f) 2 C ψ df < (2.5) f (admissible condition) ψ(t) Ψ() = ψ(t)dt = ψ(t) ψ(t) ψ(t) ψ (t) ψ(t) (2.3) x(t) = 1 1 C ψ a 2 W (a, b)ψa,b(t) da db (2.6) 2.2(a) 2.2 a, b a, b 2 L 2 (R) Z {ψ k (t) L 2 (R) k Z} x(t) L 2 (R) 2 <A,B< L 2 (R) (frame) ( ) 2 ψ k (t)x(t)dt k Z A B (2.7) x(t) 2 dt A, B (frame bound) A = B (tight) ψ k (t) (complete) A > x(t) x(t) x(t) L 2 (R) x(t) = ( ) ψ k (t)x(t)dt ψ k (t) (2.8) k Z { ψ k (t) k Z} { ψ k (t) k Z} {ψ k (t) k Z} (dual frame) {ψ k (t) k Z} (Riesz basis) 2.2(b) ψ(t) a, b {ψ i,j (t) i, j Z }, ψ i,j (t) 2 i/2 ψ(2 i t j) (2.9) 16

x(t) W i,j = ψ i,j (t)x(t) dt, i, j Z (2.1) (discrete wavelet transform) ψ i,j (t) L 2 (R) (2.8) x(t) = W i,j ψi,j (t) (2.11) i,j Z ψ i,j (t) ψ(t) {ψ i,j (t) i, j Z} L 2 (R) { ψ i,j (t) i, j Z} { ψ i,j (t) ψ 1, i = k and j = l k,l (t) dt = (2.12), others ψ i,j (t) ψ(t) ψ i,j (t) =2 i/2 ψ(2 i t j), i,j Z (2.13) ψi,j (t) = ψ i,j (t) (2.12) { ψ i,j (t)ψk,l(t) 1, i = k and j = l dt =, others (2.14) ψ(t) (orthogonal wavelet) x(t) W i,j = ψ i,j (t)x(t) dt =2 i/2 ψ(2 i t j)x(t) dt, i, j Z (2.15) x(t) = W i,j ψi,j(t) =2 i/2 W i,j ψ (2 i t j) (2.16) i,j Z i,j Z (orthogonal wavelet transform) (inverse orthogonal wavelet transform) 2.2(c) 2.3 (Haar function) 1, t<1/2 ψ(t) = 1, 1/2 t<1, others (2.17) 17

i,j i,j i,j i,j i,j 2.1: ψ(t) C m t t k ψ(t) dt =, k m (2.18) Meyer Mayer Daubechies Daubechies 18

3 3.1 x(t) ψ(t) x(t) t x(t) 2 L 2 (R) 2 x(t) L 2 (R) 2 j, j Z A 2 j A 2 j [x(t)] 2 j 2 j A 2 j 1. A 2 j V 2 j L 2 (R) A 2 j [x(t)] 2 j A 2 j [A 2 j [x(t)]] A 2 j [x(t)] A 2 j A 2 j = A 2 j V 2 j L 2 (R) 2 j 2. A 2 j V 2 j A 2 j [x(t)] 2 j 2 x(t) y(t) x(t) 2 dt A 2 j [x(t)] x(t) 2 dt, y(t) V 2 j (3.1) 3. x(t) 2 j+1 x(t) 2 j V 2 j V 2 j+1, j Z (3.2) 4. 2 j V 2 j x(t) x(2 k t) 2 j+k V 2 j+k x(t) V 2 j x(2 k t) V 2 j+k, j, k Z (3.3) 19

5. A 2 j [x(t)] 2 j V 2 j I 2 (Z) I 6. x(t) L 2 (R) 2 j k 2 j k 2 j A 2 j [x(t 2 j k)] x(t) 2 j 2 j k A 2 j [x(t)] t=t 2 j k 5. A 2 j [x(t 2 j k)] = A 2 j [x(t)] t=t 2 j k, j, k Z (3.4) I[A 2 j [x(t)]] = α i I[A 2 j [x(t 2 j k)]] = α i k, i, j, k Z (3.5) 7. x(t) 2 j x(t) + x(t) + lim V 2 j + j = V 2 j is dense in L 2 (R) j= + (3.6) lim V 2 j j = V 2 j = { } j= 1. 7. A 2 j L 2 (R) 2 j 3. 7. {V 2 j j Z} L 2 (R) (multi-resolution approximation) 3.2 {V 2 j j Z} L 2 (R) { 2 j/2 φ(2 j t n) n Z} (3.7) V 2 j φ(t) V 1 L 2 (R) φ(t) (scaling function) x(t) L 2 (R) 2 j A 2 j [x(t)] A 2 j [x(t)] = 2 j/2 A 2 j x n φ(2 j t n) (3.8) n Z A 2 j x n 2 j/2 φ (2 j t m) t {2 j/2 φ(2 j t n) n Z} A 2 j x n =2 j/2 φ (2 j t n)a 2 j [x(t)] dt, n Z (3.9) 2

{2 j/2 φ(2 j t n) n Z} V 2 j A 2 j V 2 j (3.9) A 2 j [x(t)] x(t) (3.9) A 2 j x n =2 j/2 φ (2 j t n)x(t) dt, n Z (3.1) x(t) 2 j (3.1) (3.1) 2 j/2 φ (2 j t n) x(t) 2 j (LPF) 2 j/2 φ(2 j t n) 2 j LPF (3.1) x(t) 2 j/2 φ(2 j t) sinc 2 j/2 φ(2 j t)=sin(2 j πt)/(2 j πt) LPF x(t) 2 j A 2 j x n x(t) x(t) x(t) 2 j A 2 j [x(t)] LPF A 2 j x n 2 j 2 =1 A 1 x n 3.3 2 =1 x(t) A 1 x n x(t) A 2 j x n,j< x(t) A 2 j x n,j< 3. 5. A 1 x n V 2 V 2 1 V 2 V 2 1 V 2 φ(t) V 2 1 { 2 1/2 φ(2t n) n Z} φ(t) = l ( n)2 1/2 φ(2t n) (3.11) n Z l ( n) n l ( n) { 2 1/2 φ(2t n) n Z} l ( n) = 2 1/2 φ (2t n)φ(t) dt (3.12) (3.11) φ(t) 2 (two scale) φ(t) φ(t) 1 1 21

3.1: A 2 j x n A 2 j+1x n ( ) A 2 x n A 2 j x n,j < (3.11) t 2 j t k x(t) (3.1) A 2 j x n = l ( k)a 2 j+1x 2n+k k Z 2n + k = m A 2 j x n = m Z l (2n m)a 2 j+1x m (3.13) (3.13) l (n) FIR L A 2 j x n A 2 j+1x n A 2 j x n A 2 j+1x n FIR L 1 3.1 A 1 x n L A 2 j x n,j< 3.1 3.4 2 j+1 V 2 j+1 2 j V 2 j V 2 j V 2 j+1 V 2 j+1 V 2 j O 2 j V 2 j+1 = V 2 j O 2 j (3.14) L 2 (R) O 2 j D 2 j x(t) L 2 (R) O 2 j D 2 j [x(t)] { 2 j/2 ψ(2 j t n) n Z} (3.15) O 2 j ψ(t) O 1 L 2 (R) (3.15) (2.9) ψ(t) 22

D 2 j [x(t)] O 2 j { 2 j/2 ψ(2 j t n) n Z} D 2 j [x(t)] = 2 j/2 n Z D 2 j x n ψ(2 j t n) (3.16) D 2 j x n 2 j/2 ψ(2 j t m) { 2 j/2 ψ(2 j t n) n Z} D 2 j x n =2 j/2 ψ (2 j t n)x(t) dt (3.17) A 2 j+1x n A 2 j x n x(t) 1 A 1 x n J A 2 J x n { D 2 j x n J j 1} V 1 V 1 = O 2 1 O 2 2 O 2 J V 2 J (3.18) V 1 (orthogonal wavelet decomposition) 3.5 ψ(t) O 1 V 2 { 2 1/2 φ(2t n) n Z} ψ(t) = h ( n)2 1/2 φ(2t n) (3.19) n Z h ( n) n h ( n) { 2 1/2 φ(2t n) n Z} h ( n) = 2 1/2 φ (2t n)ψ(t) dt (3.2) (3.19) t 2 j t k x(t) (3.1),(3.17) D 2 j x n = h (2n k)a 2 j+1x k (3.21) k Z (3.21) h (n) FIR H D 2 j x n A 2 j+1x n D 2 j x n A 2 j+1x n FIR H 1 3.2 A 1 x n L 2:1 ( j 1) H 2:1 D 2 j x n, j < 3.2 23

3.2: D 2 j x n A 2 j+1x n ( ) A 2 x n D 2 j x n,j < 3.6 V 2 = V 1 O 1 φ(2t) V 2 V 1 { φ(t n) n Z} O 1 { ψ(t n) n Z} φ(2t k) =2 1/2 l 1 (k 2n)φ(t n)+2 1/2 h 1 (k 2n)ψ(t n) (3.22) n Z n Z l 1 (k 2n),h 1 (k 2n) l 1 (n),h 1 (n) l 1 (n),h 1 (n) n l 1 (k 2n),h 1 (k 2n) (3.22) 2 1/2 l 1 (k 2n),h 1 (k 2n) {φ(t n),ψ(t n) n Z} l 1 (k 2n) =2 1/2 φ (t n)φ(2t k) dt (3.23) h 1 (k 2n) =2 1/2 ψ (t n)φ(2t k) dt (3.24) (3.22) t 2 j t x(t) (3.1),(3.17) A 2 j+1x n = l 1 (n 2k)A 2 j x k + h 1 (n 2k)D 2 j x k (3.25) k Z k Z x(t) (orthogonal wavelet reconstruction) (3.25) l 1 (n) h 1 (n) FIR L 1,H 1 A 2 j+1x n A 2 j x n D 2 j x n A 2 j+1x n A 2 j x n D 2 j x n 24

3.3: A 2 j x n D 2 j x n A 2 j+1x n FIR L 1,H 1 3.3 (3.13) (3.21) (3.25) (subband filter) L H L 1 H 1 3 3.4 2 =1 x(t) φ(t) ψ(t) l (t), l 1 (t), h (t), h 1 (t) 3.7 (3.12) (3.2) (3.23) (3.24) FIR L,H,L 1,H 1 l (n), h (n), l 1 (n), h 1 (n) (3.23) (3.24) n = (3.12) (3.2) l (n) l 1 (n) h (n) h 1 (n) l 1 (n) =l( n) (3.26) h 1 (n) =h ( n) (3.27) V 1 O 1 { φ(t n) n Z} { ψ(t n) n Z} φ (t m)ψ(t)dt =, m Z (3.28) 25

3.4: 3 (3.11),(3.19) (3.28) l (n)h (k) n Z k Z φ (t 2m + n)φ(t + k) dt =, m Z (3.29) (3.29) k n 2m k = n 2m l (n)h (n 2m) =, m Z (3.3) n Z (3.3) h (n) =( 1) 1 n l (1 n) (3.31) l 1 (n) h 1 (n) h 1 (n) =( 1) 1 n l 1 (1 n) (3.32) L H L 1 H 1 3.8 Daubechies x(t) 26

Meyer φ(t) ψ(t) L,L 1,H,H 1 Daubechies Daubechies l (t),l 1 (t),h (t),h 1 (t) Daubechies N {l (n) n Z} N Daubechies l (n) =, n <, n>2n 2N 1 l (n) =2 1/2 k= 2N 1 l(n) 2 (3.33) =1 k= 2N 1 k= l (n)l (n 2m) =, m (3.33) l (n) Daubechies N =1,...,1 3.1 Daubechies (3.33) l (n),n 2 (3.11) φ(x)dx =1 φ(t) φ(x) ψ(x) N 1 Daubechies 5 N Daubechies 27

3.1: Daubechies L l (n) N n l (n) N n l (n) 1 2 1/2 7 13.3537138 1 1 2 1/2 8.54415842243 2.482962913145 8 1.31287159914 2 1.83651633738 8 2.67563736297 2 2.22414386842 8 3.585354683654 2 3.12949522551 8 4.1582915256 3.3326755295 8 5.28415542962 3 1.8689159311 8 6.472484574 3 2.45987752118 8 7.12874742662 3 3.1351121 8 8.17369312 3 4.85441273882 8 9.4488253931 3 5.35226291882 8 1.1398127917 4.2337781339 8 11.87469447 4 1.71484657553 8 12.487352993 4 2.638876793 8 13.39174373 4 3.27983769417 8 14.67544946 4 4.18734811719 8 15.117476784 4 5.3841381836 9.3877947364 4 6.3288311667 9 1.243834674613 4 7.159741785 9 2.6482312369 5.1612397974 9 3.6572887851 5 1.63829269797 9 4.133197385825 5 2.72438528438 9 5.293273783279 5 3.13842814591 9 6.9684783223 5 4.24229488766 9 7.14854749338 5 5.32244869585 9 8.3725681479 5 6.7757149384 9 9.6763282961 5 7.624149213 9 1.25947115 5 8.1258751999 9 11.22361662124 5 9.3335725285 9 12.472324758 6.1115474335 9 13.428153682 6 1.49462389398 9 14.1847646883 6 2.7511339821 9 15.23385764 6 3.3152535179 9 16.251963189 6 4.226264693965 9 17.3934732 6 5.129766867567 1.26675791 6 6.975165587 1 1.188176878 6 7.2752286553 1 2.52721188932 6 8.3158239318 1 3.68845939454 6 9.55384221 1 4.281172343661 6 1.4777257511 1 5.249846424327 6 11.1773185 1 6.195946274377 7.778525485 1 7.12736934336 7 1.396539319482 1 8.935736464 7 2.7291329846 1 9.71394147166 7 3.46978228745 1 1.29457536822 7 4.143963929 1 11.3321267459 7 5.22436184994 1 12.366553567 7 6.7139219267 1 13.1733175483 7 7.861269151 1 14.1395351747 7 8.3829936935 1 15.199245295 7 9.16574541631 1 16.685856695 7 1.1255998556 1 17.116466855 7 11.429577973 1 18.9358867 7 12.1816474 1 19.1326423 28

4 4.1 x(t) N x(t) = x n (t) (4.1) n=1 x n (t) x(t) x(t) x(t) =x 1 (t) x 2 (t) x N (t) N X(ω) = X n (ω) (4.2) n=1 X(ω) =F[x(t)], X n (ω) = F[x n (t)] (4.2) (cepstrum analysis) (spectrum) spec X(ω) x n (t) X(ω) (Complex Cepstrum) x(t) X(ω) 2 x n (t) X n (ω) 2 X(ω) 2 (Power Cepstrum) (4.2) 2 N X(ω) 2 = X n (ω) 2 (4.3) n=1 2 N log X(ω) = log X n (ω) (4.4) n=1 x pc (t) F 1 [log X(ω) ] = 29 N F 1 [log X n (ω) ] (4.5) n=1

t (frequency) fre que (quefrency) x pc (t) X n (ω) 2 (filter) fil (lifter) (high) (low) (long) (short) x(t) y(t) s ay(t) x(t) =y(t)+ay(t s), a < 1 (4.6) y(t) h(τ) =δ(τ)+aδ(τ s) x(t) =h(t) y(t) y(t) x(t) y(t) s x(t) y(t) y(t) y(t s) y(t) x(t), h(t), y(t) X(ω), H(ω), Y(ω) (4.6) ( X(ω) =Y (ω)h(ω) =Y (ω) 1+ae iωs) (4.7) X(ω) 2 = Y (ω) 2 1+ae iωs 2 = Y (ω) 2 (1 + ae iωs )(1 + ae iωs ) = Y (ω) 2( ) 1+a 2 +2acos(ωs) (4.8) ( log X(ω) 2 =log Y (ω) 2 +log(1+a 2 )+log 1+ 2a ) 1+a 2 cos(ωs) (4.9) 2a a < 1 < 1 log(1+x) Taylor 1 <x 1 1+a 2 x x2 2 + x3 3 x4 4 + log X(ω) 2 =log Y (ω) 2 +log(1+a 2 )+ ( 1) n+1 ( ) n 2a n 1+a 2 cos n (ωs) (4.1) 2 t = 3 cos(ωs), cos(2ωs), cos(3ωs),... s x pc (t) x pc (t) =y pc (t)+a δ(t)+ n=1 A n (δ(t ns)+δ(t + ns)) (4.11) n=1 3

A n, n Z y(t) Y (ω) 2 X(ω) 2 s x(t) x(t) x(t) x(t) x(t) x(t) x(t) (4.11) 3 (long) a 1 2a/(1 + a 2 ) 1 3 x(t) 6 y(t) =cos (2π 2 ) 21 t e t 8, t =, 1,...,23 1, t = h(t) =.7, t =1, others x(t) =y(t) h(t) x(t) y(t) h(t) x(t) N =64, 128, 256 y(t) 4.1(a) y(t) (b) (c) x(t) (c) (b) x(t) N = 128 (d) (d) (e) 1 1 2 (e) (f) y(t) (b) x(t) N =64, 128, 256 4.2 31

1 (a) original signal y(t) 2 (b) power spectrum of y(t).5 15 1.5 5 1 5 1 15 2 time 5 5 frequency 1 (c) observed signal x(t) 6 (d) power stpectrum of x(t).5 5 4 3.5 2 1 1 1 2 3 time 5 5 frequency 1 (e) power cepstrum of x(t) 2 (f) estimated power spectrum of y(t).5 15 1 5.5 5 5 quefrency 5 5 frequency 4.1: 6 32

1 (a) power cepstrum N=64 2 (b) estimated power spectrum N=64.5 15 1 5.5 2 2 quefrency 2 2 frequency 1 (c) power cepstrum N=128 2 (d) estimated power spectrum N=128.5 15 1 5.5 5 5 quefrency 5 5 frequency 1 (e) power cepstrum N=256 2 (f) estimated power spectrum N=256.5 15 1 5.5 1 5 5 1 quefrency 1 5 5 1 frequency 4.2: 33

4.2 x(t) x x(t) log(x) log x + i arg(x) (4.12) x cc (t) F 1 [log F[x(t)]] = F 1 [log X(ω) + i arg(x(ω))] (4.13) arg(x(ω)) ( π, π) arg(x) x pc (t) x cc (t) x(t) x pc (t) x pc (t)=f 1 [log X(ω) 2 ] = F 1 [log(x(ω)x (ω))] = F 1 [log X(ω)+logX (ω)] (4.14) X (ω) =X( ω) x(t) x pc (t) x pc (t) =x cc (t)+x cc ( t) (4.15) 2 x(t) =y(t)+ay(t s), a < 1 x(t) 2 Taylor ( log X(ω) =logy (ω)+log 1+ae iωs) (4.16) log X(ω) =logy (ω)+ a n ( 1) n+1 e inωs (4.17) n! n=1 34

x(t) x cc (t) x cc (t)=f 1 [log X(ω)] a n ( 1) n+1 = y cc (t)+ δ(t ns) (4.18) n! n=1 s s y(t) Y (ω) X(ω) Y (ω) y(t) 7 y(t) =cos (2π 2 ) 21 t e t 8, t =, 1,...,23 1, t = h(t) =.7, t =1, others x(t) =y(t) h(t) x(t) y(t) h(t) x(t) N =64 4.3(a) y(t) (b) (c) x(t) (c) (a) x(t) N =64 (d) (d) (e) 1 1 2 (e) (f) (g) (a) 4.3 ( ) (4.9) (4.16) a > 1 (4.16) ( ) log X(ω) =logy (ω)+log ae iωs (1 + a 1 e iωs ) (4.19) a 1 < 1 Taylor Taylor a n ( 1) n+1 log X(ω) =logy (ω)+loga iωs + e inωs (4.2) n! x cc (t) =y cc (t)+δ(t)loga + F 1 a n ( 1) n+1 [ iωs]+ δ(t + ns) (4.21) n! n=1 n=1 35

1 (a) original signal y(t) 5 (b) power spectrum of y(t).5.5 1 5 1 15 2 time 5 2 2 frequency 1 (c) observed signal x(t) 1 (d) power spectrum of x(t).5 5.5 5 1 1 2 3 time 1 2 2 frequency 1 (e) complex cepstrum of x(t) 5 (f) estimated power spectrum of y(t).5.5 1 2 4 6 quefrency 5 2 2 frequency 1 (g) estimated y(t).5.5 1 5 1 15 2 time 4.3: 7 36

(4.18) a > 1 2,3 3 x(t) x(t) z X(z) X(z) = n a n b Az r (1 a i z 1 ) (1 b i z) i=1 n c i=1 n d (1 c i z 1 ) (1 d i z) i=1 i=1 (4.22) a i, b i, c i, d i < 1 i a i,c i z b i,d i z A z r r < r> (4.22) n a n b log X(z)=logA + r log z + log(1 a i z 1 )+ log(1 b i z) i=1 i=1 n d n c log(1 c i z 1 ) log(1 d i z) (4.23) i=1 i=1 log(1 + x) Taylor log(1 + x) = ( 1) n=1 n+1 xn n for x < 1 (4.24) n a log X(z)=logA + r log z n c + i=1 n=1 ( )= n=1 n a log X(z)=logA + r log z n c + i=1 n= c n i n z n + n= i=1 n=1 n d where, u(n) = i=1 n= c n i n z n u(n 1) + i=1 n=1 a n i n z n n b i=1 n=1 b n i n zn d n i n zn (4.25) ( )u(n 1) (4.26) { 1, n, n < a n i n z n u(n 1) n d i=1 n= n b i=1 n= b n i n zn u(n 1) d n i n zn u(n 1) (4.27) 37

4,6 n n log X(z)=logA + r log z + n c n= i=1 n a n= i=1 c n i n u(n 1)z n a n i n u(n 1)z n + n d n= i=1 n b n= i=1 b n u( n 1)z n in d n in u( n 1)z n (4.28) z z (4.22) x(n) x cc (n)=δ(n)loga + r( 1)n n n c + i=1 c n nd i n u(n 1) n a {u(n 1) + u( n 1)} i=1 i=1 a n nb i n u(n 1) + i=1 b n u( n 1) in d n u( n 1) (4.29) in n r( 1) n n b b n nd i + n n d n i for n< n i=1 i=1 x cc (n) = log A for n = r( 1) n n a a n nc i n n + c n i for n> n i=1 i=1 (4.3) (4.3) a i,b i,c i,d i r( 1)n n ω 2 (4.3) x cc (n) x(n) n < n > x pc (n), for n> x cc (n) =.5x pc (n), for n (4.31), for n<, for n> x cc (n) =.5x pc (n), for n (4.32) x pc (n), for n< (exponential window) w(t) = { α n, <α<1 for t N 1, others (4.33) 38

x(t) w(t) z z X(α 1 z) a s aα s α.96.99 8 y(t) =cos (2π 2 ) 21 t e t 8, t =, 1,...,23 1, t = h(t) = 2, t =1, others x(t) =y(t) h(t) x(t) y(t) h(t) x(t) N =64 h(t) x(t) 4.4(a) y(t) (b) (c) x(t) (c) (a) x(t) N =64 (d) (d) (e) 1 1 2 (e) (f) (g) (a) h(t) 1 7 h(t) 4.3(e), 1, 2, 3,... 4.4(e), 1, 2, 3,... (e) 4.4 x(t) X(ω) ˆX(ω) = isgn(ω)x(ω) (4.34) X(ω) (Hilbert transform) 1, x > sgn(x) =, x = 1, x < x(t) ˆx(t) ˆX(ω) isgn(ω) 1/πt ˆx(t)=F 1 [ ˆX(ω)] = F 1 [ isgn(ω)x(ω)] 39

1 (a) original signal y(t) 5 (b) power spectrum of y(t).5.5 1 5 1 15 2 time 5 2 2 frequency 5 (c) observed signal x(t) 2 (d) power spectrum of x(t) 1 1 5 1 2 3 time 2 2 2 frequency 1 (e) complex cepstrum of x(t) 1 (f) estimated power spectrum of y(t).5 5.5 5 1 6 4 2 quefrency 1 2 2 frequency 2 (g) estimated y(t) 1 1 2 5 1 15 2 time 4.4: 8 4

4.1: x(t) ˆx(t) ŷ(t) y(t) y(t)e iωt iy(t)e iωt y(t)cos(ωt) y(t)sin(ωt) y(t)sin(ωt) y(t)cos(ωt) = 1 π = F 1 [ isgn(ω)] F 1 [X(ω)] = 1 πt x(t) x(τ) dτ (4.35) t τ 4.1 X(ω) ˆX(ω) x(t) ˆx(t) x(t) ˆx(t) x(t) ˆx (t) dt = = 1 2π = = = F 1 [X(ω) ˆX ( ω)] dt = i X(ω ω ) ˆX ( ω )dω e iωt dω dt x(t)e iω t dt ˆX ( ω )dω X( ω ) ˆX ( ω )dω ( i)sgn(ω )X( ω )X ( ω )dω sgn(ω) X(ω) 2 dω = (4.36) 4.5 x(t) ˆx(t) x(t) ˆx(t) x + (t)=x(t)+iˆx(t) (4.37) x (t)=x(t) iˆx(t) (4.38) x + (t) x (t) x + (t) x + (t), x (t) X + (ω),x (ω) X + (ω)=x(ω)+i( isgn(ω))x(ω) =X(ω)+sgn(ω)X(ω) (4.39) X (ω)=x(ω) i( isgn(ω))x(ω) =X(ω) sgn(ω)x(ω) (4.4) 41

X + (ω) = X (ω) = 2X(ω), ω > X(ω), ω =, ω <, ω > X(ω), ω = 2X(ω), ω < (4.41) (4.42) x + (t) x (t) e ±iωt e ±iωt =cos(ωt) ± i sin(ωt) (4.43) x + (t) X + (ω) X + (t) 2πx + ( ω) X + (t) F[X + (t)] = 2πx + ( ω) = 2π(x( ω)+iˆx( ω)) = 2π(x(ω) iˆx(ω)) (4.44) X + (t) (4.41) t < X + (t) h(t) t< x(t) x + (t) x(t) X(ω) (4.41) X + (ω) x(t) N 2X(ω), ω {1, 2,...,N/2 1} X + (ω) = X(ω), ω {,N/2}, ω {N/2+1,...,N 1} x(t) N 2X(ω), ω {1, 2,...,(N 1)/2} X + (ω) = X(ω), ω =, ω {(N 1)/2+1,...,N 1} cos(ωt) m(t) (Amplitude Modulation) x(t) =m(t)cos(ωt) m(t) x(t) x(t) m(t) x(t) 4.1 ˆx(t) =m(t)sin(ωt) 42

x(t) x ± (t) = m(t)cos(ωt) ± im(t)sin(ωt) = m(t)e ±iωt (4.45) x ± (t) = m(t) m(t), t x(t) m(t), t x(t) x + (t) =x(t)+iˆx(t) 1 ˆx(t) φ m (t) tan x(t) (4.46) ω m (t) d dt φ m(t) (4.47) 9 sin(ω c t), ω c =2π.2 m(t) =.3sin(ω m t)+.5, ω m =2π.4 t t =, 1,...,999 4.5(a) m(t) (b) x(t) (c) x(t) m(t) (d) 43

1 (a) carrier wave 1 (b) signal m(t).5.8.6.4.5.2 1 2 4 6 8 1 time 2 4 6 8 1 time (c) Amplitude modulated signal x(t) and the Hilbert transform 1.5.5 1.8.6.4.2 (d) Demodulated signal 1 2 4 6 8 1 time 2 4 6 8 1 time 4.5: 9 44